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ABSTRACT

The current study investigates the effects of thermos-diffusion on Casson blood flow in the
presence of a magnetic field. We consider the flow in an inclined multi-stenosed artery with an
oscillating pressure gradient. By using the similarity transformation, the governing equations
are transformed into a dimensionless form. For more effective study of the fractional time
derivative, the Caputo-Fabrizio time derivative is adopted. Using the tools provided by the
Laplace transform and the finite Hankel transform, the analytical solution to the aforemen-
tioned problem is derived. We gather numerical findings and display them through graphs
to help you better comprehend the effects of various physical parameters. Data visualization
shows that the external magnet-controlled blood flow’s turbulence. These results suggest that
high magnetic field impacts are harmful to health. Additionally, it is observed that thermal
radiation commonly enhances the heat distribution procedure.

Cite this article as: Patel H, Patel S, Patel N. Thermo-diffusion effects on mhd casson blood

flow in an inclined muti-stenosed artery. ] Ther Eng 2026;12(1):278-290.

INTRODUCTION

In contrast to the linear dependency shown by
Newtonian fluids, the stress in non-Newtonian fluids
can show a nonlinear rate of deformation. According to
the literature, from the 1940s and 1950s, there has been
an increase in interest in non-Newtonian fluids. Non-
Newtonian fluids include things like paint, shampoo, soap
slurries, tomato paste, greases, food sauces, chocolates,
toothpaste, polymer solutions, custard, and blood. Non-
Newtonian fluid models have been the subject of much
study by numerous academics because of its applicability
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in numerous industries. Casson [1] developed the Casson
fluid model in 1959 to determine how pigment oil suspen-
sions would flow. Human red blood cells, human blood can
also be considered as Casson fluid. Because blood is such
a vital fluid, its viscosity and other characteristics can be
used to detect a wide range of cardiovascular disorders. A
great number of theoretical investigations [2-5] have been
discussed blood flow circulation in the arteries. It is gen-
erally recognized that in sick conditions, an aberrant and
unnatural growth arises in the lumen at numerous places
throughout the circulatory system. Arteriosclerosis, often
known as stenosis, is a common condition. Chaturani and
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Ponnalagar Samy [6] have studied how blood moves via a
stenosed artery. Many researchers [7-9] have investigated to
impact of stenosis in the lumen of an artery. Casson’s equa-
tion is obeyed by blood only for modest shear rate flows,
according to Scott Blair et al. [10]. Shukla et al. [11] anal-
ysed the effects of stenosis on blood flow which is treated as
a power-law and Casson’s fluid.

Important applications of magnetic fields include the
targeting of cancer drugs, the use of heat to kill tumors,
magnetic resonance imaging (MRI), and magneto-therapy.
In all these treatments effect of magnetic field plays crucial
role. It is currently believed that magnetohydrodynamics
(MHD) influences blood flows, or ionic flows, in a manner
consistent with the bloodstream. In 1970, Hannes Alfvén
[7] was awarded the Nobel Prize in physics for pioneer-
ing the field of MHD. The study of blood flow under the
effect of magnetic field comes under the title Bio-magnetic
fluid dynamics (BFD). Researchers [8-9] are curious about
bio-magnetic fluid because Hyperthermia cell death,
magnetic drugs targeting, magnetic endoscopy, magnetic
devices for cell separation, therapy of cancer tumors, regu-
lation of blood flow during surgery, and many more appli-
cations can be found in bioengineering. In the past few
decades, the radiation therapy is used in human life where
heat is transmitted below the skin’s surface into the tissues
and muscles [10-11]. Mekheiner and Kot [12] theoretically
addressed the issue of blood flow through a catheterized
artery under pathological conditions. To better understand
the dynamics of blood flow via stenotic arteries, Majee and
Shit [13] conducted a computer study of heat transfer in an
unsteady blood flow. Both Rao and Vardynyan [14] demon-
strated mathematically that blood can flow through an
artery. Very few studies have looked at the effects of differ-
ent parameter on blood flow and even fewer have taken into
account fractional-order derivatives. However, the finite
Hankel and Laplace transforms can be used to quickly find
exact solutions to this type of problem. Caputo fractional
derivatives and Hankel Transform methods are discussed
to find the solution by researchers [15-17]. Due to its signif-
icance in physiopathology, problems with peristalsis (blood
flow) have garnered a lot of attention. Mekheiner [18]
determined that the pressure acts as an increasing function,
but the behaviour of the pair stress fluid parameter appears
to be the complete reverse. In his study, Akbar [19] exam-
ined the Prandtl fluid model in a tapering stenosed artery.
The pumping features of peristaltic flow were discussed by
Sreenadh et al. [20]. The slip effects for the flows investi-
gated by Ramesh and Devakar [21], who then derived ana-
lytical solutions.

Nanofluid flow onto a stretched, curved surface was
studied by Mehdi Mahboobtosi et al. [22] As a unique
breakthrough, Moghimi et al. [23] analysed nanofluid flow
in a channel and added magnetic field power to momen-
tum and energy equations and evaluated free convection
heat transmission. In a non-premixed configuration and
in non-adiabatic conditions, Akbari et al. [24] conducted

a theoretical analysis of a counter-flow combustion sys-
tem that is powered by porous biomass particles. Using
the response surface method, Navid et al. [25] optimized
a wavy trapezoidal porous cavity that contained a mix-
ture of hybrid nanofluids. Using computational methods,
Zangooee et al. [26] examined the mixed nanofluid (NF)
flow between two overlapping cylinders. Hosseinzadeh et
al. [27] examined the thermal performance of a ferroflu-
id-wetted hybrid nanofluid with varying cross-sections
in a moving porous fin subjected to a magnetic field.
Hosseinzadeh et al. [28] studied the flow of a TiO2-ethylene
glycol nanofluid across a porous stretched sheet under con-
vective boundary conditions and the presence of heat that
is not uniformly generated or absorbed. Muddasar Gulzar
et al. [29] presented a nonlinear mathematical analysis of
magneto-hyperbolic-tangent liquids that involve the three
interrelated concepts of a magnetic field, a heat source, and
thermal stratification. As a non-Newtonian fluid moving
inside an axisymmetric tube subjected to non-uniform sur-
face heat flux, Shahin Faghiri et al. [30] studied the Graetz-
Nusselt problem for blood. Tashtoush et al. [31] presented
a mathematical model of in-arterial multi-stenosis. The
effects of a magnetic field on the heat and fluid flow proper-
ties of blood flowing through arteries with multiple stenosis
are taken into account.

In light of what has been said previously, the objective
of this investigation is to look into the impact that heat and
mass transfer with thermal radiation and thermos-diffu-
sion effects on blood flow in multi-stenosed artery. A thor-
ough search of the relevant literature has witnessed the fact
that the existing literature did not present the exact solu-
tion of MHD blood flow model in the context of Caputo
Fabrizio fractional derivative for inclined multi-stenosed
artery. The exact solutions are then calculated by means of
significant transformations like Laplace and finite Hankel
transforms. For numerical computations, we take the zeros
of the Bessel functions to generate the graphical findings by
using Matlab for different values of fractional parameters as
well as some important physical parameters.

The present work furnishes a robust benchmark for
magneto-hemodynamics, biomedical engineering, and

physiology.

MATHEMATICAL FORMULATION

The focus of the recent research works is discussed on
unsteady Casson blood flow, whose physical dimension are
as shown in Figure 1. In Figure 1, z-axis consider as axial
direction while r-axis indicates radial direction. Blood is
treated as non-Newtonian Casson fluid flow with oscillating
pressure gradient. The uniform external magnetic fields B, is
applied which is shown in Figure 1. At t = 0, the velocity of
blood and magnetic particle are treated as stationary. Blood
flow is modelled using Navier-stokes equation. The effects
of magnetic fields by Maxwells relation whereas, magnetic
particle velocity is governed using Newton’s second law.
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Magnetic Particle
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Figure 1. Geometry of the model

The unsteady blood flow in an axisymmetric cylindrical
tube of radius R, under the influence of uniform transverse
magnetic field and pressure gradient of the form [31].

opP
=3, = G0 +a;Cos (wt),ay >0 (1)
Where, a,- systolic pressure gradient, a,-diastolic pres-
sure gradient.
Geometrically, the expression of multi-stenosis in the
artery can be written mathematically [32]

R, =1—a, (1.48x — 0.739x2 + 0.148x3
—0.013955x* + 0.0006145x5

—0.000010243x°) @
Where, R, and R, represent the constricted region and
normal artery radius. x is the stenosed length and « steno-
sis degree.
The momentum equation for fluid flow in an inclined
stenosed artery [15-33] can be written as

ou_ _19p ( l) ("’2_” 16_”)
at paz+v 1+y 6r2+r6r
KN 0By?sind ,

+7 (v—u)— —>—=u+ gsind

The term ﬂ(17 —u) is the force due to the relative
motion between fluid and magnetic particles. It is assumed
that the Reynolds number of the relative velocity is small.
As such, the force between the magnetic particles and the

a1

blood is proportional to the relative velocity. Using Newton’s
second law governs the movement of magnetic particles:

mZ—:=K(u—v) (4)

where m is the average mass of the magnetic particles.
The governing energy equation in the cylindrical form
as,
o _ o (o

1aT) Qm+6m
= ) ptm
ot pCp \or?

ror pCy ®)
The concentration equation in the cylindrical form as,
ac _ 9%c , 19C DK (62T 1 aT)

at D (arz + r 0r) + T \0T2 + (6)

ror
With initial and boundary conditions are as,
u(r,0)=v(r,0)=T,0)=C(r,0)=0atre[0,R,]

u(r,t)=v(r,t)=Tr,t)=C(r,0) =0atr=R, @

The dimensionless parameters can be express as,

r t u Ala
r*=_:t*=_ru*=_ra0*= 09
Ry i Ug pUg
Aal * * g
a,* = — = Aw = =5
1 pug ’ 9 ﬁ
Ro

The governing dimensionless form of governing equa-
tion subject to equations (7) after dropping* notation and
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consider the time-fractional model of governing equations
3-6 can be written as,

Dfu=ay+a, cos(wt)+Ri(1+i) m-y%%‘
' 8)
+R(v—u)—Ha2u+w
GDfv=u—-v 9)
100
PDE0 = (325+ 22) 4 P(Qu+6,)  (10)
ScRDE C=(25+22) 45,5, (25 +22) ay
With boundary conditions
u(RL 0) 0, v( 0) =0,9(RL,0):0&
c(£,0)=0atLef0,1]
(12)
() =0,w(z) =0,0 (2 -0
C(RL,t)=OatRL =1
-1 1 — osinfq
Here,B—Re(1+y),Ha ByV2 P
=R g_TTw p_ KL p _R’
F_’.{uﬂgl _Tw_Too’PT_pCp’ e—E,
_C-Co — Dm K (Tey— Too)
P R Pr;S }{Dm C_Cw—coo r— Ava(Cw_Cw),
RoQm RoOm

Qm_ Augpep(Tw—Too) »ome Augpcp(Ty—Too)

Solution of the Problem
The Laplace transform technique is applied in equations
(10), we obtain

S6(rs) _ [9%26(r,s) 169(r s) Qm+0m
€st+a(l-s) [ or2 + 5 r ] +P N (13)

The FHT (Finite Hankel transformation) is applied in
equations (13) with B.C. (12),

Sﬁ(rnﬁs) n_ Qm+9m ]I(TTL)
i 20 (14
, S0 — By 5) + B 2o 2O (1g)
— Po (Qm+0m)  Ji(rn
O (1, 8) = =ty = (15)
S [r"+PeS+ a(l—s)]
Now, rearrange the equation (15)
- _ 1 1 J1(rn)
Oy (o s) = [5+315 EEN 5 (S+Bys) B“] ™ (16)

Similarly, we process for Concentration equation (11),
we get

SC(rs) _ (9%C(r.s) lac_(r,s)
ReSC S+ a(l-s) ( or2 r or ) (17)
926(r,s) 106(r,s)
+ ST SC ( ar? T or )

The FHT (Finite Hankel transformation) is applied in
equations (17) with B.C. (12),

R.S Scy(rs)

e2¢ Sl a(1-s) = —1,,Cy (1, 5)

+ S5, Sc (_rn)ﬁ(rnr s)

(18)

ScCy(rs) _
ReSC S+ a(1-s) -

_rnG(rn' S)
Pe (Qm+6m)
+ Sr Sc (_rn)

J1(rny ( 19)
S .
s [rn+PeS+ a(l—s)]

ReSc .S Pe (Qm+6m) ]1(rn)
+7 ] Cy(r,s)=—1,5,.S;. | ————=—

[S+ a(1=9) " H( ) " [S [Tn+PeS+ as(l—s)]:| (20)
2 Sy Sc P (Qm+9m) ]l(rn)
Cy(r,s)=— RS s (21)

e°cC -
(S [Tn+PeS+ a(l—s)]) S+ a(l—s)+rn] n
Now, rearrange the equation (21)
- B. J1(rn)
Cy(r,s)= — T Fs : (22)
(S [817+Pes+ a(l—s)]) [S+ ;(91—5)+818] n

e _ By (S +a(1-5))* ]1(Tn)

Cu(r,s)= S (By7S+ By7at— B17aS+PeS)(B1oS+ Bigat+ BygS—Bigas) (23)

i _ By (S +a(1-5))* J1(rny

Cu (r,5)= S ((B17— B17@+Pe)S+ B17@)((Bio+ B1g—B1g@)S+ B1g@) = 1y (24)

= By (S +a(1-5))> Ja(rmy
Cy(r,s)= .
H( ) S (B20S+ B22)(B21S+ B23) T (25)

— Big (a?+2a(1-a)S+(1-a)252) J1(rn
Cy(r,s)= B : (26)

22 B23
320-321 S (S+ —0)(5 3—21) ™
C_(r S)— 324 (0(2+B255+32652) ]1(rn) (27)
HA S (S+By7) (S+Bag) =~ T
— B B B Ji(r
Calr,s)= (2224 0 P ) I (o
S S+By; S+Byg)  mm

Now, the Laplace transform of equations (8) and (9) can
be express as,

Su(r,s) ap

S+ a(1-s) s

a;s
s2+w?

+

%u(r,s)
+V( ar? +

+Rv — (R + Ha®u(r,s) + —

1 Bﬁ(r,s))
r or

(29)

sm(Z)
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Sv(r,s) = =
S+ a(1-s) u(r,s) —o(r,s) (30)

_ . Sta(l-a) —
v(r,s) = GS+S+ a(1-s) u(r,s) (31)

Input the equation (31) in (29), the following equation
can be obtained,

S _ S+ a(l-a) 21~ _
[5+a(1—5) (GS+S+ a(l—s))+R tHa ]u(r, s)
Gy Sy (S0 100 sing (32)
S s2+w? oar? r or SF

The FHT (Finite Hankel transformation) is applied in
equations (32) with B.C. (12),

s _ S+ a(1-a) 2]_ _
[S+a(1—5) (GS+S+ a(l—s)) +R+Ha* | uy (r, 5)
i 33)
ag aiS sing 1/20m) — (
s | s2+w? ' SF T TV Uy (1, 5)
U, _ S?Bs+SBet+a? [1 sing aiS \]J1(rn
U (1 $)= o op v n [S( ot 52+w2)]— (34)
. 310 smgb a;S J1(rny
Uy (1, 5)= [5 P ][ ( 52+w2)]_ (35)
T ing) [S~* Ja(r
o =(ot 2 2
as [ 1 + B ]1(Tn) (36)
s2+w? |S-B; 9 S—Bg 10

Where, (1, s)= fol r.4(r,s)Jo (1, 7) dr represents
the finite Hankel transformation of the velocity and tem-
perature function

i(r,s) = LT[u(r,t)],0(r,s) = LT[O(r, t)]

and C(r,s) = LT[C(r,t)] (37)

Andn,n=123,...
tion Jy(x) = 0.
The IL.T of the image function can be written as,

are the positive roots of an equa-

(- y)nt(n+1)w—1
r((n+1)w)

[sw+] Fo(=y,6)=2n=0 ; w>0 (38)

(_y)nt(n+1)w—1—z
r(n+Dw-z) ' (39)

_1[ $% o
LT~ [SW+y]= R, (=¥, )= Xn=o
Re(w—2)>0

The ILT (Inverse Laplace transform) is applied in (16),
(28) and (36) are

a J1(rn — B —
By (€)= 7 [Byge st 4 224 (1 — e Pst)| (49

2 Cy(ry, ) = hiﬁ [Byg + B3ge 527 + Bzie™Pa1t] (47)

— J1(rn A Bgsing
~ T (1) = —1Tn : [(637f -1) (—3‘7’ By + —9;‘;‘ )
B ing
+ (eBst — 1) (_Z: Byo + —lg:l: ) (42)

+ a;ByeP7t x cos(wt) + a, BygeBst « cos(a)t)]

The exact expression of blood velocity, Temperature and
Concentration profiles are obtained by taking the Inverse
Hankel transformation of equations (40) - (42), we get

hm)

0(r,t) =2 Yoma 26— X Ou (1) (43)
(rr") ~Bist 4 314 —Byst

6(r,0)=2 By 2 X [Bise st 42 (1—eP15)] (44)

C(r,t) =2 Yo ( o )>< Cu (1, ) (45)

Clr,t)=2%2, E ”)x[329+330e ~Bart 4 By e~ Bait] (46)

. ]O(érn)

u(r,t) =2 Z"=1rn1f(rn) X uy (1, t) (47)

u(r,£)=2 % Lol )[( 5t — 1) (2B, + B2200)
=14 2 B; 2 ' BF
+ (et = 1) (52 Byp + 22) (48)

+ a;ByeB7t x cos(wt)+ a, Bjpe et * cos(wt)]

From equation (31), we write

v(r,t) = B33(1—B3,)[u(r, t) * eP12t], 0 <a <1 (49)

RESULTS AND DISCUSSION

The effects of different physical parameter on velocity,
temperature and concentration profiles were studied via
graphs which is represented in Fig. 2 to 14. In every case,
the fractional parameter that corresponds to 1 is used for
comparison, and there are very few cases in which the frac-
tional parameter is strictly less than 1. For the numerical
calculations, the following parameters are fixed. a, = 0.5, a,
=01, w=m/4,P,=0.5,G=0.5H,=1and R, = L.

Figure 2-5 shows the effects of systolic and diastolic pres-
sure gradient on both velocity profiles. From the figures,
it is concluded that the blood velocity improved with both
parameter values increases. Figure 6-7 shows the effects of
Casson fluid parameter effects on blood as well as magnetic
particle velocity. The Casson parameter is related to the
non-Newtonian nature of the blood. Higher Casson param-
eter is attributed to the Newtonian nature. With an increase
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in the Casson fluid parameter, the fluid velocity increases.
Casson nature is more significant for small arteries where
red blood cells (RBCs) can accumulate due to rotation near
the axis of the artery, creating a region depicted in the cells.
This statement is in perfect agreement with Jamil et al., [34]
for a horizontal cylinder. It is hypothesized that the yield
stress declines as y increases and the thickness of the bound-
ary layer decreases. The magnetic field is used for regulating
the blood flow within the human circulatory system. Due
to increasing the values of Casson fluid parameter values,
blood become thin, so the motion of flow is improved. The
blood velocity at different inclination angles @ are plotted in
Figure 8. From the figure, inclination angles tend to improve
the velocity profiles. Figure 9 show the temperature profiles
increase with increasing the values Peclet number.

Figure 10-11 show the effects of metabolic heat source
and heat absorption parameter on temperature profiles.
From both figures, it is illustrated that the heat transfer pro-
cess improves with both parameters. Physically when we
increase the heat source parameter, fluid become thinner,
due to this effects heat transfer process become faster. The
particle mass parameter G is defined as the size of the parti-
cles. Figure 12 shows the effects of mass parameter on mag-
netic particle velocity. From the figure, it is seen that the
magnetic particle velocity reduces with increasing the val-
ues of said parameter. Figure 13-14 displayed the Reynolds
numbers effects on both velocity profiles. Physically, lower
viscosity (increased velocity) will increase. So, from the
both figures, it is concluded that the blood as well as mag-
netic fields velocity improved with increasing the values of
Reynolds number.

CONCLUSION

The following are the most significant findings:
o The blood flow and magnetic particles distributions are
highly influenced by the fractional order parameter. It

should be noted that the particle has the same tendency
as the blood; however, it moves slower.

o The magnetic particle velocity is slow compared to the
blood velocity. These findings will be beneficial for ath-
erosclerosis therapy.

o Theblood as well as magnetic particle velocity improved
with Reynold number and Casson fluid parameter.

o The numerical findings reveal that the inclination angle
has a considerable influence on blood and magnetic
particle velocities. The development might help in iden-
tifying and treatment for specific illnesses.

o The systolic and diastolic pressure gradients tend to
raise blood flow and magnetic particle velocity. Because
of these consequences, blood flow in the stenosis artery
may be normal.

o The Peclet number tends to improve heat transfer
process.
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APPENDIX
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