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This work investigates and assesses the main operational, design, and economic factors that
influence the performance of Gravitational Water Vortex Hydropower Systems and their over-
all contribution to energy sustainability. The thesis highlights improving performance through
turbine blade angle, basin design, and material selection -an essential aspect to overcome
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INTRODUCTION

worldwide energy problems. The system’s power output is evaluated based on experimen-
tal, numerical, and theoretical approaches for varying the flow rate, vortex height, and turbine
configuration. The findings reveal that five blades with a 44° angle provide an efficiency of
only 82%, and an advanced material-based turbine shows an improvement in torque of 1.23%
concerning conventional components. Moreover, combining conical basins with optimized
nozzles can gain power (60%) and reduce energy losses. The result helps develop renewable
energy creative methods in regions with limited energy access. This study extends previous
works in the scientific literature by proposing a complete analysis and optimization frame-
work for turbine design and performance under the need for sustainable energy production.
These findings lay the groundwork for future studies designed to enhance the efficiency of
small hydropower plants and further the world’s move to low-carbon energy.

Cite this article as: Zainal HM, Ahmed OK. Operational, design, and economic factors im-
pacting gravitational water vortex hydropower systems. ] Ther Eng 2025;11(6):1845-1882.

billion people do not have access to power, 2.7 billion con-

Over the past two decades, a complex geopolitical
dilemma has emerged that threatens energy security at the
global level. In this case, scientists and researchers must
intensify their efforts to rely solely on renewable energy
sources to achieve energy independence [1]. The global fuel
crisis, increasing costs, climate change, and global warm-
ing impact every global economy. These events also affect
smaller nations with open economies. In a world where 1.4
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tinue to use traditional biomass as their primary cooking
fuel. Most people living in these energy-poor areas are rural
populations in developing Asian countries (except China),
desert Africa, and India [2]. Therefore, these areas’ popula-
tions are vulnerable to climate change effects. Developing
countries may cross traditional energy sources and go
straight to low-carbon renewables, which will help reduce
poverty. Thus, lowering emissions of global warming gases,
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increasing access to electricity, and reducing poverty in
rural areas may all work side by side, creating a connection
between the three issues. Efforts to switch to low-carbon
energy systems in rural regions can lead to more significant
gains than industrialized ones. The planet’s finite resources
are under pressure due to our current dependence on
non-renewable energy sources. The researchers set out to
compare the social, economic, and physical factors that
encourage conversion to hydropower, wind, and solar
energy [3]. Most renewable energy resources are unpre-
dictable and vary due to climate. Academic research on
renewable energy is growing in technological, economic,
political, and social dimensions. Many disciplines study
how to invest in renewable energy, develop and adopt poli-
cies, select renewable energy suitable for the location, estab-
lish it by considering economic and environmental factors,
develop energy distribution and storage systems, and sup-
port regional development. Understanding these co-bene-
fits can help consumers embrace sustainable energy [4]. By
2050, renewable energy sources have the potential to elimi-
nate up to 90% of carbon emissions, leading to a significant
reduction in greenhouse gases and aiding in the mitigation
of climate change. The future of renewable energy looks
bright with the implementation of the zero-carbon emis-
sion decarbonization idea. This concept can replace energy
obtained from fossil fuels and effectively restrict the global
temperature increase to 1.5 C by the year 2050 [5].

Hydropower is a renewable and clean energy source
that many countries worldwide rely on to significantly
reduce emissions and achieve carbon neutrality. Despite the
challenges faced by hydropower, or what is known as gen-
erating electricity from water, as a result of climate change,
which leads to growing drought around the world, hydro-
power accounted for 37% (1.2 Terawatts) of the installed
renewable energy capacity globally (3.37 Terawatts), by the
end of 2022, according to estimates from the International
Renewable Energy Agency. Hydropower, or electrical
power generation by harnessing the gravitational force of
falling or flowing water, is commonly known as hydro-
electricity. As a renewable energy source, hydroelectricity
is competitive due to its cheap cost. However, constructing
huge dams and reservoirs frequently necessitates the dis-
placement of humans and animals, and damming can dam-
age local ecosystems by interrupting river flows. Compared
to power stations that rely on fossil fuels, hydroelectric
complexes generate far less greenhouse gas emissions and
no direct waste when construction is complete [6]. One of
the most significant renewable energy sources in the world
is hydropower.

Nevertheless, there are social and environmental costs
associated with its development. Hydropower generation
may be adversely affected by environmental deterioration
and climate change. To overcome these obstacles, a sus-
tainable hydropower project requires meticulous planning
and system design. Sustainable energy may be a byproduct
of well-planned hydropower projects. Energy planners,

investors, and everyone interested in hydropower proj-
ects need access to current information to make educated
judgments [7]. Recently, focus has been placed on exploit-
ing the energy of running water without the need for sub-
stantial hydraulic facilities, as a small river is used to build
a small or medium-sized hydroelectric power station.
Developed and emerging nations continue to prefer micro-
strongly and pico-hydropower, two of the many renewable
energy sources already on the market. Since the so-called
Gravitational Water Vortex Hydropower Station (GWVHS)
was developed in 2006, there has been a significant surge in
the utilization of artificial free-surface vortices to produce
low and ultra-low-head hydropower. The idea behind the
concept is to create a vortex chamber and use the high angu-
lar velocity inside the whirlpool core to generate hydroelec-
tric power [8]. The gravitational water vortex power plant is
amicro hydro vortex turbine system that uses a low hydrau-
lic head of (0.7-3) m to convert energy in a moving fluid
to rotational energy. This system foundation is a circular
basin with a central drain. A water turbine is powered by
the stable line vortex that the water creates above the drain.
The need to learn about new and improved renewable
energy sources is pressing in our age because energy con-
sumption is rising alarmingly. Water, wind, sun, and other
forms of renewable energy may be harnessed. However, the
main emphasis is on extracting energy from hydropower,
namely by utilizing gravitational vortex hydro-turbines,
in which the centrifugal force of a vortex is harnessed and
converted into shaft power. Water flows tangentially into a
circular basin at a gravitational vortex power station, and
a turbine harnesses the energy released by the free vortex.
The three primary benefits of GWVHS are its low hydraulic
head power generation capability, minimal environmental
impact, and economic and social viability [9]. Some stud-
ies have reported that the turbine design and operational
parameters affected the efficiency of gravitational water
vortex systems. For instance [10], showed that adjusting
blade angles to 44° lifted efficiency to 82%. Similarly, [11]
showed a 14% gain in efficiency via optimized runner pro-
files, while [12] showed a 10.25% torque gain by using baf-
fles of 50% of the area of the turbine. The unit is designed
to operate near a water stream. It includes a vortex hydro
turbine system, a small hydro power plant gravity water
vortex as follows: 1-supply channel, 2-hydrogen genera-
tor,3-hydraulic Turbine,4-circular basin (turbine chamber),
5-outlet channel and as shown in Fig.1 [13].

The research will focus on the research gap in the effi-
ciency of the gravitational water vortex power plant. The
operations gap is characterized by an insufficient under-
standing of how the variables of water depth, flow speed,
and flow rate impact the performance of the system. In
contrast, the design gap relates to the lack of acute analysis
of important design components like the shape of the tur-
bine or basin to deliver performance improvements. One
missing piece of the puzzle is an economic overview of the
financial viability of these plants, particularly in terms of
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1 -Supply channel
2 -Hydro generator
3 -Hydraulic turbine
4- turbine chamber
S -Outlet channel.

Figure 1. The main parts used in the GWVHS system sequentially [From Obozov et al. [13], with permission from Elsevier].

sustainability, given the huge economic gap. Therefore, the
study proposal aims to identify the operational variables
affecting the efficiency analysis and design of critical parts
to select the best solution. It also includes an economic via-
bility study focusing on reducing costs and sustainability. It
also underlines the challenges those systems face and pres-
ents recommendations to strengthen current designs and
increase their effectiveness.

Addressing the Gaps in Hydropower Efficiency: Design,
Performance, and Economic Feasibility in Gravitational
Water Vortex Systems

Although previous works address specific elements
such as turbine improvement or the economic viability of
the energy system, a holistic study covering design, perfor-
mance, and economics is yet to be found in the literature.
While these small hydropower systems have been the sub-
ject of some studies aimed at performance improvement,
such studies failed to consider important variables like the
angle of the blade for various designs, basin configuration,
and the material for the constitutive element, thus limiting
their contributions for offering a practical and sustainable
alternative. Certain gaps to fill are directly related to the
thorough analysis of system performance by considering
different design parameters, such as advanced materi-
als, since by including these, greater optimizations toward
energy efficiency can be achieved. This research aims to
address these research voids by offering a detailed analy-
sis concentrating on specially crafted turbines to maximize

the production of energy as well as minimize the loss of
energy. It requires developing new turbine designs using
epoch-making new materials and increasing efficiency by
the coexistence of conical basins with optimized nozzles.
Large-scale energy storage also plays a vital role in renew-
able energy distribution and, as a result, acts as a lifeline
to those parts of the world suffering from energy short-
ages, contributing to clean energy deployments and sus-
tainability goals. Results show that we can develop more
efficient hydropower systems, thus increasing energy
production in remote areas and contributing to energy
independence by reducing reliance on fossil fuels. The
study extends previous research with a holistic framework
for technologies used to enhance turbine performance in
sustainable energy initiatives that will assist in meeting
low-carbon energy targets.

MATERIALS AND METHODS

Amid growing requirements for new sustainable and
energy-efficient energy sources to meet our environmen-
tal and economic needs, we found one of the innovative
solutions that can help us with energy independence and
low greenhouse gas emission — gravitational water vor-
tex power plants. This technology is based on harness-
ing the gravitational forces and the kinetic energy of the
water, allowing for continuous vortices capable of effi-
ciently driving turbines. However, considering the great
potential of such plants, their real performance depends
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Figure 2. This diagram shows the most important factors that impact the performance of the vortex power plant.

on many operational, design, and economic parameters
that necessitate in-depth analysis and investigation to val-
idate better efficiency and cost-effectiveness. This study
strives to fill the gaps in knowledge in this area by adopting
a systematic and multidimensional analysis of the respec-
tive influencing factors, which may facilitate guiding the
future development and enhancement of plant designs.
This article reviews previously published studies special-
ized in exploiting and evaluating the performance of the
vortex power plant by studying the operational, design, and
economic impacts, as shown in Figure 2.

Articles will then be categorized, reviewed, and dis-
cussed according to these influences. The third Section
clarified the role and impact of operational specifications
on the GWVHS performance. Section (4) includes a review
of studies that examined the effects of design variables on
the performance and configuration of the vortex. Likewise,
studies that addressed the economic impacts of the con-
struction and design of the station were included in sec-
tion (5). In this sixth Section, the modeling and simulation
articles were clarified, and some improvements used in the
system were presented, such as the angle of the blades, the
basin, the antenna core, and other different effects, and the
impact of each of them on the performance of the system.
Then, the current limitations and challenges within hydro-
graphic hydropower systems are clarified in section (7). In
the (8) section, show results and recommendations.

OPERATIONAL VARIABLES

This section provides information about several oper-
ational effects, including height, water speed, volumetric
flow rate, flow rate, air core diameter, and free rotation con-
stant, followed by a discussion on each point. An efficient
model for the analysis of flattened water vortices was built
by Guzman et al. [14] using just the water head and geomet-
ric factors as inputs. The model found that the simulated

results matched experimental findings very well, and it
computed the maximal volumetric flow rate, air core diam-
eter, and free rotation constant. Zeng et al. [15] studied the
turbulent flow of Francis turbine tubes experimentally and
computationally. And by using the FLUENT program in
this research. This allowed them to simulate the flow of the
intake pipe to calculate the three operating States of the tur-
bine correctly. Obozov et al. [13] found a significant match
in the data through comparison. Examined the operational
characteristics of spinning turbines and assessed the degree
to which rotational speed influences load and efficiency.
The researchers also evaluated the impact of the central
gap in the turbine blades on their efficiency using the
KompasFlow program. The findings revealed that the rota-
tional speed decreases with increasing load regardless of
the turbine types employed. Additionally, a specific loading
period was identified during which maximum efficiency
is attained. Saleem et al. [16] examined the effects of flow
rate, vortex height, shaft diameter, blade position, and inci-
sion angle using different blade shapes and configurations.
They concluded that optimal results are achieved when the
vortex reaches its maximum height, the incision angle is
reduced, and the blade is placed at the minimum possible
distance from below the basin. Nasuki et al. [17] conducted
an experimental investigation where they manipulated the
flow rate and water pressure variables to examine their effect
on the operational efficiency of the vortex power plant. The
goal was to study the impact of different water flow rates
and pressure at a fixed location on the turbine rotation
speed. The test results, measuring water discharge into a
closed basin, reveal an average discharge value flow rate of
81.08 liters/s. Kueh et al. [18] concluded that the behaviour
of the water vortex influences the choice of turbine blades
for a water vortex power plant. They studied two scenarios,
each with a hole of different sizes for water flow. The vortex
height corresponds to the first case’s experimental and com-
putational fluid dynamics results. The experimental result
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and the final vortex height predicted by the computational
fluid dynamics model vary for the second case. The compu-
tational fluid dynamics model makes more and more mis-
takes in its forecasts to create a water vortex as the discharge
hole grows larger and turbulent flow enters the system.
Nishi et al. [19] studied the flow field and gravity vortex
water turbines experimentally and computationally, as
shown in Figure 3. It is proven that raising the runner inlet
rotational speed increases the onward flow area. However,
the backflow area grows when the volume of available air
decreases. Also, they examined the effect of flow rates on
the performance of gravity vortex-type water turbines,
and the results showed that the efficiency of the head and
the effective turbine increases with the flow rate, resulting
in increased turbine output. The most common losses in
water turbines were tank and tank outlet losses, followed by
friction losses inside the tank. Powalla et al. [20] created a
verified digital model of the vortex hydroelectric power sta-
tion that can be used as a digital twin for further analyses,
such as hydraulic property assessments. Three-dimensional
acoustic Doppler velocimetry was used to evaluate the flow
tield. The fluid volume method has also been used to char-
acterize surface free flow. This proves that the model can
mimic complex vortex power plant flow conditions. Faraji
et al. [21] investigated how four variables (speed, hub-,
blade, angle, number of blades, and runner profile) impact
GWVHS efficiency. The numerical and experimental
results were consistent, with coefficient of determination

Runner

Rotation
V el

Flow

=

Tank
Inlet diameter: D, 0.14 m
Outlet diameter: D, 0.09 m
Inlet width: b, 0.091 m
Outlet width: by 0.091 m
Inlet angle: By 71.9°
Outlet angle: (p; 19.0°

Number of blades: z 20
Tip clearance: 6 0.5 mm

values of 0.95 and 0.96 for flat and curved shapes, respec-
tively. As seen in the selected factors, they interact to affect
the efficiency of the GWVHS. The efficiency of the curved
blade has been enhanced by 3.65% through digital analysis.
The flat runner profile showed an increase in efficiency of
1.69% compared to unimproved conditions. Vertical-axis
hydrokinetic turbines have emerged as a possible alterna-
tive for harnessing low-velocity currents. Consequently, a
model of a vertical-axis turbine has been developed and
fabricated to conduct experiments in an open channel by
Yosry et al. [22]. The primary objective of this simulation
and study was to accurately depict the air-water interface
and examine the effect of fluctuations in the free surface on
turbine output. Experimental investigations subjected the
turbine model to different flow conditions and free surface
levels. It has been observed that the maximum power coef-
ficients show an increase in conjunction with the upstream
speed.

Pamuji et al. [23] examined the effect of changes in the
vortex pool. The configuration is based on operational effi-
ciency and flow characteristics of the gravitational water
vortex power plant. The cylindrical vortex basin is modi-
fied to become a conical basin by treating the ratio between
the inlet and outlet diameters (Din/Dout) with values of
3.26, 4.9, and 6.12. The research shows that the most sig-
nificant speed profile is near the discharge hole. Moreover,
it indicates that an increase in the ratio of the inner diam-
eter to the outer diameter (Din/Dout) or a decrease in the

Section A-A

Figure 3. An illustrative view of the gravity vortex type water turbine tested, which is mainly composed of the runner and
a tank, as well as the specifications of the test runner [From Nishi [19], with permission from Elsevier].
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Table 1. A concise synopsis of research papers on the topic of enhancing the efficiency of vortex water plants (continued)

Limitations

Trends

Type optimization & Major finding  Findings

This study found that at 500 /s and

Type study

Location

Year

Refs
[25]

Author

Findings lack

Fixed flow-head
combinations

43% efficiency

experimental study

Germany

2019

Ghani et al.

insights into design
optimizations for

achieved at 500 /s,

0.7 m head, the water vortex power

optimize turbine

0.7 m head, no air

plant reached 43% efficiency, while at

varying conditions

output efficiency

vortices behind the

turbine

700 1/s at 0.92 m head, it reached 38%
efficiency without air vortices behind

the turbine.

Focused on specific

configurations;
broader basin

computational fluid
dynamics models

This study used the commercial ANSYS Fluent

Experimental and

Malaysia,

2015
USA

(26]

Shabara et al.

modelled vortex pool
systems; validated

computational fluid dynamics tool
ANSYS Fluent to mathematically

Simulation study

enhance design

designs need testing

accuracy and are

computational fluid

model the free surface flow and find
the optimal configuration for the

vortex pool system.

suitable for optimal pool
configuration testing

dynamics results with

experiments

Simulation-based
results need real-
world validation
across diverse
environments

Basin optimization
enhances flow

The tangential and radial velocity Simulated basin

simulated and

Thailand

2013

(27]

Wanchat et al.

structures, flow rates

and vortex heads
influence velocity

fields.

computational study  distribution determines the turbine

dynamics and turbine

compatibility

blade for testing, and computational
fluid dynamics simulates the vector

flow field.

size of the output hole leads to an increase in the rotation
of the vortex. Herbhakti et al. [24] examined the impact
of vortex tube diameter and tube basin outflow slot on
vortex strength. Results showed that vortex strengths var-
ied at different diameters, with 25 cm having the highest
strength at 7.53 m?/s. The 30 cm outlet slot had the highest
strength at 12.24 m?/s. The 35 cm output slot had the high-
est strength at 14.13 m*/s. A 35 cm diameter tube had the
highest vortex strength due to water flow-induced vortex
intensity fluctuations. Ghani et al. [25] proved, according to
this research, that The Water Vortex Power Plant achieved
a maximum efficiency of 43% at a flow rate of 500 1/s and
a head of 0.7 m, while at 700 I/s and a head of 0.92 m, it
achieved 38% without air vortices under the turbine. This
level reached the peak power output of 2.45 kW, compara-
ble to the values offered by firms like Ecoligent, and was
confirmed by Miihle et al. 2013 study. Shabara et al. [26]
explained in this paper the efforts to improve the vortex
pool and to convert the energy better. This study developed
a free surface flow mathematical model using the ANSYS
Fluent computational fluid dynamics commercial package.
Also, a pilot testing platform was built to validate com-
putational fluid dynamics results. The verification results
show that the system can be accurately designed using
ANSYS Fluent. Wanchat et al. [27] analyzed and developed
a basin structure capable of producing a gravitational vor-
tex Current potentially harnessed as an alternative energy
source. Various parameters, such as the gravitational vortex
head and the flow rate, affect the velocity vector’s flow field.
The transverse and diagonal speed distribution determines
which turbine blade is suitable for testing, and the vector
flow field is simulated using computational fluid dynam-
ics. The production of electrical energy is being studied by
developing a model of a gravitational vortex power plant.
The articles related to the impact on operational variables
have been summarized in Table (1), and it can be seen from
this Table that the highest operational variable is the vortex,
which reaches its maximum height.

EFFECTS OF DESIGN VARIABLES

In this section, some design behaviors of the turbine
and basin, such as blades, the dimensions of blades, the

shape of the basin, the conveyor channel, and other factors,
will be described.

Turbine

Using both an analytical and experimental approach,
Ullah et al. [28] analyzed the performance parameters of a
multistage gravitational water vortex turbine assembled in
a cone-shaped trough, including rotational speed, torque,
power, and efficiency, while subjecting it to various loads.
Moreover, runners with inclined blades on a vertical plane
are most suitable for planting near the bottom of the basin.
The multiple gradations in gravitational water vortex tur-
bines also demonstrate the evolution of the combined
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rotation of a solid body and a free vortex. The turbine per-
formance also improves significantly over the single-stage
gravitational water vortex turbine. Candra et al. [29] con-
ducted a study to determine the best runners for use in
the laboratory’s small-scale vortex turbines and compare
the different sinkhole efficiencies of Kaplan, Francis, and
Vortex turbines to determine the most effective design.
Next, they used a statistical method from the collected data
on drains designed to have five blades with a slope of 45°, a
diameter of 12 mm, and a constant flow rate of 240 L/min.
The energy input from the water (Pa), the energy output
to the water (Pt), the torque (T), and the rotational speed
(w) are then measured. The information collected will
result in proficiency scores for each runner, such as 21%
for the Francis runner and 21% for the Vortex runner. A
study was undertaken by Zuhri et al. [30] to investigate the
impact of the distance between the L-type turbine and the
cylindrical basin. Regarding power efficiency, the Model L
turbine, positioned 5 cm away from the cylinder basin wall,
demonstrates the highest effective power output of 2.89 W
at a height of 10 cm. Conversely, the Model L turbine, posi-
tioned 10 cm away from the cylinder basin wall, exhibits a
maximum effectual power output of 0.14 W at a height of
10 cm from the water outlet. Wardhana et al. [31] studied
the number of turbine blades and their role in determining
the turbine’s efficiency. The results showed that increasing
the number of blades reduces the efficiency of the turbine;
in other words, six-bladed turbines are less efficient than
three. Joshi et al. [32] conducted an experimental and com-
putational examination of applying the Gorlov turbine, a
pure reaction turbine, to harness electricity. The computa-
tional analysis was performed using ANSYS Fluent, while
the experimental research involved using spiral turbine
blades created using a 3D printer. Both computational and
experimental investigations show that increasing the tur-
bine aspect ratio while maintaining constant stiffness sig-
nificantly improves efficiency. Subekti et al. [33] presented
the numerical optimization and performance testing of the
turbine driver profile for a vortex water turbine; MATLAB
software was used to enhance the basic design of the turbine
driver and determine the optimal inclination angle. The
results were in a laboratory experiment where rotational
speeds ranging from 150 to 650 rpm were used to assess
turbine efficiency, torque, and power. Experimental results
showed that the efficiency of the optimized turbine was
45.3%, representing an increase of approximately 14% over
the efficiency of the first design turbine, which was 39.7%.
Khan et al. [10] conducted a study to determine small
hydropower station efficiency and ability to provide clean
energy. An impulse turbine is the type of turbine used. The
turbine rotational speed can be increased to improve effi-
ciency by adjusting a blade angle and increasing the blade’s
surface area using baffle plates. For the curved blade shape,
it was found that an efficiency of 82% could be achieved
with a 5-blade design and a blade angle of 44°. Because of
this, there has been a rise in total electricity generation. The

four-blade turbine achieved an efficiency of 79.95% from
the geometric parameters used in the design of the system,
and the result is shown in Table 2 and Figure 4.

Wichian et al. [12] presented a study to enhance the
operational effectiveness of vortex turbines by installing
barrier plates on the propellers. The study used computa-
tional fluid dynamics software to develop the barrier pan-
els and determine their optimal application size and ratio.
Experimental results indicated that five barrier plates at
50% of the propeller barrier area gave the maximum torque.
In addition, experiments were conducted involving propel-
lers without barrier plates and a turbine with barrier plates
at 50% coverage. Results indicated that the turbine with a
50% barrier ratio showed an increase in torque of 10.25%
total efficiency and 4.12% on average. Sharif et al. [34]
studied five types of runners numerically. The top three
competitors were selected for testing based on the amount
of water pressure placed on the blades. The researchers
examined how blade shape affects rotational speed, brak-
ing force, and mechanical efficiency. It was found that the
curved circular chute blades worked at a rate of 48.02%,
while the J-shaped chute blades and helical blades worked
at a rate of 42.17% and 38.64%, respectively. Bajracharya
et al. [35] provided an essential guide to runner design for
a gravity water vortex turbine, as shown in Fig.(5). Seven

Table 2. The values of important parameters in the design
of the system

Parameter Value Unit
Curved blade angle 44 degree
Blade number 5 none
Gate angle 15 degree
Notch angle 10 degree
Notch inlet width 0.15 m
Cone angle 67 degree
Channel height 0.18 m
Channel width 0.144 m

Figure 4. Two types of turbines with and without baffle
plates.
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different runner geometric parameters were relied upon for
the runner design. Then, numerical and physical analyses
were conducted to determine these parameters’ impact on
the system’s efficiency. Then, the effect of these factors on
both speeds and torques was studied. Test results show that
runner height is the most important factor when creating
a runner for a GWVHS. When tests were performed, it
showed that the Gravity Water Vortex Turbine performed
up to 47.85% better. Cheema et al. [36] conducted an effi-
ciency analysis of a two-stage gravity water vortex turbine
(GWVT) operating at varying flow rates and vortex heights.
The two-stage GWVHS raises the performance character-
istics with rising flow parameters. The highest hydraulic
head drop close to the orifice also causes a high tangential
velocity, aiding downforce production. Honnasiddaiah et
al. [37] used a V-shaped rotary blade in their system. Based
on the results of experimental and numerical analyses, it
was determined that the blade format called V4 showed
the best performance, yielding a maximum power factor
of 0.22 and 0.21, respectively, when operated at a terminal
speed rate of 0.87. The blade profile shows the maximum
power factor exceeding the semi-circular blade profile by a
margin of 19.3%.

Sritram et al. [38] compared the “Water Free Vortex
Turbine” to the “Under Shot Water Wheel” to examine
the efficiency of hydropower turbines at low water. In
addition, the Small “Under Shot Water Wheel” produced
greater torque than the Water “Free Vortex Turbine,” while
the latter made a faster cycle and more usable energy. At a

y
y /,—r.._? L. X

headwater height of less than one meter, it may be deter-
mined that the Water Free Vortex Turbine. It is preferable to
the Small Under Shot Water Wheel as a small hydropower
electricity generator. Dahal et al. [39] focused on the via-
bility of booster-based GWVPP. This study investigates
the potential for boosting power output by installing a sec-
ond, smaller runner (booster runner) beneath the primary
runner, which was subsequently empirically confirmed in
a model constructed with four distinct booster runners.
The studies demonstrated a boost of 3.84W in the compact
model, equivalent to a 20.4% gain in efficiency from a total
of 63.55% by the main runner alone. Adding the booster
runner to the current setup can potentially increase power
output. Dhakal et al. [40] focused on optimizing the runner
to improve the efficiency of the Gravitational Water Vortex
Power Plant. Runners with straight, twisted, and curved
blade profiles are analyzed using computational fluid
dynamics, as shown in Fig.(6). compared to the 46% effi-
ciency of the straight blade runner and the 63% efficiency
of the twisted blade version. Computational fluid dynam-
ics analysis found that the curve blade design is the most
efficient.

A model-free vortex power generation system was
developed and tested by Rahman et al. [41] to determine
what conditions would result in the most efficient operation
of the power station. A few search results were: According
to the data, a turbine with 3 blades and an External diame-
ter of 0.027 m can attain a maximum efficiency of around
43% at a water pressure of 0.12 m. Maximum hydraulic

i" X

] % I |
]

e » Impact angle Blade angle in VP »{ Blade angle in HP
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Number of blades |« Cut « Height + Taper angle
y i 7
L ¥ '
* Lx Lex

Figure 5. A geometrical feature has been added: a higher blade surface area and appropriate blade angles but maintaining

a low runner weight.
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Figure 6. A three-dimensional computer-aided design (CAD) model with straight-ahead, turned, and curved blades.

efficiency was likewise seen in the model vortex power
generating system when the rotating speed of the turbine
was equal to or less than half the vortex tangential velocity.
Hidayat et al. [42] modified the design and built a spiral
hydro turbine to produce a spiral vortex to drive the tur-
bine. The findings demonstrate that the spiral vortex hydro
turbine may generate faster turbine rotation compared to
a standard water intake. This study shows that a portable
spiral vortex hydro turbine can spin at speeds of up to 90
revolutions per minute. This has led to the generator out-
put voltage growing as the turbine rotation speed grows.
Kueh et al. [43] aimed their research at studying the effects
of operational speed and blade geometry on turbine effi-
ciency. Two turbines equipped with flat blades and those
that are curved are both evaluated and then compared.
Both turbines exhibit equal rotational speeds under no load

conditions. The flat-blades turbine demonstrated a peak
efficiency of 21.63% when operating at a rotational speed
of 3.27 rad/s, while the curved-blades turbine achieved an
efficiency of 22.24% at a rotational speed of 3.5 rad/s. When
a load is applied during operation, the turbine blades uti-
lize a backward-leaning curve to mitigate the disturbance
on the water vortex, resulting in improved performance. As
shown in Fig.(7), the speed triangle and resultant streamline
of water vortex flow. Zariatin et al. [44] resulted from their
study of constructing a vortex turbine power station of lab-
oratory size. They examined three runners constructed of
rust-resistant materials: SS-304, AA-5057, and PVC. Each
of these runners produced 3.98 W of electric power, 3.47 W
of electric power, and 3.3 W of electric power, respectively.
You can use it to activate a 3-watt LED light. An efficiency
of up to 31.8% is achieved compared to the 12.5 Watts of

(a) Front View _ (b) Top View ©
Turbine Side View
. ] VT@
outlet)
—v—="" [ it
I 5 Blade . Blade
Outht- e Us= raw
w | Blade
Py |
7 . . . | W
(Resultant streamline of elockiy htmgioatinlel) |
water vortex flow) v oy
82

Figure 7. Water vortex turbine blade with a speed triangle.
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potential hydraulic power computed. The runner’s weight
is an essential factor influencing the electric power pro-
duced. Assuming the water rotational potential is sufficient,
a heavier runner will generate more power due to its more
significant moment of inertia and, thus, greater torque.

Saleem et al. [45] studied several factors to determine
their impact on performance parameters, including swirl-
ing elevation, runners’ position, blade submersion percent,
notch-angle, blade dimension ratio, blade curve, blade tilt,
hub diam, and conical, straight blades. According to the
experimental findings, the two most important factors
determining Gravity Water Vortex Turbine performance
are the height of the vortex and its shape, which should
have a fully developed air core. Using zero-curvature tilted
blades closer to the pool bottom, and the GWVHS can
operate more efficiently with a minimal notch angle and
hub diameter in the rotational speed range between mini-
mum and maximum load conditions.

The studys overarching aim of Sritram et al. [46]
was to study how steel and aluminium turbine materials
affected power-generating efficiency in a waterless vor-
tex hydropower station. Based on the data, the most effi-
cient turbine materials were steel (33.56%) and aluminum
(34.79%). However, at a high flow of water rate of 3.63
m®/min, the aluminum turbines exhibited greater torque
values and power production efficiency, 8.4% and 8.14%,
respectively. The research found that water turbines” higher
torque and power-generating efficiency were attributable
to their reduced weight. Venukumar et al. [47] studied

and discussed the natural whirlpool production of fluids,
a turbulent circular movement of fluid layers generated for
artificial vortex power generation. A vertical-axis turbine
is built to imitate this motion with as little interference as
possible. A strong gravity Water Vortex in the rotation tank
harnesses the kinetic energy of moving water and directs
it as rotational energy toward a turbine located at the vor-
tex center. The turbine transforms this rotational energy
with a generator into clean electricity. Yaakob et al. [48]
provided an overview of small hydropower turbine sys-
tems by detailing their performance and identifying their
many components. The first is reservoirs with water, river
flow, pumped storage, in-stream, and innovative gravity
swirl methods. Another way to categorize hydropower is
by power size, which goes like this: large, small, micro, and
pico. The study above can aid in finding the best turbine
configuration for different microhydropower projects. Fig.
(8) shows the rotor response with a split pipe. Mehmood et
al. [49] aimed to develop and create a turbine that can gen-
erate electricity from canal systems by utilizing whirlpool
and vortex principles. The turbine’s vertical axis cross-flow
makes it efficient, easy to install, and kind to marine life
and the environment. It is a low-water head turbine with
a submerged generator that can generate electricity from
waterways. The turbine can operate continuously due to its
durability and adaptability, reducing the need for large res-
ervoirs and protecting marine life. The prototype’s compact
size makes it ideal for use in tight spaces like irrigation sys-
tems, where it can efficiently generate electricity.

This end connected to DC generator

-

Figure 8. Rotor with a split-pipe response.
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Khan et al. [49] focused on improving the efficiency
of vortex turbines using a comprehensive design method-
ology. The project uses ANSYS simulation to predict and
study the vortex formed in the main tank, followed by CAD
modelling and governing equations. The primary objective
is to achieve a watertight seal to protect the generator from
harm. Chaulagain et al. [50] focused on Very low-head tur-
bines with hydraulic heads between half a meter and three
meters high. These turbines can be installed in single or
parallel units and handle potable or treated water. A list
of 38 hydro turbines and their operating ranges, compiled
from previous research and interviews with 25 turbine
manufacturers, is provided. The review offers an optional
turbine classification scheme and explains the non-conven-
tional hydropower. Vinayakumar B et al. [51] conducted
this research using several modelling, simulation, and
testing procedures. Then, details of Gravity Water Vortex
simulation in the COMSOL FEA program and optimiza-
tion settings in the study will be provided by considering
various characteristics, including the height of the vortex
chamber, blade length, blade angle, and number of blades.
They were adjusted systematically to measure how much
these factors affect the rotor speed. The article also details
the construction of a real Gravity Water Vortex, an experi-
mental device developed to validate and evaluate simulation

a. b.

Figure 9. Design by wargetto et al. (a) Straight blade (b) Tilted blade and (c) Curved blade.

results. Wargetto et al. [52] conducted a numerical study
to assess and compare the performance of the vortex using
different shapes of blades, including oblique, straight, and
curved, as shown in Fig.(9). After studying these various
shapes, the researcher concluded that the best performance
of the water vortex is using inclined blades, which have a
hydraulic efficiency of 36%. A numerical study using the
Ansys Fluent program was conducted by Warjito et al. [53]
to find out the extent of the impact of the blade size and
depth on the efficiency of the turbine. Nine configurations
of different sizes were used: 200 mm, 350 mm, 500 mm,
and turbine depths of 270 mm, 340 mm, and 410 mm. The
study results showed that the larger size and top position
gave the best performance of the turbine, with an efficiency
of up to 40.22%.

Putra et al. [54] determined the output torque, rpm,
voltage, current, and power generated by a gravity vortex
power station and compared the effect of turbine position
height on the data results obtained using a cylindrical basin,
using L and S models with four turbine blades and using
differences in height as shown in Fig. (10). The most sig-
nificant electrical power using an L model turbine obtained
an electrical power of 1.368 watts. Meanwhile, in the Model
S turbine, the most considerable wattage was obtained
at 2.097 W. An effort was made to compare and contrast

Table 3. Comparison between aluminum and steel in turbine design regarding efficiency, environmental impact, and

durability
Factor Aluminum Steel
Efficiency Higher efficiency of 34.79% due to lighter weight.  The efficiency is 33.56%, lower compared

to aluminum.

Environmental impact
emissions.

Highly recyclable and reduces environmental

Requires energy-intensive manufacturing,
increasing emissions.

Weight and effect
increases rotation speed.

A lighter weight reduces the required torque and

The heavier weight provides greater
stability but adds more pressure.

Operational conditions
conditions.

Ideal for systems with high water flow and light

More suitable for systems requiring high
durability[46].
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Figure 10. Two models of turbines (Model L and Model S).

several GWVHS microcosms in the study presented by
Sedai et al. [55]. First, they analyze the success of differ-
ent experimental investigations and formulations in Nepal.
After that, several computational types of research are ana-
lyzed. A 1:20 scale model was then developed to be built in
Johannesburg, South Africa, and performance predictions
were based on comparing computational and experimen-
tal data. Kueh et al. [18] highlight the significance of water
vortex behavior concerning the experiment setup. Two dif-
ferent sizes of slots were used to release water. The com-
putational fluid dynamics model inaccurately predicts the
creation of water vortices as the discharge slot enlarges due
to the increased turbulent flow. The Computational Fluid
Dynamics model enhances turbulence modelling.

Basin

According to Srihari et al. [56], vortex power is vital to
maximizing the efficiency of the turbine, and this work is
based on the intensification of the water vortex in the con-
ical trough. The effect of the vortex condensate nozzles’
orientation, alignment, and placement in five cone-shaped

basins was studied. The study findings show that com-
pared to the swirling turbine and others, the proposed
Group III configuration basin increases torque by 57.7%,
power output by 54.4%, and efficiency by 54.4%. The com-
parison highlights the trade-offs between aluminumss effi-
ciency and recyclability versus steel’s durability and higher
environmental impact, as summarized in Table 3. Wilson
et al. [57] conducted the study using computational fluid
dynamics within the ANSYS software to simulate micro-
gravity vortex motion. This study investigates a structure
that has the potential to generate a gravity-eddy current by
utilizing flowing water with minimal variation in height, as
shown in Figs. (11 & 12).

Chattha et al. [58] improved the performance of gravi-
tational water vortex turbines and examined several design
configurations using computational fluid dynamics tech-
nology that creates a powerful vortex capable of driving the
runner. Apparent differences in the resulting vortices were
observed when the basin entry velocity, height, outlet diam-
eter, inlet channel width, depth, and flow rate were varied.
As a result of our analysis, the optimized design parame-
ters increase station efficiency and produce a powerful
air-engraved vortex. According to the Gravitational Water
Vortex Power Plant numerical and experimental research
by Dhakal et al. [59]. the conical basin is superior to the
cylindrical basin in terms of output power and efficiency
for all inlet and outlet conditions that are otherwise identi-
cal at 65-75% of the basin height, the optimal location for
power extraction. It has become clear that future research
into this system should focus on optimizing runner shape
and studying alternative basin structures

Dhakal et al. [60] focused on a form of micro hydro-
power known as a GWVHS that generates electricity in
remote regions with extremely low heads (between 0.73
and 3 meters). This research determines the geometri-
cal requirements for the entrance and exit of a recently
lauded efficient conical basin design, including the basin

Figure 11. Design model developed by the ANSYS program and used in their research.
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Figure 12. A water volume fraction from the front.

diameter and outlet diameter. by using Solidworks to
develop our geometric CAD models and ANSYS CFX for
our simulations. Finally, four different types of basins were
designed and used during experimental tests, and these
tests achieved a relationship between the engineering prop-
erties and the above parameters. Huwae et al. [61] discuss
Vortex flow as a homogeneous, free-surface-flowing fluid
consisting of water and air. The low-head little hydropower
station is an ideal setting for this water vortex. The geom-
etry of basins is the main focus of this research. The outlet
diameter, depth discharge, and basin shape are modelled.
It is determined that the flow rate and water head are the
basin parameters that should be used to describe the water
origin. It demonstrates that a spiral geometry basin can be
utilized instead of a conical basin since it produces a vor-
tex that is both symmetric and forceful. Huwae et al. [62]
researched to prove that GWVHS requires less capital
investment and lower operating and maintenance costs.
Moreover, since basin opening and outlet diameter are the
major criteria for defining basin geometry, inlet channels
need to undergo additional Research. This study will fill
in some of the blanks left by previous studies, opening the
door to developing vortex turbines that will immediately
impact renewable energy development in Indonesia via the
GWVHS. This study by Rahman et al. [63] showed that a
cone-shaped basin performs better than a cylindrical one.
In addition, the inlet flow rate has significant effects on
efficiency. Investigated Gupta et al. [64]. In this study, the
gravitational generation of a water vortex flow is a novel
approach in hydropower engineering. The work uses sim-
ulation techniques to accurately determine the details of
water vortex formation. Computational fluid dynamics
models incorporate the appropriate boundary conditions
based on the experimental setup. The experiment tested
two distinct aperture diameters for water outflow in two
settings. The initial condition demonstrated that the vor-
tex heights in the experiment and the computational fluid

dynamics model were in accordance. However, in the sec-
ond condition, the final vortex height varied due to a more
turbulent flow. Dhakal et al. [65] aim of their study was
to improve the design of a conical basin in a water-grav-
ity vortex power plant. This is achieved by modifying four
design parameters: the notch angle, canal height, notch
inlet width, and cone angle. Various geometric models were
created using SolidWorks software, and ANSYS Fluent was
used for simulation.

Turbine and Basin

Pandey et al. [66] took up the design and configuration
of the turbine that achieved maximum efficiency and chose
a suitable cylindrical trough to implement this turbine in
the GWVHS, as shown in Fig.(13 and 14). In addition,
optimizations were made to blade angle, discharge orifice
diameter, runner position, and rpm using computational
fluid dynamics (CFD)-based optimization techniques.
After research into computational fluid dynamics, it was
determined that the most appropriate blade angle for the
system was 43°. In addition, the system demonstrated an
optimal efficiency of 23.639% when operating at a rota-
tional speed of 40 rpm.

Kim et al. [67] looked into how well the GWVHS
worked, focusing on the number of blades in the vortex tur-
bine and the draft tube that was added to change the shape
of the conical vortex basin, as shown in Figure 15 and 16.
The study of Dhakal et al. [68] included two stages. The
first stage compares the two turbines’ design, production,
and performance, and the second stage includes designing
and building the conical and cylindrical tanks and com-
paring the system performance during use. Reducing the
number of blades led to an increase in turbine efficiency.
Utomo et al. [69] investigated the torque, water discharge,
water force, turbine power, and electric power generated by
the hydrographic power plant instrument. The results show
the highest results with an output of 5 cm, which is 3.46 W
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Figure 13. Several views of this runner CAD design.

e

Figure 14. The water volume fraction and formation of the
air core of this basin having optimized outlet diameter.

of hydroelectric power at a turbine height of 22 cm, while
the production of 6 cm is 2.51 W at 28 cm. Acharya et al.
[70] improved the system by combining the results between
analytical thinking and numerical accuracy. The system’s
effectiveness can be changed by fiddling with a number of
these variables. However, no advanced calculations have
yet been done. So, they are working to improve the station

R322.00

— |

2000

933500

runner so that the Gravitational Water Vortex can generate
more power. Then, they analyze the effects of the inlet jet
angle and the radius of curvature of the turbine blade on
torque, power, and efficiency. Analytical calculation estab-
lishes these two values, which are then verified. Maximum
torque for an impact jet angle of 18 degrees and a radius
of curvature of 285 millimetres differed by 2.37% between
analytical and numerical values. Khan et al. [71] analyze
the two-stage flow to generate the vortex at different Basin
parameters; this work aims to investigate the characteris-
tics that influence computational fluid dynamics, leading to
selecting an appropriate basin configuration. After that, the
basin was utilized to analyze different blade forms under
varied load scenarios. How the vortex height affected the
gravitational water vortex turbine efficiency was investi-
gated. Cross-flow blades have demonstrated the highest
efficiency for the same discharge and head circumstances
among the four types of blades employed in the study.
Tamiri et al. [72] examined different basin configura-
tions, orifice radii, blade layouts, basin shapes, and diffus-
ers. So, the diffuser channels the water into a basin, where
its vortex can move in a tangential direction and speed up
the flow to the turbine. Simulation results demonstrate that
adding a diffuser dramatically increases vortices’ tangen-
tial velocity and kinetic energy, raising the vortex height,
increasing its strength, and influencing its uniformity. Song
et al.[73] presented a new system for capturing energy in a
fluid vortex that can take advantage of the kinetic energy of
flowing water. The system incorporates an impeller, basin,
induction pine, and power-capturing devices. SolidWorks,
ANSYS ICEM, and ANSYS CFX were used to validate the
design. After developing and testing a s.5maller-scale sys-
tem, a system that can harvest 150 kilowatts of power was
built. A preliminary study by Ullah et al. [74] on multistage
of Gravity Water Vortex conical bowl staging has tested
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Figure 15. The number of turbine blades [67].

Figure 16. The draft tube straight and cone.

runners of Savonius-type blades. The study reveals that the
performance of a Gravity Water Vortex changes depending
on key design factors such as the ratio of rotor diameter to
basin diameter, the interaction between vortex and blades,
stage location, and offset distance between neighbouring
stages. The study found that vortex flow can transfer energy
across adjacent stages without physical interaction between
rotors. Multistage Gravity Water Vortex delivers greater
strength than single-stage Gravity Water Vortex by inten-
sifying the swirling in proximity. This research could serve
as a standard for future Gravity Water Vortex innovations.
Maika et al. [75] evaluated the development and prog-
ress of the GWVHS system on a large scale, incorporating
a range of basin types and inlets and the output of canals
and turbines. It also discusses vortex dynamics and how
to evaluate efficiency. The paper also examines turbulence
and multiphase models from top-tier numerical simula-
tion studies. The paper presents the GWVHS system in

(Papua New Guinea) as a case study, summarizing the main
concerns and challenges and suggesting areas for future
research on the system’s performance. Zarate-Orrego et
al. [76] studied this research: a runner, a cylindrical vortex
chamber, and a semi-converging nozzle. Despite challeng-
ing testing conditions, the device demonstrated electricity
production. To produce power from water levels heads
between 0.7 and 3 meters. The research on the effects of
design variables has been summarized in Table 4, and it
can be seen from this table that the highest design effects
are increasing the blade angle to 44 degrees and increas-
ing the surface area using barrier panels and the number
of blades to 5. The key design and operational factors and
their direct effect on the performance of the GWVHS are
summarized in Table 5. All of these significantly contribute
to the optimization of the system in terms of efficiency and
performance, as well as in its control, energy output, stabil-
ity, etc, depending on its operational state.
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Table 5. Design and operational factors and their impact on the efficiency of energy generation systems using water vortex

Factor type Factor Description and Impact Results/efficiency

Design factor Blade shape Curved blades enhance efficiency at Efficiency increased up to 82% [10].
an angle of 44 degrees.

Design factor Number of blades Increasing the number of bladesto 5 Optimal efficiency with 5 blades [10].

improves performance, but excessive
increase reduces efficiency.

Design factor Blade material

weight.

Lightweight materials like aluminum
increase efficiency by reducing

Improved efficiency due to lightweight
design [46].

Design factor Basin shape

Conical basins enhance vortex
strength and improve performance

Improved system efficiency and vortex
power [60].

compared to cylindrical ones.

Operational factor ~ Vortex height Increased vortex height improves Higher efficiency at optimal vortex
energy conversion to mechanical height [76].
power.

Operational factor ~ Flow rate Optimal flow rate reduces water loss ~ Improved efficiency and reduced water

and enhances system stability.

losses [72].

Operational factor ~ Inlet and outlet channels

Proper channel design boosts water

Better stability and higher efficiency [59].

flow and maintains vortex stability.

Operational factor ~ Turbine rotational speed

Increasing turbine speed within a

Enhanced efficiency at optimal speed [19].

certain range improves efficiency.

THE ECONOMIC EFFECTS OF THE
CONSTRUCTION AND DESIGN OF THE STATION

Vladimir J et al. [78] provided comprehensive coverage
of the elementary cost-benefit analysis, including extensive
design, building, and preliminary testing details. They eval-
uate Gravitational Vortex Hydro-Power technology in com-
parison to established low-head hydropower systems. Using
resources and technology already present in a poor nation,
they proved that the Gravitational Vortex Hydro-Power
infrastructure could be built with a high degree of manual
labor. With its low initial expenditure and quick return on
investment, it is a good choice for little rural towns that
need better grid access or when the importance of design
simplicity exceeds efficiency requirements. Despite the
low labor costs in Peru, labor accounted for most of the
expenses. Power transfer from the turbine to the generator
is one of the main limitations of the system, especially when
dealing with challenging high-torque working situations.
Subekti et al. [11] discussed the development of a small—to
medium-sized hydroelectric power station. Various tech-
nical investigations were subsequently conducted to deter-
mine the potential energy production, identify the types of
components, and calculate the investment cost per kWh.
Arfoa et al. [79] conducted a study and research on devel-
oping conventional hydroelectric projects on the Zarqa
River to mitigate the ongoing loss of water energy by har-
nessing it for electricity generation. The analysis addition-
ally ascertains the suitable site for creating the Gravitational
Water Vortex Power Plant by collecting site data, including
head, flow, proximity to the network, and roadways. The

Figure 17. This project is a test run for a conical basin de-
sign incorporating a runner, intake canal, irrigation canal
weir, and basin construction.
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Table 7. Economic analysis of the impact of design and operational improvements on the cost-benefit ratio in water vortex

power plants

Item

Description

Economic Impact

Construction costs

Utilization of low-cost local resources and
available technologies, such as manual labor.

Reduces total costs and makes the project more
suitable for rural areas[78].

Maintenance costs

Simple design reduces breakdowns and requires
minimal maintenance.

Lowers ongoing costs and extends project
lifespan[81].

Energy efficiency

Improved basin shape, lightweight blades, and
increased vortex height.

Increases system efficiency by up to 82% and
boosts energy production[10].

Infrastructure utilization

Integration with existing water channels and dams
to reduce additional construction needs.

Lowers installation costs and enhances economic
returns by utilizing available resources[80].

Cost-benefit ratio

High return on investment due to low initial costs

Ensures quick investment recovery, making

and increased productivity.

the system suitable for resource-limited
communities[78].

study findings suggest that implementing a system on the
Zarqa River is feasible from technical, economic, and envi-
ronmental perspectives. Dhakal et al. [80] stated that the
gravitational water vortex power plant is a new design for a
small hydropower system and is the focus of this research.
Irrigation canals, reservoirs, and weirs are three examples of
preexisting water infrastructure that could be used to inte-
grate hydropower. The technical performance is evaluated,
and the theoretical economic research is validated with the
help of a scalable system of 1.6 kW that is constructed and
incorporated into an existing irrigation canal. According to
the results, turbine performance is well suited for rural elec-
trification, and the integration costs can be minimized by
cutting back on civil works and installation. Fig.(17) shows
the installation of the basin. Table 6 and 7 show the eco-
nomic effects of station design and construction.

MODELLING AND SIMULATION ARTICLES

Through a review of the literature on the topic, research
was found that utilized numerical methods and computer
programs to demonstrate and assess the efficiency of water
vortex power stations. As an illustration, Pandey et al. [66]
improved the Propeller Blade Angle; the propeller-type
runner was optimized by simulating fifteen distinct com-
puter-aided design (CAD) models of runners with vari-
able blade angles at 30 rpm in a steady-state situation. The
simulation results reveal that efficiency, output power, and
torque all rise between 20° and 43° blade angle, and then
they decline. A maximum efficiency of 20.633%, a maxi-
mum output power of 119.833 watts, and a maximum
torque of 38.144 Nm were achieved. As a result of optimi-
zation, the state of water velocity is shown in Figure 18 and
19. And some of the formulas used:-

Continuity equation: -

e+ -(pu) = 0[82] (1)
Momentum equations: -
p(ug—:+va—u+wa—u) = __+6x [(y+ T)(Dx +au,)]
p(ug+viE+ws)= -2 [(Mﬂw)( +au])]
p(ugE+vii+wsy) = —+—[(u+ur)( 0;’)] (3)

Khan et al. [71] used numerical and simulation meth-
ods to analyze the analysis of basins. Practical research
began with the study of reference basins. Due to the lack
of an air core, which generates little power, the vortex did
not form adequately, even at 5.5 kg/s. Thus, several basin
geometric parameters were tried until a vortex with the
air core throughout the height was found. Power genera-
tion using 4.5 kg/s mass flow was better in this basin. The
basin was optimized by narrowing the entrance channel to
smooth water intake, increasing its height to create a high-
height vortex, and enlarging the bottom exit. The influence
of intake channel width was examined using the dimen-
sionless ratio of inlet channel width to basin diameter from
0.1 to 0.5. This ratio increases mass flow into the basin,
raising water height until overflow from the basin’s upper
walls occurs. Fig. (20) shows speed streamlines, reference
geometry, and air and water volume portions. Dakal et al.
[40] enhanced the efficiency of the GWVPS by improving
runners. Computational Fluid Dynamics studies showed
that the curved blade shape was the most efficient, at 63%
versus 46% for the straight blade. With a head of 0.5 meters,
the runner worked as expected by the Computational Fluid
Dynamics study with an efficiency of 71%.
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Figure 18. Decreased water velocity due to optimizing the blade angle.
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Figure 19. Decreased water velocity due to optimizing the blade angle.
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Figure 20. Speed streamlines and fluid flow.
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TECHNICAL DETAILS FOR PERFORMANCE EN-
HANCEMENT

Finally, to improve the reproducibility and utility of
the study, detailed procedural descriptions for the most
important parameters are given. These include:

Blade Dimensions

Maximum efficiency: The best possible angle of blades
is 44°.

Blade Diameter: 12 mm, Tested for vortex systems
(small scale)

Basin Dimensions

Basin shapes: Tests were done on cylindrical and coni-
cal designs with inlet-to-outlet diameter ratios of 3.26, 4.9,
and 6.12.

The best height of power extraction is between 65 and
75 % of the total height from the basin.

Turbine Dimensions

Turbine height: Five configurations were evaluated
from 150 mm to 650 mm to measure the impact on torque
and efficiency.

Turbine depth: Best Performance observed at 410 mm
depth

Discharge Orifice Size

The enhanced overall turbine efficiency through
higher vortex intensity occurred due to the diminished dis-
charge orifices.

This comprehensive breakdown of these factors will
improve the transparency of the experimental configu-
ration and aid in similar future designs by providing rich
insight into system topology and layouts.

GRAVITATIONAL WATER VORTEX POWER
PLANTS: SUPPORTING RENEWABLE POLICIES
AND SUSTAINABILITY

o Water Energy: Gravitational Water Vortex Power Plants
encourage green natural resources-leading to carbon
neutrality by 2050.

o Transforming Energy Access: This innovation inex-
pensively delivers electricity to sparsely populated and
secluded regions, thus aiding sustainable development
frameworks and poverty targets.

o Carbon Emission Mitigation: By decreasing reliance
on fossil fuels, Gravitational Vortex Hydro-Power helps
reduce your environmental footprint and meet emis-
sion reduction commitments.

o Cost Effectiveness: The low cost of construction
and maintenance makes this technology suitable for
resource-limited communities, leading to widespread
adoption.

o Adopting GWVH Projects to Promote National
Energy Policies: Gravitational Vortex Hydro projects
can be part of the national energy policies, and they will

participate in the energy transition towards sustainable
energy sources.

CHALLENGES IN GRAVITATIONAL WATER

VORTEX HYDROPOWER
In this section, some of the limitations and challenges

affecting the performance of the system are reviewed in the

form of points:-

 Flooding Risk: Water vortex stations face the challenge
of flooding, which can disrupt operations and damage
infrastructure if not properly managed.

o Water Availability Impact: Water availability directly
affects electricity production and energy costs, with
droughts or limited water supply significantly influenc-
ing this relationship.

o Noise Issue: The sound of water striking the blades can
be highly disruptive to people, creating challenges for
installing these stations close to residential areas.

« Impact on Aquatic Life: Hydroelectric power plants sig-
nificantly disrupt fish life cycles by causing major alter-
ations in natural water flow patterns.

« Rotational Speed Limitation: The slow rotation of water
wheels poses a challenge for electricity generation,
necessitating high-ratio gearboxes. These gearboxes are
costly and can account for a substantial portion of the
total system cost, ranging from 25-30% and potentially
reaching up to 40-45% [78].

o Rotational Speed Limitation: Water wheels’ slow rota-
tion represents an area requiring high-ratio gearboxes
for effective electricity generation. Such gearboxes are
expensive and constitute a significant part of total sys-
tem cost, typically 25-30%, potentially up to 40-45% of
total system cost[11].

o Speed Challenge of Turbines: Turbines are low-speed
by nature, so high performance requires using spi-
ral-shaped designs. However, these layouts are
sophisticated and require high technical knowledge to
fabricate [68].

o Water Vortex Turbine Problems with Vertical Axis: The
main problems of water vortex stations’ vertical axis
turbines are low starting torque, torque instability, and
low efficiency. Due to their design, which causes them
to perform poorly at start-up, the use of auxiliary start-
ing systems, sometimes electrically, mechanically or a
combination of the two, is typically required [84].

o Efficiency Limitation in Hydro Vortex Stations: One
drawback of hydro vortex stations is that increasing the
number of turbine blades reduces the system’s overall
efficiency [63].

CRITICAL ELEMENTS INFLUENCING THE
PERFORMANCE OF GRAVITATIONAL WATER
VORTEX POWER FACILITIES

Operational, design and economic factors were high-
lighted as key factors influencing GWVHS efficiency, and
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the study identified these characteristics as affecting their
efficiency. Results showed that changing the turbine blade
angle to 44 degrees using a five-blade design increased the
efficiency to 82%, and higher water flow speed and depth
greatly influenced the system’s performance. It was estab-
lished that conical basins perform better hydraulic losses
and respective drainage adjustments than cylindrical basins.
The optimized designs can reduce costs economically and
help achieve long-term sustainability by saving costs on the
part of these power generators. We learned how computa-
tional fluid dynamics models allow the designer to consider
the system variables and analyze and optimize those vari-
ables to overcome challenges such as initial construction
costs and environmental impacts. These results highlight
the promise of the Gravitational Vortex hydro-station as a
sustainable energy source, especially in under-resourced
regions.

RESULTS AND DISCUSSION

This study seeks to review many researches and stud-
ies related to improving and raising the efficiency of sta-
tions, as it turned out that several factors must be taken
into account because they have a vital role in increasing and
developing the performance of hydroelectric power(water
vortex power stations). Hence, the researcher concluded
that the most influential factors in the generation of the
water vortex are the turbine shape, diffuser and cylin-
der shape that forces water to form a vortex. The results
of research and simulations show that the efficiency of the
curved blade runner is 3.65% greater[21] than that of a flat
runner. The researchers also found that the intensification
of the nozzles improved the conical basin’s vortex genera-
tion and the turbines’ performance. Another research is to
increase turbine efficiency and rotation speed by increasing
the blade angle and surface area using barrier plates. The
5-blade design with a blade angle of 44 degrees resulted in
an 82% efficiency of the curved blade shape[10]. This led
to an increase in total electricity generation. The addition
of a booster turbine to the primary turbine resulted in a
20.4% increase in overall efficiency and an increase in elec-
trical capacity by 3.48 watts[39]. Studies have shown that
the aluminum metal used in the manufacture of the turbine
has a noticeable effect compared to steel metal, where the
efficiency of aluminum and steel metals reached 34.79%
and 33.56%, respectively. Studies have shown that adding a
small intake channel under the basin leads to a 60% saving
of the energy generated by the vortex. Etc[67]. There are
several proposals and recommendations for future studies
of design and operational variables:

1. Give the importance of economics in developing water
vortex power plants, ensuring affordable systems and
innovative financing mechanisms to enable widespread
adoption in developing and developed countries.

2. Research on Additional Influencing Factors: Future
research should investigate other factors that can

10.

11.

12.

13.

14.

influence the performance of the water vortex stations,
such as flow dynamics, environmental conditions, and
material durability, to improve system efficiency and
sustainability.

Turbine Blade Analysis: A thorough evaluation of vari-
ous turbine blade configurations is critical to determin-
ing the ideal setup to maximize energy extraction while
minimizing wear and maintenance costs.

Where the Real Science Begins: Conduct a detailed
study on the diffuser geometry and material to improve
the tangential water flow entering the basin, the key
point where vortex flows are generated, consequently
leading to energy generation.

Vortex height investigation: Further research is needed
on vortex height to identify the relationship between
energy generation, vortex stability and structural needs
of different applications.

Advanced Mechanical Linkage Systems: Studying com-
plex mechanical and electromechanical linkage models
connecting water turbines with electricity generators
could lead to greater efficiencies in power transfer and
decreased mechanical losses.

Optimal Sizing and Location of Water Vortex Stations:
More research can be done to determine the best size
and placement of water vortex stations in different con-
texts to maximize energy production while minimizing
environmental disruption.

Energy Storage Optimization: Explore ways to optimize
the design and operation of water vortex power plants
to work seamlessly with energy storage solutions,
where energy generated can be stored and released for
use when demand is high.

Scalability and Modular Design: Research into scalable
and modular designs for water vortex stations could
facilitate deployment in diverse geographical and
hydrological conditions.

Intelligent Monitoring and Management Systems:
Intelligent/faulty monitoring and auto management
systems can improve operational performance, prevails
signalling, and optimize real-time functioning.

Hybrid Energy Systems: Water vortex stations can be
combined with other renewable energy sources like
solar or wind, creating hybrid energy systems tuned for
continuous power output.

Community and Economic Benefits: Examination
of the economic and community orientation of water
vortex stations in terms of the social, community
and economic benefit potential of this technology for
remote or underserved areas in job creation and local
development.

Material Innovation - New materials with unprece-
dented properties could allow for lighter, low-corrosion,
and more economical materials, leading to greater
durability and effectiveness for the system.

Design to Adapt to Climate Changes: Research should
aim to develop systems that can adjust to the effects of
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climate change, like varying levels of water and more

extreme weather, including the reserve capacity in the

system to support long-run sustainability.

15. Investigating the Effect of Height of Vortex and Flow
Rates: Practical experiments are suggested to examine
the effect of the height of the vortex and energy loss due
to the variation in flow rates to discover the best oper-
ating conditions of systems.

16. 3D Model Design for Diffuser: Digital simulation tools
(i.e. ANSYS and Computational Fluid Dynamics) are
recommended to study the effect of different diffusers
and blade angles (44°) on system efficiency.

17. Conduct Field Testing in (the) Real World Operating
Conditions: to assess system performance under low
water flow conditions in natural environments through
field experiments, improving flexibility and efficiency
in rural areas.

These converging perspectives would streamline the
future research and development trends for water vortex
power plants, making them a more effective, sustainable,
and widely applicable renewable energy solution.

RESEARCH APPLICATIONS AND THEIR
IMPLICATIONS FOR SUSTAINABLE ENERGY
DEVELOPMENT

Our work focuses on Gravitational Water Vortex
Hydropower Systems. It offers substantial contributions
towards enhancing turbine performance and achieving
more sustainable energy practices in answer to the world’s
increasing energy demand, particularly in rural and remote
locations affected by energy scarcity. By learning from all
the elements that affect turbine designs, including blade
angles, materials and types of basins, we were able to iden-
tify major performance boosts. After modelling the factors
that influence turbine efficiency, we found that blade angle
significantly affected turbine performance, enabling us to
improve efficiency (82%), torque (1.23%) and hydrokinetic
energy production while decreasing loss. Furthermore, the
economic modelling of how feasible it is to run these systems
in rural areas demonstrates how they provide sustainable
energy at lower costs than traditional energy systems. These
systems assist in reducing carbon emissions, an efficient
alternative to fossil fuel usage that promotes environmen-
tal sustainability. Their capacity to offer energy states away
from the grid encourages energy independence. It aids inter-
national endeavors to achieve the Sustainable Development
Goals (SDGs), especially in developing nations, where people
across the globe battle to obtain energy. These low-cost and
environmentally sound energy solutions enable small and
medium-sized projects in developing countries to produce
sustainable energy in areas with limited access to traditional
grids. Also, optimized basin designs and high-performance
turbines enhanced economic efficiency for such systems,
making them a good candidate for investments and a way
for communities to harness low-cost sustainable energy.

The results of this study lay the groundwork for improving
renewable energy technology worldwide, helping to ensure
sustainable development through increased efficiency of
small hydropower systems. Thus, by studying and analyzing
available technological and economic tools, such systems
can support the transition to a low-carbon economy world-
wide, enabling these countries to respond to climate chal-
lenges and achieve carbon neutrality by 2050.

CONCLUSION

This research looked into the various operational, design,
and economic aspects that affect how well Gravitational
Water Vortex Hydropower Systems perform. The main goals
were to improve efficiency, cut down on losses, and assess
financial viability. The findings showed that changing the tur-
bine blade angle to 44° increased its efficiency to 82%, which
greatly enhanced hydrodynamic performance and reduced
energy losses. Additionally, using advanced materials like
aluminum and specially designed alloys led to a 1.23% rise in
torque, which improved the turbine’s stability and durability
over time. In terms of basin design, experiments revealed that
using conical basins with optimized nozzles boosted power
output by 60% and cut hydraulic losses by 25% compared to
traditional basin designs. Also, narrowing the central gap in
the turbine blades improved flow efficiency by 10.25%, which
helped reduce erosion and lengthen the operational lifespan.
Likewise, refining the water channel design resulted in a 15%
increase in flow velocity, maximizing energy production,
especially in low-head locations. From an economic stand-
point, computer models showed that better turbine designs
could lower operational costs by 18% and maintenance costs
by 20% due to less wear and longer turbine life. Additionally,
the research found that having five blades instead of three
or seven struck the best balance between performance and
efficiency, leading to a 14% increase in energy output.
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