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INTRODUCTION According to 2014 statistics, if current consumption rates

continue, coal reserves will run out in about 130 years, nat-
ural gas reserves in about 60 years, and oil reserves in about
20 years. [2].

The construction sector contributes significantly to
recovery that followed the pandemic and led to tensions greenhouse gas emissions and is a significant energy con-
across all global supply chains, including energy [1]. Fossil  sumer. It made up 132 EJ of energy consumption in 2021,
fuels and nuclear energy, both of which are limited and  or 30% of total final energy consumption worldwide. When
emit significant amounts of greenhouse gases, are the main  indirect emissions from the production of heat and power
sources of energy conversion and electricity generation. are taken into consideration, the sectors 3 Gt of CO2

We are currently experiencing the first global energy cri-
sis. Pressures on markets had already been evident, but the
actions of this crisis have transformed the rapid economic
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emissions in 2021 accounted for 15% of all emissions from
end-use sectors, a percentage that doubles [1].

Currently, the global trend leans towards reducing
greenhouse gas emissions, primarily through exploring
various innovative technologies to reduce fossil fuel con-
sumption and consequently technologies that have a pos-
itive impact on reducing greenhouse gases. Reducing
energy demand in buildings and contributing to preserving
fossil fuels are major challenges at the turn of the century.
Building energy efficiency is part of the response to cur-
rent energy challenges (resource economy, greenhouse gas
reduction, carbon footprint reduction, renewable energy
use, etc. It constitutes the primary pillar in the building sec-
tor’s transition, particularly within the Net Zero Emissions
(NZE) scenario. The NZE scenario by 2050 is a normative
scenario from the IEA that outlines the path for the global
energy sector to achieve zero net CO2 emissions by 2050. In
this scenario, energy consumption will decrease by 24% by
2030, reaching approximately 100 EJ. Achieving this neces-
sitates an annual improvement of about 5% in residential
building energy efficiency between 2020 and 2030 [1].

There are significant opportunities for efficiency gains
that can be introduced and studied to reduce the high
energy consumption of buildings. This can be achieved
through various passive and active techniques, whether
through improving the thermal insulation of building
envelope, energy storage for future utilization, heat pumps,
energy-efficient appliances, and the utilization of renew-
able energy sources. Recently, various technical solutions
have been introduced. The core of innovation focuses on

Passive houses

Designing a PCM-based
heating system for the Dover

Many passive houses, for solar
cooling, have been built, including
the outside of the USA , in
Casablanea , Morocco

Sun house built approximately
30 km west of Boston by Maria
Talkes

o

The eveolution of PCM-based
heating system technelogies in
Dover house

research into intelligent materials based on latent heat ther-
mal energy storage, able to lower energy consumption and
manage thermal comfort in occupied structures. These
materials are called phase change materials (PCM).

B. Durakovi¢ [2] has outlined the historical develop-
ment of phase change materials for thermal energy storage
in figure 1. The application of PCMs in buildings for ther-
mal storage traces back to the late 1940s, with significant
interest in research emerging only during the energy cri-
sis of the late 1970s and early 1980s [2]. Extensive efforts
have been devoted to exploring the utilization of PCMs
in various domains, including solar heating systems [3-8],
clothing, photovoltaic systems [9-14], lithium-ion battery
systems [15-17], electronic devices [18, 19], as well as in
active heating/cooling systems [20-24], wall panels, bricks,
coatings, cement, plaster, concrete [25-32], glazing systems
[33], infrastructure [32], etc.

To assess the effect of integrating phase change mate-
rials (PCMs) in the construction sector on energy savings
and indoor temperature regulation, numerous research
findings and significant experiments have been conducted.
M. Prabhakar et al. [34] evaluated the impact of coupling
macro-encapsulated PCM in bricks with natural ventilation
and intelligent control on enhancing the energy efficiency
of tertiary buildings. A simulation was conducted for 15 dif-
ferent cities worldwide. It was observed that in hot and arid
conditions, the PCM passive cooling technology proved to
be inefficient. However, energy savings were augmented by
integrating PCMs with natural ventilation in such climatic
contexts, although the benefits were comparable to those

\h------—’

Evolution of PCM

Evolution of PCM research

Phase change materials
(PCMs) are widely recognized
materials in building design,
with around 26,000 articles
published on this topic.

Figure 1. Historical Application of PCMs in Thermal Energy Storage (TES).
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achieved through natural ventilation alone. Conversely,
PCM efficiency increased from 3.32% to 25.62% in temper-
ate conditions by coupling a passive PCM system with night
ventilation. This was enhanced to 40% with the application
of PCMs alongside temperature-controlled ventilation.
Thus, it can be inferred that intelligent ventilation control
has the potential to yield significant energy savings.

Xaman et al. [35] analyzed the effect of integrating
phase change materials (PCMs) into a concrete roof on its
thermal performance under the hot meteorological con-
ditions of Mérida, Mexico. The results indicate that the
installation of a 2 cm R-PCM1 resulted in a reduction of
57% compared with a normal roof. For an average building
lifespan in México, approximately 30 years, the installation
of R-PCML1 (paraffin wax - MG29) with a 2 cm PCM thick-
ness is economically viable, with a payback period of 12.18
years.

The heat transfer within transparent structures con-
taining PCM, such as windows, represent a highly complex
process owing to the interplay of heat conduction, radia-
tion, convection, phase change phenomena, and solar radi-
ation buildup within the unit [33]. King et al. [36] carried
out an empirical study on the thermal transfer properties of
a double-glazed window integrated with paraffin RT 35as a
PCM. They demonstrated that the systematic integration of
the appropriate phase change material into a double-glazed
window can effectively mitigate solar heat gain into the
room and substantially improve the buildings energy effi-
ciency. Additionally, the PCM notably reduced temperature
fluctuations within the interior space from 21°C to 11°C,
the interior glass temperature by 8.5°C, and energy usage
through the window by 3.76%.

The incorporation of phase change materials (PCMs)
within a glazed roofing system, as opposed to air, leads to a
substantial 47.5% reduction in energy consumption, with a
payback period ranging from 3.3 to 6.2 years. Furthermore,
this concept presents itself as a viable solution for renovat-
ing large spaces, such as gymnasiums, due to its easy imple-
mentation. [37].

Mabrouki et al. [38] investigated the impact of various
factors influencing the use of PCM Trombe walls on heat-
ing and cooling loads in Ifrane, Morocco, characterized by a
semi-oceanic climate. Their findings indicated a significant
reduction in the annual energy consumption of the refer-
ence house, from 1,285.6 kWh to 733.18 kWh. A notable
reduction in energy demand of 42.97% was also achieved
by the addition of vents to the PCM Trombe wall.

Saikia et al. [39] introduced a new passive cooling sys-
tem designed exclusively for high-temperature locations,
harnessing the liquid-vapor phase change mechanism.
Integration of the LVPCM technology into concrete slabs
showed thermal performance equivalent to that of standard
SLPCM systems. In the hottest daytime intervals, the use
of LVPCM resulted in a reduction of 2.22°C in the tem-
perature. Installation of the technology recorded an average

reduction of 20.51% was attained, indicating a heat gain
through concrete of 13.56%.

This article presents a comprehensive review of recent
literature on phase change materials, considering their
types, advantages, and disadvantages. It addresses some
approaches to integration along with their benefits and
drawbacks. It further addresses the simulation tools that
have been applied to optimize and evaluate the impact of
PCM integration into building envelopes on energy con-
sumption reduction. The article also gives recommenda-
tions for selecting optimum PCM properties, such as type,
thickness, and location, based on previous research find-
ings. Subsequently, all recent local (Morocco) research is
described, and a critical evaluation is conducted toward
identifying gaps and providing recommendations for future
studies.

Phase Change Materials (PCM)

Phase transition materials can store or release energy
as latent heat. As the PCM temperature rises and the melt-
ing point is reached, the PCM absorbs thermal energy and
changes phase through the stored latent energy, shifting
from solid to liquid state. In the opposite process, when the
temperature of PCM decreases, PCM crystallizes, releasing
the stored energy. The phase change occurs at a constant
temperature. Incorporating such materials into building
envelopes provides potential energy savings and enhanced
thermal comfort by reducing annual heating and cooling
demands. In 1983, Abhat was the first researcher to pro-
pose classifying PCMs characterized by a solid-liquid phase
change. He published one of the earliest articles describing
the properties and potential use of these materials [40].

PCMs are categorized into three major families, organic
compounds, inorganic compounds, and eutectics, accord-
ing to their chemical characteristics, as illustrated in figure
2.

o Organic PCMs: These materials are divided into two
subcategories based on their function, namely paraffins
(CnH2n+2) and non-paraffins (CH3(CH2)2n COOH),
including fatty acids and other substances such as alco-
hols and esters. Paraffin is the most widely used phase
change material due to its high heat of fusion, chemical
stability, lack of segregation tendencies, and minimal
degradation of thermal properties after repeated melt-
ing/freezing cycles. Nevertheless, it has low thermal
conductivity, is flammable, and undergoes significant
volume change from solid to liquid, posing challenges
in the design of the container. In addition, one requires
caution when using plastic containers because paraffins
can infiltrate certain containers and soften them.

o Inorganic PCMs: This category includes salt hydrates
and metals. Salt hydrates consist of salt and water com-
bining into a crystalline matrix upon solidification. They
are heavily studied as energy storage materials due to
their affordability, availability, high thermal conductiv-
ity and density, non-flammability, and minimal volume
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Figure 2. Classification of phase change materials (PCMs).

variation compared to other PCM types. However, the
main drawback of salt hydrates is subcooling. Due to
their weight, metals have not been extensively studied
as PCMs for latent heat storage [2]. Although inorganic
PCMs exhibit a sharper phase transformation (direct
transition from solid to liquid without softening), they
are two to three times more expensive than paraffins
and slightly corrosive.

o Eutectic PCMs: refer to mixtures of two or more organic
and/or inorganic compounds that consistently melt and
freeze at a constant temperature without phase segrega-
tion, effectively acting as a singular component.
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The diagram in figure 3 represents each PCM subgroup,
illustrating the range of melting energy and the melting
temperature interval.

To conclude, each of the aforementioned groups of
PCMs has distinct properties, advantages, and disadvan-
tages. selecting a suitable material necessitates thorough
evaluation of multiple criteria specific to the application,
such as buildings, batteries, photovoltaic systems, etc.

Criteria For Selecting a PCM

The selection of a PCM is contingent upon the specific
application domain (building, transportation, food, tex-
tiles) as well as its environment (climatic conditions), hence
the importance of defining the criteria for selecting a PCM

Figure 3. The latent heat and melting temperature of each PCM subgroup [From B.Durakovi¢ [2] , with permission from

the author].
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Thermodynamic Physical

Properties Properties

- Appropriate phase change
temperature aligned with the
regional climate under study.

High density requiring a
smaller storage volume.

- Low volume ehange
during phase transition
and low vapor pressure.

- High latent heat of fusion,
allowing a smaller quantity
of material to store a given
energy amount effectively.
- Valume expansion
during solid-liguid phase
change poses a problem
in storage unit sizing,
especially when using a
closed container.

- High thermal conductivity
to minimize temperature
gradients during the
material's charging and
discharging, thus
accelerating the phase
transition process. viability.
Low volumetric
expansion allows storing
hoth phases in the same

volume [44]

- Elevated specific heat
capacity to deliver
significant additional
storage of sensible heat.

Figure 4. Phase change material’s properties.

[41]. Abhat [40], Hawes et al. [42], and Pasupathy et al.
[43] have defined the criteria for selecting a phase change
material. To appropriately select a PCM for thermal energy
storage in the form of latent heat, it is crucial to evaluate its
thermodynamic, physical, kinetic, chemical, and economic
characteristics. A proficient change material should have
the following properties (Fig. 4).

No single material possesses all the required properties
for ideal thermal storage. Selecting a PCM involves find-
ing one that delivers optimal performance at minimal cost.
Several researchers have affirmed that the melting tempera-
ture is one of the crucial thermo-physical properties that
influence the performance of PCMs [2], [40-46].

Moreover, Yassine Chihab et al. [47] confirm that, for
enhanced energy efficiency, a high heat of fusion and a low
thermal conductivity are desirable properties for PCMs
applicable in buildings. However, high thermal conductivity

best sujted for active
| strategles

Thermal conductivity (W/mK)
&

best suited for ==
0 bu'rldir]:g envelope >
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Heat of fusion (kJ/kg)

- Limited or no
subcooling, which refers
to the delay in
solidification upon
reaching the melting

temperature; this delay

- Cost-effectiveness,
where the choice of PCM
must consider the return-

- Chemical stability
ensuring compatibility
with containment
materials to prevent

) . ) on-investment duration,
corrosion or infiltration.

as overly long payback
- Complete and reversible periods limit the
consolidation/fusion
cycle.

attractiveness of an MCP
[44]

can compromise system

Non-toxic, non-
flammable, and non-
corrosive

- High crystallization rate

is reccommended when using PCMs in heat exchanger sys-
tems [2].

The correlation among the heat of fusion, melting tem-
perature, and thermal conductivity in various widely used
commercial phase change materials used in construction
applications is illustrated in figure 5.

In summary, the melting temperature, latent heat, cost,
and stability are critical factors that will influence the mar-
ket adoption of phase change materials (PCMs).

Since paraffins are widely recognized as the predom-
inant phase change materials utilized in thermal energy
storage applications due to their non-toxic nature, abun-
dance, ease of microencapsulation, and other advantages,
they are still derived from crude oil. This underscores the
need to explore the development of biologically derived
PCMs (bio-PCMs) as a sustainable alternative.
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Figure 5. (a) Heat of fusion versus thermal conductivity, (b) Heat of fusion versus melting temperature for selected com-
mercial PCMs [From B.Durakovi¢ [2], with permission from the author].
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Bio-based PCM (BPCM)

Within the context of sustainable development, bio-or-
igin phase change materials (BPCMs) offer an alternative
to commercially available paraffin-based PCMs. They are
renewable and environmentally friendly [48].

According to Durakovi¢ [2], paraffins are are the most
commonly used as PCMs in thermal energy storage appli-
cations due to their non-toxic nature, abundance, and ease
of microencapsulation. They are derived from petroleum,
and their prices are sensitive to seasons and geopolitical
scenarios. Consequently, there is a recognized necessity to
explore other forms of bio-origin PCMs [2]. Several studies
have been conducted for the development of a bio-sourced
PCM capable of delivering comparable performance to
conventional phase change materials.

The potential use of a bio-based PCM that is prepared
from expired palm oil sourced from the food industry was
investigated by Fabiani et al. [49]. Compared to petrochem-
ical-based organic PCMs, it was found that, despite the low
phase transition enthalpy, expired palm oil may serve as a
potential, affordable, and environmentally friendly alter-
native for passive thermal storage systems. Such bio-based
materials require further study in order to enhance the
energy storage density and minimize subcooling to guar-
antee a more consistent material conducive to high perfor-
mance while maintaining sustainability.

Boussaba et al. [50] explored the utilization of recovered
coconut fat from underused feedstocks, cellulose fibers from
recycled cardboard, natural clay, and graphite as a bio-based
composite phase change material. The authors demon-
strated that the latent heat fusion and freeze capacities were
found to be 106.17 J/g and 107.34 J/g respectively, making
the bio-based PCM suitable for passive solar TES building
applications. It was found that the phase change tempera-
tures aligned closely with human comfort levels (22.63 °C
and 17.44 °C for the fusion and freeze cycles respectively),
emphasizing its potential for practical application as a bio-
based PCM. Thermal analysis TGA confirmed the materiabs
stability within operational temperature ranges, with thermal
degradation starting above 200 °C., while spectroscopic anal-
ysis (FI-IR) verified its chemical stability.

Choi et al. [51], Jin Ong et al. [52], and Yoo et al. [53]
examined the chemical composition, chemical, and ther-
mo-physical properties of used coffee grounds (waste
produced after using coffee as a beverage) to assess their
viability as bio-based PCMs. Choi et al. [51] analyzed the
morphological, thermal, and acoustic performances of
a composite developed from degreased coffee waste with
ethanol, urea-formaldehyde resin and bio-based micro-
encapsulated PCM (MPCM). The results indicate that the
developed composites present enhanced thermal perfor-
mances (high thermal conductivity, thermal stability, etc.)
and improved acoustic absorption properties. The compos-
ite can therefore be regarded as a sustainable building mate-
rial, exhibiting significant thermal and acoustic properties.

Other PCMs have been evaluated by several researchers,
including beeswax as a paraffin alternative as a durable, eco-
logical, and potential PCM [54], [55], sugar alcohols [56],
[571, [58], [59], [60], a eutectic mixture of ceramist sludge
[61], grease waste from pork cooking processes confined in
a polypropylene nonwoven mat derived from surgical mask
filter waste and porous bio-silica (diatomite) [62], etc.

The bio-based products are developed from the renew-
able organic resources, presenting a more environmentally
friendly, sustainable, and ecological option. These mate-
rials possess similar thermal properties, including latent
heat capacity, phase change behavior, and thermal cycling
durability, which make them suitable for equivalent ther-
mal energy storage applications. However, research into
biobased PCMs is still at the laboratory stage, so their use
in building envelopes needs to be proven by experiments.

PCM Incorporation

To ensure optimal functionality, longevity, and mitiga-
tion of potential issues like corrosion or PCM leakage during
its incorporation, various considerations are essential. Firstly,
the storage system material must be suitable for the PCM,
the container wall must also be thick enough for seal integ-
rity and leak protection. Moreover, incorporation should be
designed to withstand mechanical constraints arising from
PCM volume changes during phase transitions. Therefore,
selecting an appropriate incorporation method of PCM is
crucial. There are several techniques for incorporating PCM
into construction materials, such as direct incorporation,
immersion, stabilized form, and encapsulation [63].

Encapsulation is the most widely used technique. It is
a process that was invented and developed by Barrett K.
Green of the National Cash Register Corporation (NRC)
during the 1940s and 1950s [64]. This method entails
encapsulating the PCM with an appropriate coating or
shell material, in principle, maintaining the liquid and/or
solid-phase of the PCM while isolating it from the outside
environment [65].

Encapsulation provides multiple benefits, by decreasing
PCMbs reaction to the environment, increasing flexibility in
phase change process, and raising the thermal and mechan-
ical stability of the PCM. Additionally, PCM encapsulation
contributes to heightened heat transfer rates by increas-
ing surface area, thereby increasing thermal conductivity.
However, one of the main obstacles to commercializing an
encapsulated PCM-based system lies in the considerable
cost associated with encapsulation, which raises the over-
all system cost [66]. Encapsulations are classified based on
their size into macro, nano, and micro-encapsulations [65].
v Macro-encapsulation: involves encapsulating phase

change materials in large-scale containers, such as

tubes, sachets, spheres, or panels, ranging from a few
millimeters to several liters in volume. It is necessary
that these containers be constructed from rigid materi-
als with high thermal conductivity, such as aluminum
or copper, to prevent leakage issues [37]. Additionally,
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PCM macro-
encapsulated

Figure 6. (a) Macro-encapsulation in sachets produced by
PCM product company, (b) Macro-encapsulation in plas-
tic containers as produced by PCM product company, (c)
Macro-encapsulation in Rubber balls from PCM product
company, (d) Macro-encapsulation in metal containers as
produced by PCM product company [68]. (e) Macro-en-
capsulation in bricks for constructing a wall [From Q.Alya-
siri et M.Szabo [67], with permission from Elsevier].

when the container possesses sufficient rigidity, mac-
ro-encapsulation could also contribute to enhanced
mechanical stability in the resulting system.

Figure 6 illustrates examples of macro-encapsulated
PCM [67], [68].

v' Micro-encapsulation: involves encapsulating the phase

change material in spheres or capsules with diameters
ranging from 1 pm to 1000 pm [46]. These PCM par-
ticles can then be incorporated into any matrix that is
well suited to the encapsulated shell, such as construc-
tion materials. Microencapsulated PCM effectively
avoids the drawbacks of macro-encapsulated PCM,
such as handling issues, leakage risks, shape distortion,
and maintenance complexities [67].
There are numerous commercial products of microen-
capsulated PCM, such as Micronal® PCM produced by
the German company BASE Figure 7 depicts examples
of microencapsulated PCMs [68-71].

v" Nano-encapsulation: in certain applications, particularly
in latent functional thermal fluids, microencapsulated
phase change materials (PCMs) have demonstrated lim-
ited performance under repeated cycles. This limitation
arises from the tendency of large particles in microen-
capsulated PCMs to increase fluid viscosity and suscep-
tibility to being crushed during pumping. Consequently,
there has been a focus on developing PCMs with parti-
cle sizes smaller than those found in microencapsulated
forms [72]. Nano-encapsulation is an encapsulation tech-
nique introduced by Narty in the 1970s and widely used
in medical dyes and fragrances [72]. It involves encap-
sulating the phase change material within capsules with
diameters ranging from 1 nm to 1000 nm.

In light of the findings, it can be concluded that reducing
capsule size enhances the thermal reliability and chemical

PCM micro-

encapsulated \(4

x '{ 4 Solutions

Ei A
e Granulé‘:??

Figure 7. (a) Micro-encapsulation in a bio-sourced poly-
mer shell (m-PCM) for incorporation into nano-modified
cement composites [From X.Jin et al. [71], with permission
from Elsivier]. (b) and (c) Microencapsulated PCM pro-
duced by PCM product company in fluid dispersion and
granule forms respectively [68]. (d) PCM microcapsules are
incorporated into asphalt coatings to regulate the tempera-
ture of asphalt pavements [From D.Bentacourt-Jimenez et
al. [69], with permission from Elsevier]. (¢) PCM micro-
capsules are incorporated into cement paste [From Y.Gu et
al. [70], with permission from Elsevier].

stability of PCM. Nano-capsules exhibit superior structural
stability compared to macro and microcapsules. However,
research on nano-encapsulated PCMs is still at the labora-
tory level [65] .

Despite microencapsulated PCMs offering higher ther-
mal reliability and chemical stability than macro-encapsulated
materials, their production process remains more complex.
They may also face subcooling issues due to hypothermia,
retaining the liquid phase even below its freezing point [65].
In addition, they can present some leak issues caused by
micro-encapsulation damage during handling or mixing pro-
cesses at construction sites, which can deteriorate the proper-
ties of construction materials used for building. Encapsulating
PCM in containers larger than 5,000 pm and then integrating
it into the building envelope will minimize PCM leaks [66].

Rathore & Shukla [66] performed a comprehensive
analysis of various approaches to integrate macro-encap-
sulated PCM into the building envelope. They demon-
strated that macro-encapsulation is one of the simplest and
most efficient methods to directly incorporate PCM into
construction materials. Furthermore, macro-encapsulated
PCM exhibits high resistance and durability relative to
microencapsulated PCM and can be simply fabricated by
filling PCM into the shell material of any desired shape.

Techniques for Enhancing The Thermal Properties of
Phase-Change Materials

In the context of improving the energy efficiency of
buildings, which has become a crucial concern, phase
change materials have garnered substantial attention
from researchers. Their incorporation is also potential for
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creating energy-saving building envelopes and reducing

CO2 emissions in this sector. This is due mostly to their

significant potential for storing and releasing heat energy,

thus enhancing the latent heat storage potential of building
envelope upon incorporation. However, PCM's drawback
lies in their low thermal conductivity,resulting in subopti-
mal heat transfer rates and negligible effectiveness in heat
storage and release. These limitations may inhibit their
further usage as heat energy storage materials in building
applications [73]. In order to overcome these setbacks,
some methods could be implemented, such as incorpo-
rating high-conductivity materials, nano-encapsulation,

forming composite PCMs, and shape stabilization [74].

o Forming a PCM -composite represents an approach
aimed at enhancing the thermal performance of PCMs.
It involves combining a PCM with other materials pos-
sessing high thermal conductivity to create a composite
material with additional or modified properties. The
integration of PCMs into another material's matrix is
done at a microscopic level to preserve their thermal
characteristics [42]. These composites can take the form
of fibers/stearic acid, foams/polyethylene, or films [74].
Composites that establish a stable structure between a
PCM and another material are commonly referred to as
shape-stabilized PCMs [42].

« Shape-stabilized PCM: a technique for improving the
thermal performance of PCMs, commonly adopted for
organic PCMs known for their low thermal conductiv-
ity and leakage issues during phase change. This strategy
involves utilizing two components: a porous material
that prevents PCM leakage, such as porous carbon
(derived from materials like cardboard, potatoes, suc-
culents, activated carbon, etc.), expanded graphite, or
polyurethane foam; and a nanomaterial that enhances
the thermal properties of PCMs [73]. Additionally, the
porous matrices enhance thermal performance through
the provision of an extended surface area for heat trans-
fer [74]. The loading PCMs into porous materials can
be achieved through vacuum impregnation, ultrasonic
oscillation, and melting adsorption methods [73].

o Nano-encapsulation: As mentioned in the earlier sec-
tion, it encapsulates the phase change materials in tubu-
lar, cylindrical, spherical, or rectangular capsule, with
diamters in the range of 1 nm and 1000 nm. It remains
the most efficient technique for improving heat transfer
rates [74], mostly by improving the thermal conduc-
tivity of PCMs and minimizing leakages while in their
phase transition [75]. Metallic [76] and carbon-based
[77] nanoparticles of high thermal conductivity are
incorporated into PCMs for improved heat conductiv-
ity. Nonetheless, carbon-based nanoparticles demon-
strate superior stability and dispersion within PCMs
compared to metallic counterparts [2].

Numerous investigations have been implemented
to evaluate the advantages of integrating nano-PCM in
terms of energy savings and thermal comfort compared to

conventional PCMs. Zhenjun et al. [78] demonstrated that

the enhanced solidification/melting process of nano-PCM

incorporated into a ventilation system, as opposed to the
pure process, increased the heat charge and discharge rates
by 8% and 25%, respectively.

Fateh Mbarek Oudina and Ines Chabani et al. [79] con-
cluded that, from an economic perspective, the cost of this
technique is relatively low in comparison to the substantial
benefits conferred by the inclusion of nanoparticles and
phase change materials on the overall thermal performance
of systems. This represents an excellent solution for ensur-
ing thermal comfort at a very low cost, enabling the phase
transition to occur much more rapidly than in systems with
pure PCM while capturing greater solar energy. Additionally,
the use of nano-PCM leads to an increase in overall thermal
capacity, resulting in significant thermal storage.

Nonetheless, it was reported by Ghalambaz et al. [80]
that the cost of the nanoparticles is dependent on their type,
as the copper nanoparticles were around 10 times higher in
value as compared to the alumina nanoparticles. This high-
lights the interest in developing hybrid nano-PCMs, which
are prepared by suspending various types of nanoparticles in
a PCM. From numerical simulation of the melting process in
nanoparticle-enhanced phase change materials, the authors
that The melting process was improved by utilizing a hybrid
nano-PCM. Specifically, the melting time of the single-com-
ponent water/Ag-MgO nano-PCM was lower compared to
that of the single-component water/MgO nano-PCM.

o Incorporation of High Thermal Conductivity Materials:
This strategy is based on the incorporation of high
thermal conductivity materials such as nano-metals,
aluminum or carbon fins, carbon-based materials, or
expanded graphite. Such fillers, through the forma-
tion of a conductive network within the PCM matrix,
enhance thermal transfer as well as general thermal
performance while preserving the inherent latent heat
storage potential of the material [74].

Moreover, thermal conductivity improvement in PCMs
can also be obtained through chemical modifications such
as doping or grafting [81]. These chemical modifications
considerably alter the composition and surface phase struc-
ture of the thermally conductive matrix, resulting in porous
materials with doped components to improve the cyclic
stability as well as the thermal conductivity of the PCM.
Grafting, or post-synthesis modification, entails a chemi-
cal reaction that deposits organic groups onto the surface
of the mesoporous canals. Doping, grafting, or incorpora-
tion of uniquely structured materials enhance the thermal
conductivity, sensible heat, and latent heat of fusion of pure
PCM [81].

Thermal performance can be improved through dif-
ferent methods. Nevertheless, the integration of some
unknown elements may introduce adverse effects, such as a
decrease in thermal stability. Therefore, additional research
and development should be taken into account to improve
the functionality of PCMs.
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The Simulation Tools

The integration of phase change materials into light-
weight constructions allows for improved thermal comfort
and reduced energy consumption. Yet, to accurately evalu-
ate and optimize the integration of phase change materials
within building envelopes, numerical simulation becomes
a necessary requirement. The simulation of building per-
formance represents a key tool to choose the most effective
solution to integrate [82]. Currently, several energy simula-
tion tools are available and widely employed by researchers
and designers, broadly categorized into two groups: Building
Energy Simulation (BES) tools, including EnergyPlus as well
as TRNSYS, and computational fluid dynamics packages,
namely ANSYS Fluent and COMSOL Multiphysics.

According to Pandey et al. [83], Computational Fluid
Dynamics (CFD) tools offer the capability to model spa-
tially distributed solidification and complex PCM melting
phenomena. However, they require considerable computa-
tional time to model and simulate the entire building system
in combination with a PCM-based system. Additionally,
CFD modeling necessitates accurate boundary conditions
derived either from experimental data or prior knowledge
of the system. Furthermore, these CFD models are not
seamlessly integrated into building simulation frameworks.

Despite the relative simplicity of using Energy Plus as a
Building Energy Simulation (BES) tool, which explains its
extensive utilization in the literature to assess the impact of
PCMs on enhancing thermal comfort and reducing cooling/
heating energy demand, these BES tools reveal certain lim-
itations [83]. For example, in the application of free cooling
where PCM is charged with natural ventilation, meaning that
external cold air is used to extract heat from the PCM, the
use of BES tools to study the performance of the PCM TES
system leads to under/over-prediction of results. This can be
explained by the fact that these tools consider an air node in
each zone as representing a volume of air with uniform ther-
mal properties. Additionally, BES tools use uniform thermal
properties to model a zone, whereas PCM solidification and
melting phenomena are highly non-uniform, limiting their
use in determining the efficiency of PCM-based systems.
To address these challenges, Pandey et al. [83] developed a
co-simulation model combining EnergyPlus as a BES tool
and Ansys Fluent as a CFD tool to evaluate its relevance com-
pared to EnergyPlus and to assess the impact of PCM-based
systems on the built environment. The findings indicate that
co-simulation outperforms existing BES tools, particularly
in scenarios involving active use of PCM in the built envi-
ronment and when passively applying PCM in forced con-
vection. Indeed, a comparison of the predictive accuracy of
the co-simulation model and EnergyPlus during forced con-
vection reveals that EnergyPlus model underestimates the
experimental data. However, for passive PCM application ,
the results indicate that there is no significant difference in
predictive accuracy between the co-simulation approach and
conventional BES models.

In the same context, Mazzeo et al. [82] assessed the
predictive accuracy of the most widely used BES tools,
namely TRNSYS, EnergyPlus, and IDA ICE, by compar-
ing simulated outcomes with experimental measurements
obtained under real operating conditions. Their findings
underscored IDA ICE as a robust choice for dynamically
modeling buildings incorporating Phase Change Materials
(PCMs). Unlike TRNSYS and EnergyPlus, IDA ICE explic-
itly addresses PCM hysteresis phenomena. Moreover, the
TRNSYS model exhibited the least precision due to its omis-
sion of both hysteresis effects and the temperature range
associated with phase transitions, which are implemented
in both IDA ICE and EnergyPlus. Even though TRNSYS
yields the lowest precision, it allows for sufficiently accurate
calculation of the total latent heat storage and release, with
minimal thermo-physical input requirements and the low-
est computational cost.

The selection of a simulation tool is contingent upon the
specific model, simulation objectives, and the anticipated
outcomes. TRNSYS and EnergyPlus are widely regarded as
the most suitable and extensively utilized simulation tools
for evaluating heating and cooling energy consumption in
buildings that incorporate phase-change materials.

PCM Optimization

The annual thermal energy demand for heating and
cooling in buildings with PCM integration is influenced by
various factors, including the melting temperature, PCM
thickness, and its location within the external envelope of
construction [84].

a. Melting temperature

The melting temperature refers to the point at which a
substance transitions from a solid to a liquid state, absorb-
ing energy during this process and releasing it upon crys-
tallization. Imghoure et al. [85] demonstrated through a
simulation model that the melting temperature is one of
the most crucial thermo-physical properties influencing
PCM performance. Indeed, A suboptimal selection of the
phase transition temperature could lead to increased cool-
ing energy requirements during the summer months [86].

In a related context, Peippo et al. [87] introduced a

method to calculate the optimal melting temperature for a
phase change material:

Q
T. =T +
mopt " h stor (1)
t, T, + tqT,

avec T, = ettgor =t, t1t4

t, +t4

With T, . representing the optimal melting tempera-
ture of the PCM (°C), T, the average room temperature (°C),
Q the heat absorbed per unit area of a room surface (J.m-
2), h the average transfer coefficient between the wall sur-
face and its surroundings (W.m-2K-1), T,, room nighttime
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temperature (°C), T; the daytime room temperature (°C),
t,, the PCM discharging time night (s), t; charging time day
(s), and t,, the diurnal storage time (s).

Several studies conducted in different cities worldwide
aimed to determine the optimal melting temperature [88-
95]. Table 1 summarizes some literature studies investigat-
ing the effect of integrating PCMs into buildings on reducing
heating and cooling energy consumption. The table speci-
fies the type of PCM used by each author, its optimal melt-
ing temperature, location, and thickness. These studies are
classified, according to the Képpen-Geiger climate classi-
fication system, based on monthly average outdoor tem-
peratures and precipitation data. This classification divides
the world into five major climatic regions (A: equatorial, B:
arid, C: temperate, D: continental, E: polar). These climatic
zones are further divided based on precipitation and tem-
perature data.

The analysis of the table regarding the optimization
of melting temperature leads to conclusions similar to the
study conducted by Saffari et al. [96]. In climates with high
energy demand (A and B), PCM melting temperatures are
generally close to the maximum of 26°C (ranging from 24
to 28°C). Conversely, in climates where heating predomi-
nates (C and D), PCM transition temperatures vary from
18°C to 22°C, except for select cities where the optimal
melting temperature may exceed these values, for example,
Paris which has an optimal melting temperature of 24°C
[94]. According to Saffari et al. [96], this difference can be
explained by other climatic factors such as altitude.

In general, for enhanced energy efficiency, several
researchers affirm that the optimal melting temperature of
a phase change material should closely align with the aver-
age indoor heating and cooling setpoints [47], [95], [97].
Neeper (2000) considers that the optimal melting tempera-
ture of a phase change material should be close to the inte-
rior temperature to minimize thermal loads. The indoor
temperature of a room is heavily contingent on the outdoor
temperature, which fluctuates across seasons.

27

+ (OBS) comfort temp
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It is pertinent to mention that in studies where the set-
point temperature is unspecified, we referred to ASHRAE
standard 55 (American Society of Heating, Refrigerating,
and Air-Conditioning Engineers), which recommends a
comfort temperature of 20°C to 24°C for winter and 24°C
to 26.5°C for summer.

Cities in the same climatic region, such as Bilbao and
Paris (Cfb), wont necessarily have the same optimal melt-
ing point of phase change materials (PCMs), since different
climatic conditions apart from the Koppen climatic classi-
fication are also involved. Some of the climatic conditions
that dictate the selection of the PCMs are wind veloc-
ity, intensity of solar irradiance on the exterior surfaces,
humidity ratio, and precipitation intensity [98].

For instance, Paris, situated at an altitude of 15 meters,
has an optimal PCM melting temperature of 24°C as deter-
mined by Bozzhigitov et al. [94]. Conversely, in Bilbao,
located at an altitude of 19 meters, the optimal melting tem-
perature is 22°C. This indicates that comfort temperature, a
key parameter for determining the melting temperature of
a phase change material, depends on the outdoor tempera-
ture, which in turn varies with altitude. Outdoor tempera-
ture decreases with altitude.

In the context of the RP884 research initiated by
ASHRAE in 1995, aimed at formulating an international
adaptive comfort standard to complement the American
ASHRAE Standard 55, several scholars (Humphrey 1978,
de Dear 1986, Nicole Rejal 1995, de Dear and Brager
2002) have demonstrated, through on-site investigations,
that indoor comfort temperature is influenced by outdoor
temperature. The adaptive approach involves determining
thermal comfort conditions from empirical data and field
studies. It was introduced by de Dear and Brager in 1998
based on extensive data collected from 160 global office
buildings [100], this methodology enables the establish-
ment of linear regressions for comfort temperature in rela-
tion to outdoor temperature for both air-conditioned and
naturally ventilated buildings [99].
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Figure 8. Adaptive model proposed by the RP-884 project for air-conditioned buildings and naturally ventilated buildings
[From R.De Dear and G.Brager [99], with permission from Elsevier].
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The results obtained by de Dear are illustrated in fig-
ure 8. Through this figure, it can be concluded that as alti-
tude decreases, the average outdoor temperature increases,
leading to higher comfort temperatures and consequently
higher melting temperatures.

Within the framework of optimizing the phase transi-
tion temperature of PCM, Dardouri et al. [86] conducted a
study aimed at evaluating the PCMbs efficacy, in conjunc-
tion with thermal insulation, in reducing annual energy
consumption. The results revealed that for both single and
double walls, PCM 23 demonstrated superior energy sav-
ings in heating, while PCM 29 exhibited higher benefits in
cooling energy. This can be attributed to PCM23»s ability
to maintain thermal comfort during summer months due
to its lower melting temperature compared to outdoor tem-
peratures, thereby keeping the PCM mostly in a liquid state,
posing a risk of overheating. A PCM with a fixed melting
temperature proves inadequate for simultaneous heating
and cooling applications [101].

Liu et al. [46] emphasized, based on previous studies, the
necessity of considering the fluctuations in solar radiation
received by various building elements such as walls, roofs,
and floors. Given that the roof receives the majority of solar
radiation, it is advisable to use a PCM exhibiting a higher
phase change temperature compared to walls to mitigate
heat influx, especially during cooling periods. Therefore,
the integration of a single PCM within a building envelope
fails to maximize its thermal potential to control the inter-
nal temperature as well as to minimize the consumption of
energy.

Overcoming this challenge, Wang et al. [102] pro-
posed a strategy to improve the energy efficiency of PCMs
integrated into building structures. This includes the use
of adaptive dynamic building envelope integrated PCM
(ADBEIPCM), in which the location of the PCM and
the insulation vary with the outdoor temperature. Their
research showed that, in comparison with a static envelope,
such innovative walls considerably reduced annual cooling
loads by between 15% and 72% and heating loads by 7%
and 38%. However, no actual practical experience in the use
of ADBEIPCM in buildings to evaluate the technical viabil-
ity exists, as their complex maintenance makes their appli-
cation challenging. Another potential method to increase
the storage of energy within the building envelope involves
utilizing cascaded thermal storage PCM, also known as cas-
caded latent thermal energy storage. This method consists
of integrating various PCMs in decreasing order of their
melting temperatures.

PCM placement

The potential of phase change materials (PCMs) to
enhance thermal comfort and energy efficiency of buildings
is contingent upon the location where the PCM is incorpo-
rated within the exterior envelope. The optimum location
to integrate PCM can be reliant on certain factors such
as heat source temperature, exterior surface temperature,

thermal flux density through the wall, and thermal flux
stored within the walls [92]. Several numerical and exper-
imental studies recommend the adoption of internal wall
placement of PCMs, as given in Table 1.

Khan et al. [90] conducted a numerical simulation using
Energy-plus software to study the effect of PCM integration
in residential building envelopes in five major cities located
in different climatic zones in Pakistan (Islamabad, Karachi,
Lahore, Quetta, Peshawar). The study aimed to optimize
several parameters such as PCM melting temperature, its
location, and thickness. The results indicate that annual
energy consumption in the configuration where PCM is
positioned on the inner surface of the wall diminishes by
6.04%, compared to a reduction of 5.5% when it is placed
on the exterior side.

Ben Zaid et al. [92] carried out an experimental study to
assess the thermal performance of clay-straw walls incor-
porating PCM in the Draa-Tafilalet region (Errachidia
Province), Morocco. Using a scaled laboratory cavity, the
study made clay-straw walls with PCM integration in the
form of panels made of two aluminum sheets, one with 40%
polyethylene and the other with 60% paraffin. Keeping the
internal temperature at 40°C, the results show that when
the PCM is next to the heat source, the surface tempera-
ture drops by 1°C compared to when it is away from the
source. Similarly, Gouni et al. [103], employing wooden
walls, observed a 2°C decrease in exterior surface tempera-
ture when the material is placed near the heat source as
opposed to a distant placement. The commonality between
these two studies is that the impact of the PCM layer placed
close to the heat source on reducing the exterior surface
temperature is more pronounced. This observation can
be elucidated, on one hand, by the PCM>s complete fusion
under conditions where the melting temperature is lower
than the internal temperature, which reduces the exterior
surface temperature. On the other hand, the wall contain-
ing PCM in the internal layer exhibits a slower heat release
compared to the wall with PCM in the external layer [92].
Furthermore, PCM placement on exterior wall surfaces
facilitates nocturnal dissipation of stored heat, thus not
negatively affecting occupant thermal comfort [96].

It is pertinent to note that cavity studies are conducted
exclusively under warm climatic conditions, with the test
celbs exterior simulating the building’s indoor environ-
ment. Nevertheless, to select the optimal position for a
phase change material (PCM), it is crucial to study its
impact on annual heating and cooling energy consumption.

In the presence of insulation, integrating PCM into
building walls improves its energy efficiency, offer-
ing potential benefits for renovating old buildings [86].
Multiple investigations have been undertaken to assess the
integration of thermal insulation compared to phase change
materials [85], [86], [90], [104]. The synthesized findings
are summarized as follows:

- Roof insulation integration yields superior energy sav-
ings compared to PCM [86]. Consequently, PCM>s
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impact on reducing cooling and heating loads becomes
more pronounced in the absence of insulation, as the lat-
ter may impede PCM>s phase transition process. Khan
et al. [90] demonstrated that total annual energy con-
sumption is reduced by 44% when PCMs are installed
in the building envelope and by 28% when incorporat-
ing expanded polystyrene.

- The optimal position of PCM, in the presence of insula-
tion, recommended by Dardouri et al. [86] and Imghoure
et al. [85] during the summer period is when PCM is
placed on the interior side after the insulator. However,
Alyasiri et al. [104] examined the impact of EPS insu-
lation on PCM (paraffin wax) thermal performance
during six summer months in the city of Almarah in
Iraq. Their findings clarified that placing the EPS layer
after the PCM layer on the inside guarantees effective
fusion and solidification phases, as evidenced by the
liquid fraction. Notably, the melting temperature range
of paraffin wax, as adopted by Alyasiri et al. [104] due
to its local availability in Iraq, spans between 40°C and
44°C. This represents a fairly high value compared to
that adopted by the other two aforementioned studies. In
this context, placing EPS after PCM on the exterior side
proves advantageous in averting overheating during dis-
charge periods. Consequently, it is advisable to conduct
a comprehensive study on optimizing the phase change
temperature before determining the optimal location of
PCM conjoined with insulation. Additionally, the impact
of this placement should be evaluated during all heating
and cooling periods throughout the year.

b. PCM thickness

The decrease in heating and cooling energy demand is
heavily dependent on the PCM thickness. As more volume
of PCM is utilized, the energy storage capacity increases.
However, it reaches a saturation point once the PCM has
absorbed its maximum capacity [90]. Moreover, a greater
volume necessitates a longer period for the PCM to fully
activate its latent potential [46].

The thickness of a PCM panel can be calculated using
the formula proposed by Peippo [87]:

t, h

m (Tm,opt - Tn) (2)

opt =

Where D,,,, represents the optimal thickness of the PCM
slab (m), AH denotes the latent heat of fusion of the PCM
(J.kg-1), and p signifies the density of the PCM (kg.m-3).

Several other factors influence the selection of PCM
thickness. Notably, the thicker the PCM layer, the more
costly its integration into building walls becomes affecting
its economic viability, as already mentioned in Section 4.

In summary, the optimal phase change material (PCM)
should possess a melting temperature aligned with the
average set-point temperatures for both heating and cool-
ing within the building envelope. For optimal thermal
regulation, it should be positioned near the heat source,

minimizing the surface temperatures of both external and
internal walls during summer and winter, respectively. In
the case of an insulated structure, placing the PCM on the
interior side, after the insulation layer, is most effective
during the summer. Nevertheless, a thorough evaluation
across all seasonal heating and cooling periods is required
to determine its most effective position throughout the year.

The State of The Art of Articles Published in Morocco

Phase Change Materials (PCMs) have garnered substan-
tial attention from researchers globally over recent decades,
spanning various continents. Their integration into con-
struction materials and building structures is viewed as a
viable strategy to enhance building thermal inertia. PCMs
are instrumental in improving energy efficiency, managing
energy demand, improving occupant thermal comfort, and
reducing greenhouse gas emissions, which are major con-
tributors to climate change.

According to the Global Climate Risk Index (CRI
2021) compiled by the non-governmental organization
Germanwatch, developing nations face heightened vulner-
ability to climate change impacts due to their limited adap-
tation capacities, despite being more exposed to hazards.
Notably, Mozambique and Zimbabwe were the two African
countries most affected in 2019, with CRI scores of 2.67 and
6.17, respectively [105].

However, few studies are focusing on PCM technologies
to reduce energy consumption and shift away from fossil
fuels. In contrast, Europe and Asia are at the forefront of
research on thermal energy storage technologies that offer
greater resilience against climate change impacts.

Based on a sample of 6000 articles published between
1984 and 2023, Asia surpasses other continents according to
the number of scientific research articles written about phase
change materials, with a percentage of 68.6%, with China
leading the pack. In contrast, Africa contributes only 5.35%
of articles distributed among Egypt, Morocco, Ethiopia,
Ghana, Nigeria, South Africa, Tunisia, Algeria, and Sudan.
These findings are visually represented in figure 9.
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Figure 9. Percentage of PCM articles published by continent.
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Morocco is ranked among the top ten performing coun-
tries in terms of climate according to the Climate Change
Performance Index (CCPI) 2023 report by Germanwatch,
the International Climate Action Network, and the Climate
Institute [106]. The country is actively involved in climate
policy, especially through a national strategy that focuses
on developing renewable energy sources such as wind
farms, photovoltaic solar, hydropower, and biomass. This
strategy aims to get 20% of its energy from renewable
sources by 2025, reducing Morocco’s reliance on fossil fuels.
The CCPI report [106] highlights that Morocco has high
scores for greenhouse gas emissions and energy use, mostly
because it uses fossil fuels, which account for over 75% of
anthropogenic emissions. Petroleum covers 35% of energy
needs, coal 23%, natural gas 21%, nuclear 4%, and hydro-
power 4%. In many African countries, biomass is still a
major source of energy, contributing 12% to overall energy
production. However, new renewable energies like solar
and wind currently comprise less than 1% of total energy
consumption [107].

The objectives outlined during the United Nations
Framework Convention on Climate Change (COP28) held
in Dubai in 2023 centre on peaking the world’s greenhouse
gas emissions by 2025 and reducing them by 43% by 2030
and 60% by 2035 compared with 2019 levels. The goal is
to limit global warming to 1.5 °C. To accomplish these
goals requires transitioning away from fossil fuels, adopting
renewable energy, and improving energy efficiency by 2030
(COP 28, 2023).

To meet these goals, Morocco could greatly improve
its climate performance and lower its overall energy use
by exploring innovative approaches such as phase change
materials (PCMs). The building industry in Morocco uses
33% of the country>s energy because it consumes a lot of
energy and releases a lot of greenhouse gases. This includes
7% in commercial buildings and 26% in residential build-
ings (AMEE, 2024). This consumption is expected to
increase due to population growth, the development of new
cities, and greater reliance on air conditioning and heating
systems in Morocco.

Although in recent years more comprehensive studies
have been carried out on PCM-based latent heat storage
systems, the optimization of thermal performance and
comfort using PCM-integrated building envelopes, based
on their parameters across diverse Moroccan climates, has
not been extensively explored in the literature.

A summary of studies conducted in Morocco from 2020
to 2023 regarding the impact of integrating phase change
materials into building envelopes on reducing energy con-
sumption is provided in Table 2. Most prior research has
considered only the cooling or heating season. However,
decisions regarding PCM integration into the building
envelope should account for its annual impact rather than
a single season.

Moreover, the selection of PCM materials for integra-
tion within building infrastructures necessitates thorough

consideration of their impact on structural mechanical
integrity in conjunction with their hygrothermal charac-
teristics. The mechanical comportment of PCMs refers
to their behavior and response to external mechanical
forces, constraints, and deformations. While the mechan-
ical aspects may not constitute the primary focus of PCM
development, they merit meticulous consideration when
integrating PCMs into construction applications.

During the integration of PCMs, moisture constraint
specifications must be considered, and necessary mea-
sures must be adopted in order to avoid moisture-induced
problems. For instance, if any PCM is used for a building
with thermal energy storage, it is essential that the PCM
be encapsulated and protected against the penetration of
humidity. Moisture ingress can potentially degrade PCM
performance or cause unintended phase changes, sub-
sequently leading to inefficiencies or structural damage.
Hence, it is essential to evaluate the suitability of the PCMs
with other materials to ensure long-term durability and
effectiveness. Therefore, the choice of PCM must be under-
taken with careful deliberation, and its lifespan should be
rigorously analyzed before determining its economic via-
bility and potential for reducing energy costs.

CONCLUSION

The integration of phase change materials (PCMs)
within building structures serves as a viable approach to
reducing energy consumption and managing thermal
comfort in indoor environments. This article provides an
overview of the different types of PCMs, integration meth-
ods in the construction sector, their limitations, proposed
solutions to improve their thermo-physical properties, and
a structured approach for selecting optimal materials based
on literature results. Antecedent studies have shown that
the effect of integrating phase change materials into the
building envelope on energy savings depends on several
factors including architectural design, climatic conditions,
type, as well as the nature and volume of PCM deployed.
Hence, there is a need to make the right PCM choice to
take advantage of their benefits in terms of reducing energy
consumption. Based on the aforementioned literature, the
following conclusions can be inferred:

v" Building envelope integration of phase change materi-
als (PCMs) also presents the potential to decrease yearly
energy consumption to a large extent. The saving poten-
tial of such energy varies between 10% and 97% based
on several factors such as the climatic area, the thermo-
physical properties of the PCM, and compositions of
the material in the building envelope among others.

v" The melting temperature, latent heat, cost, and stability
are critical factors that will influence the market adop-
tion of phase change materials (PCMs).

v' Bio-origin phase change materials (BPCMs) offer an
alternative to commercially available paraffin-based
PCMs. They possess similar thermal properties,
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including latent heat capacity, phase change behavior,
and thermal cycling durability, which make them suit-
able for equivalent thermal energy storage applications.

v" Reducing capsule size enhances the thermal reliability
and chemical stability of PCM. Therefore, nano-cap-
sules exhibit superior structural stability compared to
macro and microcapsules.

v" TRNSYS and Energy-Plus are widely regarded as the
most suitable and extensively utilized simulation tools
for evaluating heating and cooling energy consumption
in buildings that incorporate phase-change materials.

v" The thicker the PCM layer, the more costly its inte-
gration into building walls becomes affecting its eco-
nomic viability. Furthermore, a greater volume of phase
change material necessitates a longer time to completely
activate its latent heat potential.

v" the optimal phase change material (PCM) should pos-
sess a melting temperature aligned with the average set-
point temperatures for both heating and cooling across
the building envelope.

v" For optimal thermal regulation, the phase change mate-
rial (PCM) should be positioned near the heat source.

v" In the case of an insulated structure, positioning the
PCM on the inner side, after the insulation layer, is most
effective during the summer. A year-round analysis
throughout the year for all heating and cooling seasons
is required in order to determine the optimum position
throughout the year.

RECOMMENDATIONS

Further studies must be carried out in order to enhance
the thermal performance of phase change materials (PCMs)
integrated in building envelopes. The following recommen-
dations are proposed for future studies:

- Future investigations should further study the perfor-
mance of PCMs through experiments on real buildings
and propose solutions for renovating existing buildings
to enhance their energy efficiency.

- It is necessary to incorporate PCMs in buildings con-
sidering passive and bioclimatic solutions and analyzing
their impacts in order to achieve appropriate findings
in terms of energy savings, indoor thermal comfort,
and financial feasibility. For example, evaluating the use
of a Canadian well combined with PCMs for reducing
energy consumption in cooling-dominated climates.

- The application of evolutionary algorithms for optimiz-
ing the thermo-physical properties of PCMs, notably
the metaheuristic algorithm, or using an artificial neu-
ral network to predict the important parameters (melt-
ing temperature, thickness, ...) of an optimal PCM.

- It is recommended to analyze the effect of integrating
PCM with latent heat energy storage in cascade within
the outer envelope of buildings.

It is essential to consider the variation in outdoor tem-
perature caused by climate change for optimizing PCM

properties. Therefore, it is important to study their effect on
reducing energy consumption, improving thermal comfort,
and reducing greenhouse gas emissions under prospective
climatic scenarios.

It is important to assess the entire life cycle of PCMs to
evaluate their durability and environmental performance.

NOMENCLATURE

ACH
ADBEIPCM

Air changes per hour
Adaptative dynamic building envelope inte-
grated with PCM

BES Building energy simulation
BPCM Bio-based phase change material
BPS Building performance simulation
CCPI Climate Change Performance Index
CFD Computational fluid dynamics
COP Conference of parties

CPBP Carbon payback period

CRI Global climate risk index

EJ Exajoule

EPS Expanded polystyrene

FT-IR Fourier transform infrared spectroscopy
GHG Greenhouse gas

Gt Gigaton

HCB Hallow clay brick

HW Heavy weight

IEA International energy agency
LCEB Life cycle carbon emissions benefits
LVPCM Liquid-Vapor PCM

LW Light weight

MPCM Microencapsulated PCM

MWI Mineral wool insulation

NRC National cash register corporation
NZE Net zero emissions

PCM Phase change material

RP Research Project

RT Rubitherm

SLPCM Solid-Liquid PCM

TES Thermal energy storage

TGA Thermos gravimetric analyzer
Vo2 Vanadium dioxide

w Tungsten
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