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INTRODUCTION

One of the most common and extensive natural disas-

ABSTRACT

This paper presents the dynamic generalized Cheeger concept, which sounds very interesting
and may lead to many real-world applications in the future. This paper gives a novel insight
into the dynamic generalized Cheeger problem as an application to the temporal prediction
and rainfall threshold of landslides. The generalized Cheeger problem has applications in
landslide modeling as it can compute the safety factor and collapse domain. Notably, the paper
presents an innovative graphical method employing the dynamic generalized Cheeger concept
for temporal landslide prediction and rainfall threshold determination. While developing the
graphical method for temporal prediction of landslides, all causal factors of landslides are
considered, and in the same graphical method, only rainfall as a causal factor of landslides is
used for the threshold rainfall determination. The paper provides two numerical illustrations
demonstrating the reliability and robustness of the proposed method. Moreover, the paper
presents a comparative study aimed at showcasing the effectiveness of the proposed graphical
method. The result of the study suggests that the rainfall threshold is lowest for circular do-
mains among all shapes with equal area and highest for equilateral triangular domains among
regular polygons of equal area, with decreasing thresholds as polygon side count increases. In
conclusion, this paper introduces the dynamic study of the generalized Cheeger problem as a
novel approach, proposing a graphical method for predicting temporal landslides and rainfall
thresholds, ensuring promising avenues for real-life applications stemming from this dynamic
study.

Cite this article as: Kushwaha PK, Mishra LN. A dynamic study of the generalized Cheeger
problem: An application to the temporal prediction of landslides and rainfall threshold. Sigma
J Eng Nat Sci 2025;43(3):999-1013.

primary landslide-triggering element among all known
causes, along with shallow rotational collapses and debris
flows, which are also mass movement phenomena [5-7]. A

ters in the world, landslides significantly damage infras-  translational landslide is a downslope movement of land

tructure, properties, and human lives [1-4]. Rainfall is the that may happen along a particular plane surface due to

*Corresponding author.

*E-mail address: lakshminarayan.mishra@vit.ac.in

This paper was recommended for publication in revised form by

Editor-in-Chief Ahmet Selim Dalkilic

Published by Yildiz Technical University Press, Istanbul, Turkey
B No

Copyright 2021, Yildiz Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).


https://sigma.yildiz.edu.tr
https://orcid.org/0009-0009-2119-4012
http://orcid.org/0000-0001-7774-7290
http://creativecommons.org/licenses/by-nc/4.0/

1000

Sigma J Eng Nat Sci, Vol. 43, No. 3, pp. 999-1013, June, 2025

weakness such as a fault, joint, or bedding plane, as illus-
trated in Figure 1 (reproduced from [8] with permission).
Due to the multidisciplinary nature of landslide prediction,
a better understanding of the mechanics of landslide initi-
ation can be achieved through the examination and analy-
sis of each causal factor at the necessary scale and level of
detail, which can also result in landslide temporal predic-
tion and forecasting.

Landslides, snow avalanches, and other catastrophic
geophysical events have been studied, modeled, and pre-
dicted in recent decades. In the physical modeling of the
geologic substances involved in these unsteady events,
rigid viscoplastic models are employed. These models can
explain the strength (yield limit) and behavior of the mate-
rial, similar to those of fluids. Models like Drucker-Prager,
Bingham, etc. have a distinguishing characteristic, which
is the presence of stiff (unyielded) zones close to the flow
(yielded) zones. The yield limit increases, which causes the
stiff zones to grow and become more capable of entirely
obstructing the motion. When we do modeling of land-
slides, the solid or fluid is constrained by its intrinsic shape,
and the initiation of the motion (onset) may be thought of
as a “calamity”. An investigation of stability may reveal cru-
cial details about the “safety factor” of the natural physical
structure and the beginning of motion [9-13].

A shape optimization problem could be used to
describe the blocking property and the corresponding
safety factor analysis [11]. The optimal shape describes
the collapse domain and is connected to the beginning of

Figure 1. Translational landslide.

the flow. The famous Cheeger problem [14], which has to
do with minimizing the perimeter to area ratio of a sub-
region Y of region (), is an example of a simplified homo-
geneous problem. Additionally, the Cheeger problem has a
wide range of applications, like in capillarity models, frac-
ture mechanics, eigenvalue estimations [15, 16] and med-
ical imaging. The generalized Cheeger problem is what it
is termed when a problem is not homogeneous. Although
the generalized Cheeger set’s existence was demonstrated
in [12], the uniqueness property is not universal and causes
significant problems for numerical computations. In the lit-
erature, the generalized Cheeger problem has been solved
numeri- cally for convex sets, but for nonconvex sets, the
problem has no unique solution, making numerical com-
putation difficult. Numerical problems with more than
two solutions are called ill-posed problems. Traditional
numerical methods, such as iterative algorithms or finite
difference schemes, may fail to converge or produce unre-
liable results when applied to ill-posed problems like the
generalized Cheeger problem for nonconvex sets. These
methods rely on well-behaved solution spaces and smooth
convergence paths, which may not exist in the presence of
multiple solu- tions or poorly behaved solution spaces. Due
to the non-uniqueness or instability of solutions, iterative
algorithms may fail to converge on a meaningful solution.
This failure occurs when the iterative process diverges or
oscillates without approaching a fixed point, leading to
unreliable results. In two-dimensional space, explicit con-
structions of the Cheeger set are known; however, they are
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specific to convex domains, and for non-convex sets, we
have little knowledge about the Cheeger set and the Cheeger
constant. For more information, see [17-20]. In [21], the
numerical boundary variation method was developed by
using the shape derivative of the Cheeger functional to find
the onset domain (generalized Cheeger set) and safety fac-
tor (generalized Cheeger constant).

We have a lot of literature on the classical Cheeger prob-
lem and its generalized counterpart in the past [12, 17-21].
The classical Cheeger problem gives static models, provid-
ing insights into optimal partitions of sets. On the other
hand, the generalized Cheeger problem extends its applica-
bility to the non-homogeneous case, serving scenes where
the underlying structure displays varying mass and shear
strength distributions, respectively. The current paper
endeavors to bridge the gap between the static models of
the generalized Cheeger problem and the dynamic nature
of real-world phenomena, particularly temporal landslides
(the threshold value of the single landslide triggering fac-
tor). Landslides, as complex natural phenomena influenced
by various factors such as rainfall, weather conditions, rock
types, and human activities, pose a significant challenge
in predictive modeling [22]. While the classical Cheeger
and generalized Cheeger problems traditionally operate
within static frameworks, this study projects them into the
dynamic domain, introducing a theoretical framework for
temporal landslide prediction. Practically, landslide predic-
tion involves a high degree of probabilistic uncertainty due
to the involvement of a collection of external factors that
directly influence the landslide event. However, the deter-
ministic approach is employed here, and the current study
has developed a model that can predict landslide events.

The theoretical framework model encompasses all
causal factors contributing to landslides for temporal land-
slide prediction. Subsequently, the study filters its focus on
the role of rainfall as a singular triggering factor for land-
slides, employing an improvised graphical method for the
determination of the rainfall threshold.

The dynamic study of generalized Cheeger problems
undertaken in this paper refers to the consideration of
time- varying generalized Cheeger sets and constants. In
the background of landslides, this implies seeking changes
in generalized Cheeger sets and constants as the parameters
influencing landslide prediction evolve over time due to the
effects of numerous external factors. These parameters,
including rainfall events, are naturally dynamic, compel-
ling a departure from the static models commonly applied
in Cheeger problem studies. The current paper asserts the
importance of understanding the dynamic aspects of the
generalized Cheeger problem in the domain of landslide
prediction. The incentive behind this research is not only
to contribute to the understanding of landslides but also
to unfold the varied applications of the classical Cheeger
problem in various real-life scenarios. This study develops
a graphical method for rainfall threshold determination by
utilizing the classical Cheeger sets and constants at specific

instances of rainfall while holding other factors constant
rather than generalized Cheeger sets and constants to sim-
plify the computational complexities. This method empha-
sizes computational efficiency by simplifying the model.
In summary, the current paper deals with an undiscovered
zone by extending the static models of the generalized
Cheeger problem to novel dynamic landscapes, specifi-
cally in the context of temporal landslide prediction (the
threshold value of the single landslide triggering factor).
The comprehensive theoretical framework for the temporal
landslide prediction model developed herein not only pro-
vides insights into the intricate dynamics of landslides but
also reveals the vast applicability of the Cheeger problem in
numerous real-world scenarios.

The motivation behind this study stems from the press-
ing need to enhance our understanding and predictive
ca- pabilities in landslide management. By extending the
traditional static generalized Cheeger problem to a dynamic
framework, this research aims to revolutionize landslide
modeling and prediction methodologies. Through the
devel- opment of innovative tools for temporal landslide
forecasting and rainfall threshold determination, the study
seeks to address critical gaps in current landslide mitigation
strategies. Furthermore, the study endeavors to inspire and
engage young researchers by highlighting the practical rele-
vance of fundamental mathematical concepts, such as

J. Cheeger’s geometrical optimization problem, in
addressing real-world challenges. By fostering interdisci-
plinary exploration, this study aims to catalyze the emer-
gence of novel applications and solutions with far-reaching
impli- cations for landslide hazard management and
beyond. The significance of this study lies in its pioneering
approach to advancing landslide modeling and prediction
through the dynamic extension of the traditional static
generalized Cheeger problem. Moreover, it illuminates the
intricate interplay between the geometric configurations of
land formations and their susceptibility to landslides under
diverse rainfall conditions. The significance of this study
extends far beyond the realm of landslide modeling and
prediction. By dynamically extending the traditional static
generalized Cheeger problem, this research opens doors to
tackling a wide array of challenges across various research
domains.

The present paper is structured as follows: In the first
section, preliminaries are provided as motivation, followed
by a discussion of a generalized Cheeger problem. This
section offers equations for the static non- planar motion
of a non-homogeneous stiftf visco-plastic fluid or solid,
together with their corresponding variational formula-
tions. Additionally, a shape optimization problem is used
to illustrate the fluid’s or solid’s blocking properties. In the
next section, the main content of the paper is introduced.
Initially, the assumptions of the study are outlined, followed
by a dynamic study of the generalized Cheeger problem. A
theoretical framework for a dynamic model is then devel-
oped to predict and forecast the temporal landslide using
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a graphical method. The threshold value of rainfall is also
calculated using this graphical method. The subsequent
section provides numerical illustrations that are analyzed to
assess whether a natural structure is safe over a given period
of rainfall. If the structure is not safe, the rainfall threshold
for a landslide is computed.

A comparative study is then presented to evaluate the
effectiveness of the graphical method in landslide predic-
tion, with a case study in the Darjeeling Himalayas, India
(2010-2016). Finally, the paper presents a section on results
and discussion, followed by a separate section on conclu-
sion and future work.

PRELIMINARIES

In the preliminaries, the motivation for studying the
generalized Cheeger problem and the definition of the
generalized Cheeger problem are discussed. Here, a brief
account of the formulation of the generalized Cheeger
problem and its motivation is given; interested readers may
refer to [12, 21] for details.

Motivation

Here, the equations that describe the static non-planar
motion of a non-homogeneous inflexible visco-plastic fluid
are analyzed in the domain

D=0xRcR? (2.1)

where Q is a bounded domain in R? with a W = (Lipschitz
continuous) boundary Q. The simplified version for uni-
directional (non-planar) motion only requires a single sca-
lar unknown that depends on two-dimensional variables.
Specifically, the static flowing velocity v is searched along
the direction Oy, (i.e., the velocity field v is provided by v
= (0, 0, v), which is independent of y; so that v = v(y,, ¥,))
(see Figure 2). The non-disappearing stress components are
G137 ¥,) and 6y5(y;, ¥,), respectively, indicated by the sym-
bol ¢ = (613 p3)- (1/2) Vv describes the rate of deformation.
The constitutive equation of the fluid is as follows:

Vv
g=pl7v+y—

, if |Vv| # 0,
e if 7]

(2.2)
lsl <, if [Vv] =0,

where y(y,, y,) is a positive continuous function that
denotes the distribution of the yield limit in D and p(y,,
y,) is the distribution of viscosity. The Von Mises plasticity
norm for constant y (pressure-independent plasticity) is
considered here, and (2.2) recovers the traditional Bingham
fluid or solid model [23, 24]. The Drucker-Prager plasticity
states that for granule flows, the yield limit y depends on
pressure p linearly [11], and y can be expressed as y = y, +
7p, where 7 = tan a is the coefficient of internal friction, a is
the angle of internal friction, and y, is the cohesion. In the
non-planar scenario, the pressure is reliant on the spatial

variables since it depends on the depth and is unrelated to
the velocity fields. According to this, the yield limit seems
to be inhomogeneous for landslide models even for homo-
geneous materials [9-11]. The Eulerian coordinates for the
momentum balancing law read:

dive +1lfp=0, in Q. (2.3)
Body forces in the Y; direction are represented by f, and
I represents the non-dimensional loading parameter. f(y)
can be described as f(y) = gy(y) sin 0 > 0, where g is the ver-
tical acceleration due to gravity, y(y) is the mass distribu-
tion function, and 6 is slope angle. v, denotes the velocity v,

indicating that velocity depends on the loading parameter 1.

Y

Ys

Figure 2. Non-planar geometry flow.

The boundary of Q is divided into two partsas Y =Y, U Y,
so that the equations (2.2) and (2.3) can be completed with
some boundary conditions. An adherence condition on Y|,
is considered here, and Y is considered a stress-free surface
(rigid roof). Stating clearly,
vy=0onY, ¢n=0onY,

where n represents outward unit normal on 9Q.
It is assumed in the following that

yecCt (Q>,F,p €eC’ (Q>,V(Y) =2y, >0,
p(Y)=p, >0,VY €Q

Defining,
E={e€H(Q)|e=0o0nY,}

Hence, the non-planar flow variational formulation is
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v €E, [ p()Vr(Y).V(e(Y)—v/(Y))dY
+ [uyMIVeM)|dy — [,yIVv (Y)|dY  (2.4)
> L[ F()(e(Y) — v (Y))dY,Ve € E.

The mentioned problem is a classic variational inequal-
ity that may be expressed as an energy minimum problem.

1
7(e) =zfp|\78|2+fy|Ve|—lfFe,eeE.
Q Q Q

A unique solution v; will be obtained if meas(Y,) > 0.
The sufficient conditions for the existence of a solution are
Y,=@and | o F(Y)dY = 0,and up to an additive constant,
the solution is unique. The former will always be assumed
to be true in the following; the other can be derived with
obvious, slight modifications.

Assuming, Q0 ={Y € Q|v,(Y)=0}, @/ ={y € Q|v,(Y)#0}
=0- Q!

Q) and Qf are the families of subdomains of Q where
fluid is stationary and moving, respectively. In landslip
modeling, the blocking phenomena assure the stability of
the rest configuration and can be represented as follows:

The fluid is obstructed if v; = 0 is a solution of (2.4) (see
[11, 12]). Therefore, it gives Q,°= Q, Qf= @.

The following optimization problem can represent the
blocking property for the function T: E> R as follows:

_Jpyy MIve)lay
T L F(Me(Mdy|’

A= ;lélgT(e), T(e) (2.5)

where A denotes the safety factor of the natural structure
during a landslide. The necessary and sufficient condition
for blocking fluid (v; = 0,ie, Q= Q) is A > 1.

Generalized Cheeger Problem

Let A: $* —> R be the function defined from set S* to set
of real numbers, where $* is the set of all open subsets (w) of
Q with a finite perimeter and regular boundary, and

Jownry, ¥ S
Aw)y =20~ 2.6)
| [, F(Y)dY|
The shape optimization problem:
A=Aw=*) = min A(w) 2.7)

is called the generalized Cheeger problem. The optimal set
w* (generalized Cheeger set of Q) denotes the part of the
domain Q from where landslides will occur if parameter /
exceeds A (generalized Cheeger constant of 2).

More accurately,

W *= ll_l)rsqr Q{ =0- ll_l)gr}r Q?, (2.8)

where w* is a solution to the shape optimization problem (2.7).

Observing that for f = y = 1 and Y, = @. Then, the gen-
eralized Cheeger problem reduces to the classical Cheeger
problem:

Ae=A, (W *) = minA,(w),

c WES* (2'9)
s
A (w) = I}MW’ (2.10)

where wx, denotes the Cheeger set and A, denotes the
Cheeger constant of the domain €, respectively.

THEORETICAL FRAMEWORK MODEL OF
TEMPORAL LANDSLIDE PREDICTION AND
CALCULATION OF RAINFALL THRESHOLD VIA
GRAPHICAL METHOD BY USING A DYNAMIC
STUDY OF THE GENERALIZED CHEEGER
CONCEPT

Assumptions Underlying the Study
Here are the assumptions of the study listed pointwise:

1. At each instant of time, the value of the landslide-pre-
dicting parameters of the current study can be calcu-
lated, which depend on m number of external factors of
the landslide.

2. The graphical method for the determination of the
threshold value of the triggering factor is effective
when there exists a known relationship between the
landslide-predicting parameters integral to the present
study and the specific triggering factor in question.

3. Inrainfall threshold determination, only rainfall is con-
sidered the landslide-triggering factor.

4. While computing the rainfall threshold, only the rain-
fall amount per event is considered, and all other char-
acteristics of the rainfall event are taken as constants.

5. The parameter / and bulk density of the soil are assumed
to be the only parameters that are changing due to the
rainfall event, and all other parameters of the present
study are taken as constants in the development of the
graphical method for rainfall threshold.

6. The mass distribution over a cross-sectional area of
domain D is assumed to be constant and increases lin-
early with depth I due to gravity.

7. The mass density of a piece of land (domain D) increases
linearly with the rainfall amount P.

8. The parameter gravity g considered constant through-
out the whole study.

Dynamic Generalized Cheeger Concept

In this section, we introduce the dynamic general-
ized Cheeger concept, focusing on a three-dimensional
plate denoted as P. Defined as the Cartesian product of
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a bounded domain Q in R? with a Lipschitz continuous
boundary 0Q) and the entire real line R:
P=QxRcR:. (3.1)

Here, Q represents a confined region with a W =
(Lipschitz continuous) boundary, ensuring structural integ-
rity. The functions f (x, y, z) and g(x, », z) characterize the
shear strength distribution and mass distribution across the
three-dimensional plate IP, respectively. The shape of the
plate is denoted as S(IP). Our exploration centers around
the dynamic generalized Cheeger problem, investigating
the behavior of the generalized Cheeger set and constant
concerning temporal variations in the plate’s shape, shear
strength distribution function f (x, y, z), and mass distribu-
tion function g(x, y, 2), and inferring some important and
interesting information about the system under study.

The dynamic generalized Cheeger concept opens
routes for studying the impact of evolving parameters on
the plate’s Cheeger characteristics. This dynamic inquiry
may extend beyond regular applications, illustrating its
adaptability beyond landslide phenomena. The dynamic
study of the generalized Cheeger problem is poised to yield
worthwhile insights transcending disciplinary bounds. The
potential real-life applications of the dynamic generalized
Cheeger concept may be vast and diverse. In this paper, we
delve into one specific application: the temporal prediction
of landslides and rainfall thresholds. This analysis rep-
resents a practical manifestation of the vast applicability of
the dynamic generalized Cheeger concept, demonstrating
its importance in responding to real-world challenges and
forecasting geological events with implications beyond the
immediate scope of traditional Cheeger problems.

The choice of natural calamities like rainfall and land-
slides for Cheeger’s study stems from their direct rele-
vance to geometric analysis and their significant impact
on human lives and infrastructure. By focusing on these
phenomena, researchers can employ geometric concepts
such as the Cheeger constant to assess landslide suscepti-
bility, predict critical rainfall thresholds, and form disaster
management strategies. Narrow examples include using
the Cheeger problem to analyze specific landslide-prone
regions, optimizing road infrastructure designs to mitigate
landslide risks, developing early warning systems based
on rainfall thresholds, implementing land use regula-
tions in vulnerable areas, and designing slope stabilization
measures to enhance resilience to natural hazards. These
applications showcase the practical utility of the Cheeger
problem in addressing specific challenges associated with
rainfall-induced landslides, contributing to more effective
risk assessment, mitigation, and disaster response efforts.

Theoretical Framework Model for Temporal Landslide
Prediction Using a Graphical Method

Landslide phenomena are intricately linked to numer-
ous external factors, such as rainfall, weather conditions,

and human activities (refer to A.1 in Appendix A for
details). These factors evolve over time, creating conducive
conditions for landslides. Consider a hypothetical natural
structure with the cuboidal domain under investigation
(see Figure 5).

From the preliminary section, the landslide-predicting
parameters of the present study are defined as follows:

1. yp(x): Function describing the yield limit distribution

over the domain D.

2. y(x): Function describing the mass distribution over the
domain D.

X: Angle of slope.

I: Loading parameter.

S(D): Shape of the domain D.

g Vertical acceleration due to gravity.

As external factors influencing landslide phenomena
change, the landslide-predicting parameters of the present
study also change. A brief account of the dependence of
parameters on external factors causing landslides is given
in A.2 in Appendix A.

Let the temporal landslide prediction be conducted in
the domain D within the hypothetical natural structure.
Consider the time interval [0, T], and let P[0, T] = {t,, t,,
t5..., t,} represent a partition of this interval into # instants
of time, where 0 = ¢, <t, < f; <...< t, = T.

Let F = {f}, f» f3-.-» fn} be a collection of all external
factors contributing to a landslide. It is assumed that at
each instant of time t; (where i € {1, 2, 3,..., n}), the value
of landslide predicting parameters can be calculated, which
depend on m number of external factors of the landslide.

Let the following values of landslide predicting-param-
eters at each instant #;:

L Li(fy, f f3- fu)» where, t, € P[0, T]and f, EE V j € {1,

2, 3,..., m}.

2. X (fi, fo s fu)» where, 1; € P[0, Tl and , E E V j € {1,

2,3,..., m}

3. yi Oy fo f3: fn)> where, 1, € P[0, T]and f,EEV j €

{1, 2, 3,..., m}.

4. i (), fo f3.-- f), where, 1, EP[0, Tl and f, EE V j €

{1, 2, 3,..., m}.

5. Si (D)(fy, fo f3,+> fyn)> where, £, € P[0, T]and , € EV j €

{1, 2, 3,..., m}.

6. g (considered to be constant).

The study of landslide phenomena with varying g is
beyond the scope of the present study.

The generalized Cheeger constant A and generalized
Cheeger set C(D) of the given domain D can be calculated
by using the numerical boundary variation method given
in [21].

Let A; be the value of the generalized Cheeger constant
of S,i (D) atinstant t; Vi € {1, 2, 3, ..., n}.

Let I, be the value of parameter / at instant #, V i € {1, 2,
3, ..., nh

Now, two sets S; and S, of n two tuple points (¢, A;) and
(t, I,) in R* are generated, respectively, as given below:

AR N
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S =14, A) :i€{1, 2, 3,..,n}}and S, = {(¢, ) : i € {1,
2, 3,..., n}}.

Plotting the points of sets S; and S, in R? and fitting the
curves by using appropriate software.

Result

A landslide is anticipated to occur approximately at
time instant f, when the curve associated with parameter [
surpasses the curve associated with A for the first time, and
the onset flow region is the generalized Cheeger set Cf (D)
of the S,f (D), where S,f (D) is the shape of domain D at time
instant ¢

Below, the results are shown graphically with hypo-
thetical numerical values for sets S, and S,, respectively.
Here, Figure 3 shows the graph corresponding to Table 1,
and hence the natural structure is safe as the curve asso-

ciated with parameter [/ is not above the curve associated
with A.

Table 1. Hypothetical numerical values of set S, and set S,

f 200 400 600 800 1000
A 21%10° 2.25%10° 3.9%10° 6.2%10° 12.1*10°
Iz 1.1%10° 1.25%10° 1.6*10* 1.95%10% 2.1=*10°

Table 2. Hypothetical numerical values of set S; and set S,

t;: 200 400 600 800 1000

Ais 025%10° 0.3*%10° 0.4 %10° 0.6*10° 1.2 %10°

I;: 0.12%10° 0.3%10° 045%10° 0.8%10° 1.7 *10°
16
14 4
12 q
10 q

0 . . . .
0 200 400 600 800

t

1000 1200

Figure 3. Graph of A, [ with respect to ¢.

Here, Figure 4 shows the graph corresponding to Table
2, and hence a landslide is anticipated to occur approx-
imately at ¢t = 500 units (intersection point of curve [ and
curve 1), where the curve associated with parameter [ sur-
passes the curve associated with A for the first time.

In our graphical method, we illustrate the relation-
ship between A and [ over time, acknowledging that each
time instant (t) encapsulates the values of these predictive
parameters, contingent upon the fluctuating external fac-
tors. These external factors evolve over time, creating con-
ducive conditions for landslides. Thus, by plotting these
graphs across time, our theoretical model for temporal
landslide prediction encompasses the entirety of causal
factors, ensuring a comprehensive and robust approach to
landslide forecasting.

Rainfall Threshold Using a Graphical Method

In the context of a singular landslide triggering factor,
the determination of the threshold value for the occur-
rence of a landslide becomes feasible through the utiliza-
tion of a proposed graphical method. This method proves
effective when there exists a known relationship between
the landslide-predicting parameters integral to the pres-
ent study and the specific triggering factor in question.
The focus of this approach is on the rainfall threshold,
with considerations limited solely to rainfall as the trig-
gering factor.

The rainfall threshold is characterized as the minimum
amount of rainfall necessary to initiate landslide phenom-
ena. This research employs a graphical method tailored to
assess and quantify this threshold, emphasizing the pivotal
role of rainfall in triggering landslides. The effectiveness
of this graphical method is contingent upon accurate data
concerning landslide-predicting parameters and their cor-
relation with rainfall.

«10°

>

05 B

0 . . . .
0 200 400 600 800

t

1000

1200

Figure 4. Graph of A, | with respect to ¢.



1006

Sigma J Eng Nat Sci, Vol. 43, No. 3, pp. 999-1013, June, 2025

hc

(Rise of water
due to capillary
action)

| T

GWTL after rainfall

GWTL without rainfall
GWTL = Ground Water Table Level
A=R+hc-Y

Figure 5. Mechanism of landslide due to rainfall shown in the hypothetical natural structure.

In the analysis of rainfall thresholds for domain D within
a hypothetical natural structure (see Figure 5), the domain
is envisioned as being partially filled with geologic material
demonstrating semi-fluid characteristics. The parameter /
signifies the level (I = 0 to [ = t) of the geologic material
within domain D (see Figure 5).

Mechanics of Domain D

The force (weight) Mg sin X is exerted by the geologic
material (semi-fluid) on the bottom surface (rectangular
plane) of domain D in the downward direction parallel to
the inclined plane (see Figure 5), where,

M: Mass of the geologic material (semi-fluid).

X: Angle of slope.

g Vertical acceleration due to gravity.

The shear force KL is the counter force for the weight
Mg sin X exerted on the bottom surface of the domain D
in the upward direction parallel to the inclined plane (see
Figure 5). Where,

K: Yield limit per unit length present on the bottom sur-
face of domain D. L: The perimeter of the collapse subdo-
main of domain D.

For unstable natural structures, the inequality of forces
is given as:

Mg sin X > KL. (3.2)

While computing the rainfall threshold, only the rain-
fall amount per event is considered, and all other charac-
teristics of the rainfall event are taken as constants. The

rainfall event increases the groundwater table, and due to
capillary action, the water rises to the cuboidal domain
D, which increases the value of parameter / and increases
the mass of the geologic material, leading to landslides as
shown in Figure 6, where a brief account of the relationship
of landslide-predicting parameters with rainfall is given
[25-29]. The relationship (regression model) between rain-
fall (P in mm) and groundwater table (R in m) is taken as
R =0.0018P - 0.0193 with rainfall amount ranges from 39
to 1410 in mm and a strong linear relationship (correlation
= 0.96) of the site named Jiuqu of the Dashu district, of
Kaohsiung city, Southern Taiwan [27].

It is assumed here that parameters [ and bulk density of
the soil are the only parameters that are changing due to the
rainfall event, and all other parameters of the present study
are taken as constants in the development of the graphical
method for rainfall threshold.

The calculation of mass (M) of the geologic material
contained in domain D from region [ = 0 to [ = t appeared
in inequality 3.2:

The mass distribution over a cross-sectional area of
domain D is assumed to be constant and increases linearly
with depth [ due to gravity. It is also assumed that the mass
density of a piece of land (domain D) increases linearly with
the rainfall amount P. Thus, mass density at the cross-sec-
tional area at the depth [ at rainfall P is a + bP + cl, where
(a, b, ¢) € R3. Let dM be the mass of a small portion dD
(with volume dl * A) at rainfall P and at depth [ of domain
D, where dl is an infinitesimally small length and A is the
cross-sectional area of domain D (see Figure 5).
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[ Relationship between landslide predicting parameters and rainfall

~~

Angle of slope (X)

landslide as compared to flatter slope

T

Steeper slope requires less amount of rainfall for

ainfall causes increment in ground water

table level (GWTL) and followed by

capillary action causes increment in the value
of parameter (1)

Bulk density of soil increases with cumulative

Relationship between rainfall and GWTL:
R=0.0018P-0.0193

@car strength (K) of soil is inversely rclath

to rainfall. Soil strength is given by Mohr-
Coulumb theory as follows:

K=Ko+Stan 0

Where, K=Shear strength

rainfall

Already discussed briefly about how rainfall
shapes landscapes (see A.2 in Appendix)

g is considered to be constant

action:
J h=C/eD

JEC

R=GWTL in m P=Rainfall in mm
Height of rise of water in soil due to capillary

h~=Height of rise of water
C=Constant e=Void ratio

Q=10% particle size

Ko=Unit cohesion

S=Effective normal stress(=Y-U)

Y=Normal stress U=Pore water pressure
®=Angle of internal friction

As amount of rainfall increases, Pore water
pressure increases and shear strength of soil

decreases j

/

(Rise of water
h. due to
capillary action)

GWTL at p= X Units --ecoeeeeeen

I=t, (Value of parameter | at p=x units)

=ty (Value of parameter | at p=0)

R (Rise of GWTL due to rainfall)

GWTLatp=0

Figure 6. Relationship of landslide-predicting parameters with rainfall.

Therefore,
t
M = f (a+ bP + cl) Adl
0

¢ ¢ ¢
=faAdl+beAdl+f c lAdl
0 0 0

[aAL]L, + [bPALLL + [cA2/2],
cA(t? —0)
2

GA(t — 0) + BPA(t — 0) +
cAt?
aAt + bPAt + o

Now, from inequality (3.2),

cAt?
2

cAt? )
> gsinX — KL >0

(aAt + bPAt + )gsinX > KL

(aAt + bPAt +

cAgsinX . .
Tt + [bPAgsinX + aAgsinX]t — KL > 0

. —[bPAgsinX + aAgsinX + /(bPAgsinX + aAgsinX)? + 2AcgKLsinX|
cAgsinX ’

and

. —(bPAgsinX + aAgsinX) + \/(bPAgsinX + aAgsinX)? + 2AcgKLsinX
cAgsinX ’

or

[ < —[bPAgsinX + aAgsinX + /(bPAgsinX + aAgsinX)? + 2AcgKLsinX|
cAgsinX ’

and

‘ —(bPAgsinX + aAgsinX) + \/(bPAgsinX + aAgsinX)? + 2AcgKLsinX
< cAgsinX '

The acceptable value of t is as follows:

¢ > —(bPAgsinX + aAgsinX) + /(bPAgsinX + aAgsinX)? + 2AcgKLsinX
cAgsinX
2KL
cAgsinX’

’

t >(a—bP)/c +\/(bP +a)?/c? +

2KL
cAgsinX

Let A = min{(a — bP)/c + J(bP +a)?/c?+ 1.

Thus, A= {(@ = bP)/c + |6 +a)?/c? + 2 min (4))

Hence,

) 2K
A={(a—bP)/c+ [(bP+a)?/c +mh(ﬂ)}, (3.3)

where h(Q) is Cheeger constant of the rectangular plane Q
(bottom surface of domain D). Using the formula for the

Cheeger constant of the rectangle as follows:

4—m

T @tp) —J@-prtnap

h(22) (3.4)
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where o and f3 are the breadth and length of the rectan-
gular plane Q, respectively. A Landslide will occur when ¢ >
A. Thus, A will be treated as a safety factor for the domain D.
Let R = [, I,] be the range of rainfall amount and P = {P,,
P,, P,,..., P,} denotes the n data set of rainfall amount after
doing a partition of the range of amount of rainfall. Let /; be
the value of parameter / at rainfall P, and from Figures 5
and 6, the equation for /; is given as follows:

A =R+h,—Y,

inX A l A
sinY =—=1[]=——,
l sinX c
o Rbho—y 000187001934 55 ¥
LT sinX - sinX '

Let A, be the value of A at rainfall P, and it can be cal-
culated from the equations (3.3) and (3.4). Now, two sets
S5 and S, of n two tuple points (P, A;) and (P, [)) in R* are
generated, respectively, as given below:

Sy=1{(P, A):i€{L,23,.,nt}and S, ={(P, I) : i € {1,
2, 3,..., n}}.

Plotting the points of sets S; and S, in R? and fitting the
curves by using appropriate software.

Result

The rainfall threshold is approximately Pj; the amount
of rainfall when the curve associated with the parameter /
surpasses the curve associated with safety factor A for the
first time.

Table 3. Hypothetical numerical values of set S; and set S,

2K

A={(a—bP)/c+ \/(bP +a)?/c? + p— h(@)}. (4.1)

h(Q) = 4 —1
C@+p) - Jla—pZtnap 42

_R+h.—Y
- sin X (4.3)

Where,
R=0.0018P — 0.0193. (4.4)
- C

c eDlO' (4-5)

Let the values of variables that appeared in equations
(4.1)-(4.5) be: (a, b, ¢) = (5, 8, 1), K= 15 N/m, g = 9.8 m%/s,
X=30,a=1,f=2,C=5x10"m? e=0.35 D,y =4x 10™*
mm, Y = 0.6 m.

The following table is obtained by substituting the
above values of variables in the expressions of A and [ with
each value of rainfall amount taken from the set P:

Fitting the curve after plotting the points in Table 3 by
using Matlab software. As the curve associated with param-
eter [ is not above the curve associated with safety factor A,
the natural structure is safe over the whole time duration of
rainfall (see Figure 7).

P, P, =200
A A, = 10.0052
l;: I, = 0.6977

P, = 400
A, = 10.0021
I, = 1.0577

P, = 600
A, = 10.0014
I, = 1.4177

P, = 800
A, = 10.0013
I, = 17777

P; = 1000
A5 = 10.0010
I, = 2.1377

NUMERICAL ILLUSTRATIONS

In this section, two numerical illustrations are given.
In the first numerical illustration, the natural structure is
safe over the whole period of rainfall, and in the second
numerical illustration, the rainfall threshold is calculated.
The graphical method for calculating the rainfall threshold
has been developed in Subsection 3.3 and also given how
rainfall causes the landslide.

Illustration 1

The range of the rainfall amount is taken as R = [39 mm,
1100 mm], and the partition of the range of the rainfall
amount is given as P = {200, 400, 600, 800, 1000}.

The expressions for safety factor A and parameter I,
respectively, can be written from equations (3.3) and (3.4)
and Figures 5 and 6 as follows:

bW

0 200 400 600 800 1000

P

1200

Figure 7. Graph of A, [ with respect to P.
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Table 4. Hypothetical numerical values of set S; and set S,

P, P, =200 P, =400 P, =600 P, =800 P, =1000
A A, =2.041 A, =2.021 Ay =2011 A, =2.010 s =2.008
L 1, =0.6977 1, =1.0577 l,=1.4177 1,=1.7777 I;=2.1377

Illustration 2

Let the values of variables that appeared in equations
(4.1)-(4.5) be: (a, b, ¢) = (1, 1, 1), K= 15 N/m, g = 9.8 m?/s,
X=30,a=1,=2,C=5%x10"m% e=0.35D=4x%x10"
mm, Y = 0.6 m.

The following table is obtained by substituting the
above values of variables in the expressions of A and [ with
each value of rainfall amount taken from the set P:

Fitting the curve after plotting the points in Table 4 by
using Matlab software. The approximate threshold value of
rainfall is P;= 954 mm (intersection point of curves [ and
A), as the curve associated with parameter I surpasses the
curve associated with safety factor A for the first time at the
intersection point (see Figure 8).

A Comparative Study for Examining The Effectiveness Of
The Present Graphical Method In Landslide Prediction
With A Case Study In The Darjeeling Himalayas, India
(2010-2016)

The case study suggests a specific rainfall threshold
of 36.7 mm over 48 hours for landslide initiation in the

Al

600 800 1000

P

0 200 400 1200

Figure 8. Graph of A, [ with respect to P.

Kalimpong region of the Darjeeling Himalayas during the
years 2010-2016 [30].

The range of the rainfall amount is R, = [32 mm, 143.1
mm], and the partition of the range of the rainfall amount is
given as P = {30, 40, 50, 60, 70}, taken from the above-men-
tioned case study.

The expressions for safety factor A and parameter I,
respectively, can be written from equations (3.3) and (3.4)
and

Figures 5 and 6 are as follows:

h(D} (5.1)

cgsin X

A={(a—=bP)/c +j(bP +a)?/c? +

4—m
h(Q) = .

O = e —Ja—priras (52)

[ _Rtho—Y
= smnx (53)

Where,
R = 0.0018P — 0.0193. (5.4)
_ C

c— eDlO. (5‘5)

Let the values of variables that appeared in equations
(5.1)-(5.5) be: (a, b, ¢) = (1, 1, 1), K= 15 N/m, g = 9.8 m%/s,
X=10,a=1,=2,C=5%x10"m?% e=0.35D,;, =4 x 10™*
mm, Y = 0.06 m.

The following table is obtained by substituting the
above values of variables in the expressions of A and [ with
each value of rainfall amount taken from the set P:

Fitting the curve after plotting the points in Table 5 by
using Matlab software. The approximate threshold value of
rainfall is Py= 32.22 mm (intersection point of curves / and
A), as the curve associated with parameter / surpasses the

Table 5. Numerical values of set S; and set S, obtained from the case study

p;: P, =30 P, =40 P,=50 P,=60 P,=70
A A, =2.041 A, =2.021 A, =2.011 A, =2.010 s =2.008
I I, =2.009 l,=2.112 l,=2215 1,=2318 I, =2.421
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Curve Fitting for Ai and Ii
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Figure 9. Graph of A, [ with respect to P.

curve associated with safety factor A for the first time at the
intersection point (see Figure 9).

The calculated threshold using this graphical method
closely aligns with the value suggested by earlier studies,
standing at 32.22 mm, a figure notably close to the previ-
ously established threshold of 36.7 mm. This congruence
not only underscores the robustness and validity of the pro-
posed graphical method but also highlights its effectiveness
in accurately predicting landslide triggers in the region.
The consistency between the findings of this method and
the results of prior research reinforces confidence in our
understanding of landslide dynamics in the Kalimpong
Region.

The proposed graphical method for determining the
rainfall threshold for landslide initiation requires data on
rainfall amount (P), the generalized Cheeger constant (1) of
domain D, and the parameter /, which represents the geo-
logical material content within domain D. In this compar-
ative study, rainfall data from the Kalimpong Region of the
Darjeeling Himalayas from 2010 to 2016 is used. This study
assumes that the relationship between rainfall and ground-
water table is similar to that of the site named Jiuqu in the
Dashu district of Kaohsiung City,

Southern Taiwan, for the evaluation of parameter I,
enabling comparison. The comparative study is tailored for
the locations of the Kalimpong Region of the Darjeeling
Himalayas, where the geographical characteristics align
closely with the values of variables used in the determina-
tion of the generalized Cheeger constant. This similarity
enhances the relevance and significance of the comparative
study, providing valuable insights into landslide suscepti-
bility and rainfall thresholds for regions with comparable
geological and topographical features.

Graph of A for different shapes and parameter | w.r.t. rainfall
ngle ‘ ' ‘

Al

-25 1 1 1 1
Rainfall

Figure 10. Graph of A for different shapes and parameter /
with respect to rainfall.

RESULTS AND DISCUSSION

Implications of Geometric Shapes on the Rainfall
Threshold

As the number of sides of the regular polygon of the
same area increases, the value of the Cheeger constant
decreases, and the disk exhibits the least value among all
shapes of the same area. Suggesting that the value of the
rainfall threshold of the domain with a circular-shaped
base is the least among all bases of the same area and that
of the domain with an equilateral triangular-shaped base is
the largest among all bases (having the shape of a regular
polygon) of the same area, the value of the rainfall thresh-
old decreases for the domain whose base (of equal area)
is in the form of a regular polygon as the number of sides
of the regular polygon increases. Thus, the current study
gives important and interesting insights into the interplay
between geometric shapes, their Cheeger constants, and the
associated implications for rainfall thresholds in landslide
prediction (see Figure 10).

Extension to Dynamic Generalized Cheeger Problems

The current study makes a notable extension of the
classical study of generalized Cheeger problems to dynamic
investigations. The present study ventures into the dynamic
zone instead of usual static approaches, making simple clas-
sical Cheeger problems into a more versatile concept that
allows the applicability of the generalized Cheeger concept
for addressing complex and dynamic problems.

Exploration of Real-Life Applications

An honest attempt has been made in this paper to draw
out more real-life applications emanating from simple clas-
sical Cheeger problems. The present study bridges the gap
between pure mathematical concepts and practical benefits.
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The endeavor is to understand the utility of Cheeger prob-
lems in diverse real-world applications.

Novelty in the Dynamic Generalized Cheeger Problem

A unique dynamic approach for the study of the general-
ized Cheeger problem departing from traditional approaches
of static nature for the classical Cheeger problem leads to the
development of an innovative graphical method for tempo-
ral landslide prediction and rainfall threshold determination,
which preserves the novelty of the present study, thereby
enhancing the potentiality of the simple classical Cheeger
problem to predict physical phenomena.

Significance of the Dynamic Generalized Cheeger
Problem

The driving force to dig into the dynamic general-
ized Cheeger problem originates from a recognition of its
intrinsic worth. The developed approach has the potential
to reveal fresh perspectives, not only enhancing the capa-
bilities of predicting spatial and temporal landslides but
also opening routes for entirely new areas of research. The
dynamic nature of the current study offers a promising
pathway to the development of innovative methods and
techniques.

Computational Efficiency of the Graphical Method

The peculiar traits of the proposed graphical method
are that it is simple to understand, easy to operate, and
involves less computational cost, making it an approachable
and handy option for researchers seeking efficient methods
for predicting temporal landslides and rainfall thresholds.

Effectiveness of the Graphical Method in Determining
Threshold Rainfall

The comparative study underscores the effectiveness
of the graphical method in determining threshold rainfall
for landslide initiation. The threshold value determined
through this graphical approach is strikingly similar to the
one proposed in earlier research, standing at 32.22 mm. This
figure closely mirrors the previously established threshold
of 36.7 mm. The close alignment of the calculated thresh-
old rainfall values with those derived from previous studies
reaffirms the reliability and accuracy of this method.

CONCLUSION

This paper has proposed the novel idea of studying the
dynamic generalized Cheeger problem and developed a
graphical method to predict temporal landslides and rain-
fall thresholds, respectively. The results of the current study
provide valuable insights into the findings of the present
research. The numerical illustrations provided demonstrate
the reliability and robustness of the current study.

The numerical illustrations presented analyze discrete
data of rainfall amount alongside corresponding values
of safety factor A and parameter /, representing geological
material content within domain D. Curve fitting applied

to these datasets reveals critical insights into landslide
susceptibility. In Illustration 1, where the curve associated
with parameter [ consistently remains below that of safety
factor A, the hypothetical natural structure is deemed safe
throughout the observed rainfall period. Conversely, in
Mlustration 2, the intersection point of the curves signifies
an approximate rainfall threshold (P, = 954 mm), marking
the point at which the curve associated with parameter /
surpasses that of safety factor A for the first time. These
findings offer valuable guidance for landslide risk assess-
ment, aiding in the identification of critical rainfall thresh-
olds and forming effective mitigation strategies. Moreover,
the comparative study demonstrates the effectiveness of
the graphical method in determining threshold rainfall
for landslide initiation in the Kalimpong Region of the
Darjeeling Himalayas by utilizing data from 2010 to 2016.
The threshold value derived using this graphical method
closely resembles the figure suggested by prior research,
measuring 32.22 mm. This result is remarkably close to the
established threshold of 36.7 mm, reinforcing the reliability
and consistency of the findings.

Future Directions and Potential Extensions:

The idea of studying the time-varying (dynamic) gen-
eralized Cheeger problem is worthy of doing, as it may
reveal new insights into developing new tools not only for
temporal and spatial prediction of landslides but also for
an entirely new area of research. The dynamic study of the
generalized Cheeger problem may emerge as a useful and
versatile tool for unknotting intricate challenges across
diverse research domains in the near future. While the cur-
rent study adheres to the usual metric space, by changing
the metric space, it can unlock solutions to numerous prob-
lems in diverse fields. A dynamic study of the generalized
Cheeger problem has great scope for future work. Temporal
and spatial landslide prediction can be done with different
landslide triggering factors, either one at a time or with
multiple factors simultaneously, for better predictions with
real data. The threshold value of a single landslide trigger-
ing factor can be calculated with the proposed graphical
method, and this deterministic model can be integrated
with some other probabilistic models to get better temporal
and spatial landslide prediction and forecasting.
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APPENDIX A

In Appendix A, a brief account of the various causes and triggering factors of landslides is given as A.1 [31] and the
relationship between causal factors of landslides and landslide predicting parameters involved in the present study as A.2
in the tabulation form, respectively.

A.1  Various Causes and Triggering Factors of Landslides

1 GROUND CONDITIONS

1.1 Collapsible material, plastic fragile substance, sensitive substance, sheared ma- terial, weathered substance, and
fissured/jointed substance.

1.2 Structural discontinuities (including faults, unconformities, flexural shears, sed- imentary contacts) and adversely
oriented mass discontinuities (including bed- ding, schistosity, cleavage).

1.3 Effects of permeability contrast and stiffness contrast on ground water (stiff, dense substance over plastic substance).

2 GEOMORPHOLOGICAL CAUSES

2.1  Tectonic uplift and volcanism.

2.2 Crustal rebound.

2.3 Erosion of the slope toe due to wave, glacier, and streamflow.

2.4  Subterranean erosion and lateral margin erosion (solution, pipes).

2.5  Theslopes or its crest’s deposition loading.

2.6  Removal of vegetation due to erosion, forest fires, and dryness.

3 PHYSICAL CAUSES FOR LANDSLIDE

3.1  High precipitation and intense rainfall.

3.2 Rapid melting of deep snow.

3.3 Rapid drawdown after floods, high seas and natural dam breaches, etc.

3.4  Volcanic eruption and earthquake.

3.5  The weathering of expansive soils and the breaching of crater lakes.

3.6  Permafrost thawing and freeze-thaw weathering.

3.7  Shrink-and-swell weathering and freeze-and-thaw weathering.

4 MAN-MADE CAUSES FOR LANDSLIDING

4.1  Removal of vegetation/deforestation.

42  Quarrying, mining and generation of dumps for the settlement of loose waste.

43  Man-made vibrations (heavy machinery, traffic, pile driving).

44  Road and building constructon at hilly places.

45  Poor maintenance of drainage system and leakage of water from various services.

4.6  Drawdown of reservoirs and irrigation.

47  Loading of the slope or Unearthing of the slope.

4.8  Bad agricultural practices.

A.2  Relationship Between Landslide Predicting Parameters in the Present Study and Causal Factors of Landslides
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