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ABSTRACT

This paper presents the dynamic generalized Cheeger concept, which sounds very interesting 
and may lead to many real-world applications in the future. This paper gives a novel insight 
into the dynamic generalized Cheeger problem as an application to the temporal prediction 
and rainfall threshold of landslides. The generalized Cheeger problem has applications in 
landslide modeling as it can compute the safety factor and collapse domain. Notably, the paper 
presents an innovative graphical method employing the dynamic generalized Cheeger concept 
for temporal landslide prediction and rainfall threshold determination. While developing the 
graphical method for temporal prediction of landslides, all causal factors of landslides are 
considered, and in the same graphical method, only rainfall as a causal factor of landslides is 
used for the threshold rainfall determination. The paper provides two numerical illustrations 
demonstrating the reliability and robustness of the proposed method. Moreover, the paper 
presents a comparative study aimed at showcasing the effectiveness of the proposed graphical 
method. The result of the study suggests that the rainfall threshold is lowest for circular do-
mains among all shapes with equal area and highest for equilateral triangular domains among 
regular polygons of equal area, with decreasing thresholds as polygon side count increases. In 
conclusion, this paper introduces the dynamic study of the generalized Cheeger problem as a 
novel approach, proposing a graphical method for predicting temporal landslides and rainfall 
thresholds, ensuring promising avenues for real-life applications stemming from this dynamic 
study.
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INTRODUCTION

One of the most common and extensive natural disas-
ters in the world, landslides significantly damage infras- 
tructure, properties, and human lives [1-4]. Rainfall is the 

primary landslide-triggering element among all known 
causes, along with shallow rotational collapses and debris 
flows, which are also mass movement phenomena [5-7]. A 
translational landslide is a downslope movement of land 
that may happen along a particular plane surface due to 
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weakness such as a fault, joint, or bedding plane, as illus-
trated in Figure 1 (reproduced from [8] with permission). 
Due to the multidisciplinary nature of landslide prediction, 
a better understanding of the mechanics of landslide initi-
ation can be achieved through the examination and analy-
sis of each causal factor at the necessary scale and level of 
detail, which can also result in landslide temporal predic-
tion and forecasting.

Landslides, snow avalanches, and other catastrophic 
geophysical events have been studied, modeled, and pre-
dicted in recent decades. In the physical modeling of the 
geologic substances involved in these unsteady events, 
rigid viscoplastic models are employed. These models can 
explain the strength (yield limit) and behavior of the mate-
rial, similar to those of fluids. Models like Drucker-Prager, 
Bingham, etc. have a distinguishing characteristic, which 
is the presence of stiff (unyielded) zones close to the flow 
(yielded) zones. The yield limit increases, which causes the 
stiff zones to grow and become more capable of entirely 
obstructing the motion. When we do modeling of land-
slides, the solid or fluid is constrained by its intrinsic shape, 
and the initiation of the motion (onset) may be thought of 
as a “calamity”. An investigation of stability may reveal cru-
cial details about the “safety factor” of the natural physical 
structure and the beginning of motion [9-13].

A shape optimization problem could be used to 
describe the blocking property and the corresponding 
safety factor analysis [11]. The optimal shape describes 
the collapse domain and is connected to the beginning of 

the flow. The famous Cheeger problem [14], which has to 
do with minimizing the perimeter to area ratio of a sub-
region Y of region Ω, is an example of a simplified homo-
geneous problem. Additionally, the Cheeger problem has a 
wide range of applications, like in capillarity models, frac-
ture mechanics, eigenvalue estimations [15, 16] and med-
ical imaging. The generalized Cheeger problem is what it 
is termed when a problem is not homogeneous. Although 
the generalized Cheeger set’s existence was demonstrated 
in [12], the uniqueness property is not universal and causes 
significant problems for numerical computations. In the lit-
erature, the generalized Cheeger problem has been solved 
numeri- cally for convex sets, but for nonconvex sets, the 
problem has no unique solution, making numerical com-
putation difficult. Numerical problems with more than 
two solutions are called ill-posed problems. Traditional 
numerical methods, such as iterative algorithms or finite 
difference schemes, may fail to converge or produce unre-
liable results when applied to ill-posed problems like the 
generalized Cheeger problem for nonconvex sets. These 
methods rely on well-behaved solution spaces and smooth 
convergence paths, which may not exist in the presence of 
multiple solu- tions or poorly behaved solution spaces. Due 
to the non-uniqueness or instability of solutions, iterative 
algorithms may fail to converge on a meaningful solution. 
This failure occurs when the iterative process diverges or 
oscillates without approaching a fixed point, leading to 
unreliable results. In two-dimensional space, explicit con-
structions of the Cheeger set are known; however, they are 

Figure 1. Translational landslide.
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specific to convex domains, and for non-convex sets, we 
have little knowledge about the Cheeger set and the Cheeger 
constant. For more information, see [17-20]. In [21], the 
numerical boundary variation method was developed by 
using the shape derivative of the Cheeger functional to find 
the onset domain (generalized Cheeger set) and safety fac-
tor (generalized Cheeger constant).

We have a lot of literature on the classical Cheeger prob-
lem and its generalized counterpart in the past [12, 17-21]. 
The classical Cheeger problem gives static models, provid-
ing insights into optimal partitions of sets. On the other 
hand, the generalized Cheeger problem extends its applica-
bility to the non-homogeneous case, serving scenes where 
the underlying structure displays varying mass and shear 
strength distributions, respectively. The current paper 
endeavors to bridge the gap between the static models of 
the generalized Cheeger problem and the dynamic nature 
of real-world phenomena, particularly temporal landslides 
(the threshold value of the single landslide triggering fac-
tor). Landslides, as complex natural phenomena influenced 
by various factors such as rainfall, weather conditions, rock 
types, and human activities, pose a significant challenge 
in predictive modeling [22]. While the classical Cheeger 
and generalized Cheeger problems traditionally operate 
within static frameworks, this study projects them into the 
dynamic domain, introducing a theoretical framework for 
temporal landslide prediction. Practically, landslide predic-
tion involves a high degree of probabilistic uncertainty due 
to the involvement of a collection of external factors that 
directly influence the landslide event. However, the deter-
ministic approach is employed here, and the current study 
has developed a model that can predict landslide events.

The theoretical framework model encompasses all 
causal factors contributing to landslides for temporal land-
slide prediction. Subsequently, the study filters its focus on 
the role of rainfall as a singular triggering factor for land- 
slides, employing an improvised graphical method for the 
determination of the rainfall threshold.

The dynamic study of generalized Cheeger problems 
undertaken in this paper refers to the consideration of 
time- varying generalized Cheeger sets and constants. In 
the background of landslides, this implies seeking changes 
in generalized Cheeger sets and constants as the parameters 
influencing landslide prediction evolve over time due to the 
effects of numerous external factors. These parameters, 
including rainfall events, are naturally dynamic, compel-
ling a departure from the static models commonly applied 
in Cheeger problem studies. The current paper asserts the 
importance of understanding the dynamic aspects of the 
generalized Cheeger problem in the domain of landslide 
prediction. The incentive behind this research is not only 
to contribute to the understanding of landslides but also 
to unfold the varied applications of the classical Cheeger 
problem in various real-life scenarios. This study develops 
a graphical method for rainfall threshold determination by 
utilizing the classical Cheeger sets and constants at specific 

instances of rainfall while holding other factors constant 
rather than generalized Cheeger sets and constants to sim-
plify the computational complexities. This method empha-
sizes computational efficiency by simplifying the model. 
In summary, the current paper deals with an undiscovered 
zone by extending the static models of the generalized 
Cheeger problem to novel dynamic landscapes, specifi-
cally in the context of temporal landslide prediction (the 
threshold value of the single landslide triggering factor). 
The comprehensive theoretical framework for the temporal 
landslide prediction model developed herein not only pro-
vides insights into the intricate dynamics of landslides but 
also reveals the vast applicability of the Cheeger problem in 
numerous real-world scenarios.

The motivation behind this study stems from the press-
ing need to enhance our understanding and predictive 
ca- pabilities in landslide management. By extending the 
traditional static generalized Cheeger problem to a dynamic 
framework, this research aims to revolutionize landslide 
modeling and prediction methodologies. Through the 
devel- opment of innovative tools for temporal landslide 
forecasting and rainfall threshold determination, the study 
seeks to address critical gaps in current landslide mitigation 
strategies. Furthermore, the study endeavors to inspire and 
engage young researchers by highlighting the practical rele-
vance of fundamental mathematical concepts, such as

J. Cheeger’s geometrical optimization problem, in 
addressing real-world challenges. By fostering interdisci-
plinary exploration, this study aims to catalyze the emer-
gence of novel applications and solutions with far-reaching 
impli- cations for landslide hazard management and 
beyond. The significance of this study lies in its pioneering 
approach to advancing landslide modeling and prediction 
through the dynamic extension of the traditional static 
generalized Cheeger problem. Moreover, it illuminates the 
intricate interplay between the geometric configurations of 
land formations and their susceptibility to landslides under 
diverse rainfall conditions. The significance of this study 
extends far beyond the realm of landslide modeling and 
prediction. By dynamically extending the traditional static 
generalized Cheeger problem, this research opens doors to 
tackling a wide array of challenges across various research 
domains.

The present paper is structured as follows: In the first 
section, preliminaries are provided as motivation, followed 
by a discussion of a generalized Cheeger problem. This 
section offers equations for the static non- planar motion 
of a non-homogeneous stiff visco-plastic fluid or solid, 
together with their corresponding variational formula-
tions. Additionally, a shape optimization problem is used 
to illustrate the fluid’s or solid’s blocking properties. In the 
next section, the main content of the paper is introduced. 
Initially, the assumptions of the study are outlined, followed 
by a dynamic study of the generalized Cheeger problem. A 
theoretical framework for a dynamic model is then devel-
oped to predict and forecast the temporal landslide using 
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a graphical method. The threshold value of rainfall is also 
calculated using this graphical method. The subsequent 
section provides numerical illustrations that are analyzed to 
assess whether a natural structure is safe over a given period 
of rainfall. If the structure is not safe, the rainfall threshold 
for a landslide is computed.

 A comparative study is then presented to evaluate the 
effectiveness of the graphical method in landslide predic-
tion, with a case study in the Darjeeling Himalayas, India 
(2010–2016). Finally, the paper presents a section on results 
and discussion, followed by a separate section on conclu-
sion and future work.

PRELIMINARIES

In the preliminaries, the motivation for studying the 
generalized Cheeger problem and the definition of the 
generalized Cheeger problem are discussed. Here, a brief 
account of the formulation of the generalized Cheeger 
problem and its motivation is given; interested readers may 
refer to [12, 21] for details. 

Motivation
Here, the equations that describe the static non-planar 

motion of a non-homogeneous inflexible visco-plastic fluid 
are analyzed in the domain

  (2.1)

where Ω is a bounded domain in ℝ2 with a W 1,∞ (Lipschitz 
continuous) boundary ∂Ω. The simplified version for uni-
directional (non-planar) motion only requires a single sca-
lar unknown that depends on two-dimensional variables. 
Specifically, the static flowing velocity v is searched along 
the direction Oy3 (i.e., the velocity field v is provided by v 
= (0, 0, v), which is independent of y3 so that v = v(y1, y2)) 
(see Figure 2). The non-disappearing stress components are 
ς13(y1, y2) and ς23(y1, y2), respectively, indicated by the sym-
bol ς = (ς13, ς23). (1/2) ∇v describes the rate of deformation. 
The constitutive equation of the fluid is as follows:

  
(2.2)

where γ(y1, y2) is a positive continuous function that 
denotes the distribution of the yield limit in D and ρ(y1, 
y2) is the distribution of viscosity. The Von Mises plasticity 
norm for constant γ (pressure-independent plasticity) is 
considered here, and (2.2) recovers the traditional Bingham 
fluid or solid model [23, 24]. The Drucker-Prager plasticity 
states that for granule flows, the yield limit γ depends on 
pressure p linearly [11], and γ can be expressed as γ = γ0 + 
τp, where τ = tan a is the coefficient of internal friction, a is 
the angle of internal friction, and γ0 is the cohesion. In the 
non-planar scenario, the pressure is reliant on the spatial 

variables since it depends on the depth and is unrelated to 
the velocity fields. According to this, the yield limit seems 
to be inhomogeneous for landslide models even for homo-
geneous materials [9-11]. The Eulerian coordinates for the 
momentum balancing law read:

  (2.3)

Body forces in the Y3 direction are represented by ϝ, and 
l represents the non-dimensional loading parameter. ϝ(y) 
can be described as ϝ(y) = gψ(y) sin θ > 0, where g is the ver-
tical acceleration due to gravity, ψ(y) is the mass distribu-
tion function, and θ is slope angle. vl denotes the velocity v, 
indicating that velocity depends on the loading parameter l. 

The boundary of Ω is divided into two parts as Υ = Υ0 ∪ Υ1 
so that the equations (2.2) and (2.3) can be completed with 
some boundary conditions. An adherence condition on Υ0 
is considered here, and Υ1 is considered a stress-free surface 
(rigid roof). Stating clearly,

vl = 0 on Υ0, ς.n = 0 on Υ1,
where n represents outward unit normal on ∂Ω.
It is assumed in the following that

Defining,

Hence, the non-planar flow variational formulation is

Figure 2. Non-planar geometry flow.
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(2.4)

 

The mentioned problem is a classic variational inequal-
ity that may be expressed as an energy minimum problem.

A unique solution vl will be obtained if meas(Υ0) > 0. 
The sufficient conditions for the existence of a solution are 
Υ0 = ∅ and , and up to an additive constant, 
the solution is unique. The former will always be assumed 
to be true in the following; the other can be derived with 
obvious, slight modifications.

Assuming,    

Ωl
0 and Ωl

f  are the families of subdomains of Ω where 
fluid is stationary and moving, respectively. In landslip 
modeling, the blocking phenomena assure the stability of 
the rest configuration and can be represented as follows:

The fluid is obstructed if vl ≡ 0 is a solution of (2.4) (see 
[11, 12]). Therefore, it gives Ωl

0 = Ω, Ωl
f = ∅.

The following optimization problem can represent the 
blocking property for the function T : E → ℝ  as follows:

  
(2.5)

where λ denotes the safety factor of the natural structure 
during a landslide. The necessary and sufficient condition 
for blocking fluid (vl ≡ 0, i.e., Ωl

0 = Ω) is lλ ≥ 1.

Generalized Cheeger Problem
Let Λ: S* −→ R be the function defined from set S* to set 

of real numbers, where S* is the set of all open subsets (w) of 
Ω with a finite perimeter and regular boundary, and

  
(2.6)

The shape optimization problem:

  (2.7)

is called the generalized Cheeger problem. The optimal set 
w* (generalized Cheeger set of Ω) denotes the part of the 
domain Ω from where landslides will occur if parameter l 
exceeds λ (generalized Cheeger constant of Ω).

More accurately,

  (2.8)

where w* is a solution to the shape optimization problem (2.7).

Observing that for ϝ ≡ γ ≡ 1 and Υ1 = ∅. Then, the gen-
eralized Cheeger problem reduces to the classical Cheeger 
problem:

  (2.9) 

  
(2.10)

where w∗c denotes the Cheeger set and λc denotes the 
Cheeger constant of the domain Ω, respectively.

THEORETICAL FRAMEWORK MODEL OF 
TEMPORAL LANDSLIDE PREDICTION AND 
CALCULATION OF RAINFALL THRESHOLD VIA 
GRAPHICAL METHOD BY USING A DYNAMIC 
STUDY OF THE GENERALIZED CHEEGER 
CONCEPT

Assumptions Underlying the Study
Here are the assumptions of the study listed pointwise:

1. At each instant of time, the value of the landslide-pre-
dicting parameters of the current study can be calcu-
lated, which depend on m number of external factors of 
the landslide.

2. The graphical method for the determination of the 
threshold value of the triggering factor is effective 
when there exists a known relationship between the 
landslide-predicting parameters integral to the present 
study and the specific triggering factor in question.

3. In rainfall threshold determination, only rainfall is con-
sidered the landslide-triggering factor.

4. While computing the rainfall threshold, only the rain-
fall amount per event is considered, and all other char- 
acteristics of the rainfall event are taken as constants.

5. The parameter l and bulk density of the soil are assumed 
to be the only parameters that are changing due to the 
rainfall event, and all other parameters of the present 
study are taken as constants in the development of the 
graphical method for rainfall threshold.

6. The mass distribution over a cross-sectional area of 
domain D is assumed to be constant and increases lin-
early with depth l due to gravity.

7. The mass density of a piece of land (domain D) increases 
linearly with the rainfall amount P.

8. The parameter gravity g considered constant through-
out the whole study.

Dynamic Generalized Cheeger Concept
In this section, we introduce the dynamic general-

ized Cheeger concept, focusing on a three-dimensional 
plate denoted as ℙ. Defined as the Cartesian product of 
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a bounded domain Ω in ℝ2 with a Lipschitz continuous 
boundary ∂Ω and the entire real line ℝ:

  (3.1)

Here, Ω represents a confined region with a W 1,∞ 
(Lipschitz continuous) boundary, ensuring structural integ-
rity. The functions f (x, y, z) and g(x, y, z) characterize the 
shear strength distribution and mass distribution across the 
three-dimensional plate ℙ, respectively. The shape of the 
plate is denoted as S(ℙ). Our exploration centers around 
the dynamic generalized Cheeger problem, investigating 
the behavior of the generalized Cheeger set and constant 
concerning temporal variations in the plate’s shape, shear 
strength distribution function f (x, y, z), and mass distribu-
tion function g(x, y, z), and inferring some important and 
interesting information about the system under study.

The dynamic generalized Cheeger concept opens 
routes for studying the impact of evolving parameters on 
the plate’s Cheeger characteristics. This dynamic inquiry 
may extend beyond regular applications, illustrating its 
adaptability beyond landslide phenomena. The dynamic 
study of the generalized Cheeger problem is poised to yield 
worthwhile insights transcending disciplinary bounds. The 
potential real-life applications of the dynamic generalized 
Cheeger concept may be vast and diverse. In this paper, we 
delve into one specific application: the temporal prediction 
of landslides and rainfall thresholds. This analysis rep-
resents a practical manifestation of the vast applicability of 
the dynamic generalized Cheeger concept, demonstrating 
its importance in responding to real-world challenges and 
forecasting geological events with implications beyond the 
immediate scope of traditional Cheeger problems.

The choice of natural calamities like rainfall and land-
slides for Cheeger’s study stems from their direct rele-
vance to geometric analysis and their significant impact 
on human lives and infrastructure. By focusing on these 
phenomena, researchers can employ geometric concepts 
such as the Cheeger constant to assess landslide suscepti-
bility, predict critical rainfall thresholds, and form disaster 
management strategies. Narrow examples include using 
the Cheeger problem to analyze specific landslide-prone 
regions, optimizing road infrastructure designs to mitigate 
landslide risks, developing early warning systems based 
on rainfall thresholds, implementing land use regula-
tions in vulnerable areas, and designing slope stabilization 
measures to enhance resilience to natural hazards. These 
applications showcase the practical utility of the Cheeger 
problem in addressing specific challenges associated with 
rainfall-induced landslides, contributing to more effective 
risk assessment, mitigation, and disaster response efforts. 

Theoretical Framework Model for Temporal Landslide 
Prediction Using a Graphical Method

Landslide phenomena are intricately linked to numer-
ous external factors, such as rainfall, weather conditions, 

and human activities (refer to A.1 in Appendix A for 
details). These factors evolve over time, creating conducive 
conditions for landslides. Consider a hypothetical natural 
structure with the cuboidal domain under investigation 
(see Figure 5).

From the preliminary section, the landslide-predicting 
parameters of the present study are defined as follows:
1. γ(x): Function describing the yield limit distribution 

over the domain D.
2. ψ(x): Function describing the mass distribution over the 

domain D.
3. X: Angle of slope.
4. l: Loading parameter.
5. S(D): Shape of the domain D.
6. g: Vertical acceleration due to gravity.

As external factors influencing landslide phenomena 
change, the landslide-predicting parameters of the present 
study also change. A brief account of the dependence of 
parameters on external factors causing landslides is given 
in A.2 in Appendix A.

Let the temporal landslide prediction be conducted in 
the domain D within the hypothetical natural structure. 
Consider the time interval [0, T], and let P[0, T] = {t1, t2, 
t3,..., tn} represent a partition of this interval into n instants 
of time, where 0 = t1 < t2 < t3 <...< tn = T.

Let F = {f1, f2, f3,..., fm} be a collection of all external 
factors contributing to a landslide. It is assumed that at 
each instant of time ti (where i ∈ {1, 2, 3,..., n}), the value 
of landslide predicting parameters can be calculated, which 
depend on m number of external factors of the landslide.

Let the following values of landslide predicting-param-
eters at each instant ti:
1. lti (f1, f2, f3,..., fm), where, ti ∈ P[0, T] and fj ∈ F, ∀ j ∈ {1, 

2, 3,..., m}.
2. Xti (f1, f2, f3,..., fm), where, ti ∈ P[0, T] and fj ∈ F, ∀ j ∈ {1, 

2, 3, ..., m}.
3. γti (x)(f1, f2, f3,..., fm), where, ti ∈ P[0, T] and fj ∈ F, ∀ j ∈ 

{1, 2, 3,..., m}.
4. ψti (x)(f1, f2, f3,..., fm), where, ti ∈ P[0, T] and fj ∈ F, ∀ j ∈ 

{1, 2, 3,..., m}.
5. Sti (D)(f1, f2, f3,..., fm), where, ti ∈ P[0, T] and fj ∈ F, ∀ j ∈ 

{1, 2, 3,..., m}.
6. g (considered to be constant).

The study of landslide phenomena with varying g is 
beyond the scope of the present study.

The generalized Cheeger constant λ and generalized 
Cheeger set C(D) of the given domain D can be calculated 
by using the numerical boundary variation method given 
in [21].

Let λi be the value of the generalized Cheeger constant 
of Sti (D) at instant ti ∀ i ∈ {1, 2, 3, ..., n}.

Let li be the value of parameter l at instant ti ∀ i ∈ {1, 2, 
3, ..., n}.

Now, two sets S1 and S2 of n two tuple points (ti, λi) and 
(ti, li) in R2 are generated, respectively, as given below:
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S1 = {(ti, λi) : i ∈ {1, 2, 3,..., n}} and S2 = {(ti, li) : i ∈ {1, 
2, 3,..., n}}.

Plotting the points of sets S1 and S2 in R2 and fitting the 
curves by using appropriate software.

Result
A landslide is anticipated to occur approximately at 

time instant tf when the curve associated with parameter l 
surpasses the curve associated with λ for the first time, and 
the onset flow region is the generalized Cheeger set Ctf (D) 
of the Stf (D), where Stf (D) is the shape of domain D at time 
instant tf.

Below, the results are shown graphically with hypo-
thetical numerical values for sets S1 and S2, respectively. 
Here, Figure 3 shows the graph corresponding to Table 1, 
and hence the natural structure is safe as the curve asso-
ciated with parameter l is not above the curve associated 
with λ.

Here, Figure 4 shows the graph corresponding to Table 
2, and hence a landslide is anticipated to occur approx- 
imately at t = 500 units (intersection point of curve l and 
curve λ), where the curve associated with parameter l sur-
passes the curve associated with λ for the first time. 

In our graphical method, we illustrate the relation-
ship between λ and l over time, acknowledging that each 
time instant (t) encapsulates the values of these predictive 
parameters, contingent upon the fluctuating external fac-
tors. These external factors evolve over time, creating con-
ducive conditions for landslides. Thus, by plotting these 
graphs across time, our theoretical model for temporal 
landslide prediction encompasses the entirety of causal 
factors, ensuring a comprehensive and robust approach to 
landslide forecasting.

Rainfall Threshold Using a Graphical Method
In the context of a singular landslide triggering factor, 

the determination of the threshold value for the occur-
rence of a landslide becomes feasible through the utiliza-
tion of a proposed graphical method. This method proves 
effective when there exists a known relationship between 
the landslide-predicting parameters integral to the pres-
ent study and the specific triggering factor in question. 
The focus of this approach is on the rainfall threshold, 
with considerations limited solely to rainfall as the trig-
gering factor.

The rainfall threshold is characterized as the minimum 
amount of rainfall necessary to initiate landslide phenom-
ena. This research employs a graphical method tailored to 
assess and quantify this threshold, emphasizing the pivotal 
role of rainfall in triggering landslides. The effectiveness 
of this graphical method is contingent upon accurate data 
concerning landslide-predicting parameters and their cor-
relation with rainfall.

Table 1. Hypothetical numerical values of set S1 and set S2

ti: 200 400 600 800 1000
λi: 2.1 ∗ 108 2.25 ∗ 108 3.9 ∗ 108 6.2 ∗ 108 12.1 ∗ 108

li: 1.1 ∗ 108 1.25 ∗ 108 1.6 ∗ 108 1.95 ∗ 108 2.1 ∗ 108

Table 2. Hypothetical numerical values of set S1 and set S2

ti : 200 400 600 800 1000
λi : 0.25 ∗ 109 0.3 ∗ 109 0.4 ∗ 109 0.6 ∗ 109 1.2 ∗ 109

li : 0.12 ∗ 109 0.3 ∗ 109 0.45 ∗ 109 0.8 ∗ 109 1.7 ∗ 109

Figure 3. Graph of λ, l with respect to t. Figure 4. Graph of λ, l with respect to t.
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In the analysis of rainfall thresholds for domain D within 
a hypothetical natural structure (see Figure 5), the domain 
is envisioned as being partially filled with geologic material 
demonstrating semi-fluid characteristics. The parameter l 
signifies the level (l = 0 to l = t) of the geologic material 
within domain D (see Figure 5).

Mechanics of Domain D
The force (weight) Mg sin X is exerted by the geologic 

material (semi-fluid) on the bottom surface (rectangular 
plane) of domain D in the downward direction parallel to 
the inclined plane (see Figure 5), where,

M: Mass of the geologic material (semi-fluid).
X: Angle of slope.
g: Vertical acceleration due to gravity.
The shear force KL is the counter force for the weight 

Mg sin X exerted on the bottom surface of the domain D 
in the upward direction parallel to the inclined plane (see 
Figure 5). Where,

K: Yield limit per unit length present on the bottom sur-
face of domain D. L: The perimeter of the collapse subdo-
main of domain D.

For unstable natural structures, the inequality of forces 
is given as:

 Mg sin X > KL. (3.2)

While computing the rainfall threshold, only the rain-
fall amount per event is considered, and all other charac-
teristics of the rainfall event are taken as constants. The 

rainfall event increases the groundwater table, and due to 
capillary action, the water rises to the cuboidal domain 
D, which increases the value of parameter l and increases 
the mass of the geologic material, leading to landslides as 
shown in Figure 6, where a brief account of the relationship 
of landslide-predicting parameters with rainfall is given 
[25-29]. The relationship (regression model) between rain-
fall (P in mm) and groundwater table (R in m) is taken as 
R = 0.0018P − 0.0193 with rainfall amount ranges from 39 
to 1410 in mm and a strong linear relationship (correlation 
= 0.96) of the site named Jiuqu of the Dashu district, of 
Kaohsiung city, Southern Taiwan [27].

It is assumed here that parameters l and bulk density of 
the soil are the only parameters that are changing due to the 
rainfall event, and all other parameters of the present study 
are taken as constants in the development of the graphical 
method for rainfall threshold.

The calculation of mass (M) of the geologic material 
contained in domain D from region l = 0 to l = t appeared 
in inequality 3.2:

The mass distribution over a cross-sectional area of 
domain D is assumed to be constant and increases linearly 
with depth l due to gravity. It is also assumed that the mass 
density of a piece of land (domain D) increases linearly with 
the rainfall amount P. Thus, mass density at the cross-sec-
tional area at the depth l at rainfall P is a + bP + cl, where 
(a, b, c) ∈ . Let dM be the mass of a small portion dD 
(with volume dl ∗ A) at rainfall P and at depth l of domain 
D, where dl is an infinitesimally small length and A is the 
cross-sectional area of domain D (see Figure 5).

Figure 5. Mechanism of landslide due to rainfall shown in the hypothetical natural structure.
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Therefore,

Now, from inequality (3.2),

and

or

and

The acceptable value of t is as follows:

Let  

Thus, 

Hence,

  
(3.3)

where h(Ω) is Cheeger constant of the rectangular plane Ω 
(bottom surface of domain D). Using the formula for the 
Cheeger constant of the rectangle as follows:

  
(3.4)

Figure 6. Relationship of landslide-predicting parameters with rainfall.
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where α and β are the breadth and length of the rectan-
gular plane Ω, respectively. A Landslide will occur when t > 
λ. Thus, λ will be treated as a safety factor for the domain D. 
Let ℛ = [I1, I2] be the range of rainfall amount and 𝒫 = {P1, 
P2, P3,..., Pn} denotes the n data set of rainfall amount after 
doing a partition of the range of amount of rainfall. Let li be 
the value of parameter l at rainfall Pi, and from Figures 5 
and 6, the equation for li is given as follows:

Thus 

Let λi be the value of λ at rainfall Pi, and it can be cal-
culated from the equations (3.3) and (3.4). Now, two sets 
S3 and S4 of n two tuple points (Pi, λi) and (Pi, li) in R2 are 
generated, respectively, as given below:

S3 = {(Pi, λi) : i ∈ {1, 2, 3,..., n}} and S4 = {(Pi, li) : i ∈ {1, 
2, 3,..., n}}.

Plotting the points of sets S3 and S4 in R2 and fitting the 
curves by using appropriate software.

Result
The rainfall threshold is approximately Pf, the amount 

of rainfall when the curve associated with the parameter l 
surpasses the curve associated with safety factor λ for the 
first time.

NUMERICAL ILLUSTRATIONS

In this section, two numerical illustrations are given. 
In the first numerical illustration, the natural structure is 
safe over the whole period of rainfall, and in the second 
numerical illustration, the rainfall threshold is calculated. 
The graphical method for calculating the rainfall threshold 
has been developed in Subsection 3.3 and also given how 
rainfall causes the landslide. 

Illustration 1
The range of the rainfall amount is taken as R = [39 mm, 

1100 mm], and the partition of the range of the rainfall 
amount is given as P = {200, 400, 600, 800, 1000}.

The expressions for safety factor λ and parameter l, 
respectively, can be written from equations (3.3) and (3.4) 
and Figures 5 and 6 as follows:

  
(4.1)

  
(4.2)

  (4.3)

Where,

  (4.4)

  
(4.5)

Let the values of variables that appeared in equations 
(4.1)–(4.5) be: (a, b, c) = (5, 8, 1), K = 15 N/m, g = 9.8 m2/s, 
X = 30, α = 1, β = 2, C = 5 × 10−5 m2, e = 0.35, D10 = 4 × 10−4 
mm, Y = 0.6 m.

The following table is obtained by substituting the 
above values of variables in the expressions of λ and l with 
each value of rainfall amount taken from the set P:

Fitting the curve after plotting the points in Table 3 by 
using Matlab software. As the curve associated with param-
eter l is not above the curve associated with safety factor λ, 
the natural structure is safe over the whole time duration of 
rainfall (see Figure 7).

Table 3. Hypothetical numerical values of set S3 and set S4

Pi : P1 = 200 P2 = 400 P3 = 600 P4 = 800 P5 = 1000
λi : λ1 = 10.0052 λ2 = 10.0021 λ3 = 10.0014 λ4 = 10.0013 λ5 = 10.0010
li : l1 = 0.6977 l2 = 1.0577 l3 = 1.4177 l4 = 1.7777 l5 = 2.1377

Figure 7. Graph of λ, l with respect to P.
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Illustration 2
Let the values of variables that appeared in equations 

(4.1)–(4.5) be: (a, b, c) = (1, 1, 1), K = 15 N/m, g = 9.8 m2/s, 
X = 30 , α = 1, β = 2, C = 5 × 10−5 m2, e = 0.35, D = 4 × 10−4 
mm, Y = 0.6 m.

The following table is obtained by substituting the 
above values of variables in the expressions of λ and l with 
each value of rainfall amount taken from the set P:

Fitting the curve after plotting the points in Table 4 by 
using Matlab software. The approximate threshold value of 
rainfall is Pf = 954 mm (intersection point of curves l and 
λ), as the curve associated with parameter l surpasses the 
curve associated with safety factor λ for the first time at the 
intersection point (see Figure 8).

A Comparative Study for Examining The Effectiveness Of 
The Present Graphical Method In Landslide Prediction 
With A Case Study In The Darjeeling Himalayas, India 
(2010–2016)

The case study suggests a specific rainfall threshold 
of 36.7 mm over 48 hours for landslide initiation in the 

Kalimpong region of the Darjeeling Himalayas during the 
years 2010–2016 [30].

The range of the rainfall amount is Rc = [32 mm, 143.1 
mm], and the partition of the range of the rainfall amount is 
given as Pc = {30, 40, 50, 60, 70}, taken from the above-men-
tioned case study.

The expressions for safety factor λ and parameter l, 
respectively, can be written from equations (3.3) and (3.4) 
and

Figures 5 and 6 are as follows:

  
(5.1)

  
(5.2)

  (5.3)

Where,

  (5.4)

  
(5.5)

Let the values of variables that appeared in equations 
(5.1)–(5.5) be: (a, b, c) = (1, 1, 1), K = 15 N/m, g = 9.8 m2/s, 
X = 10, α = 1, β = 2, C = 5 × 10−5 m2, e = 0.35, D10 = 4 × 10−4 
mm, Y = 0.06 m.

The following table is obtained by substituting the 
above values of variables in the expressions of λ and l with 
each value of rainfall amount taken from the set Pc:

Fitting the curve after plotting the points in Table 5 by 
using Matlab software. The approximate threshold value of 
rainfall is Pf = 32.22 mm (intersection point of curves l and 
λ), as the curve associated with parameter l surpasses the 

 Table 5. Numerical values of set S3 and set S4 obtained from the case study

Pi : P1 = 30 P2 = 40 P3 = 50 P4 = 60 P5 = 70
λi : λ1 = 2.041 λ2 = 2.021 λ3 = 2.011 λ4 = 2.010 λ5 = 2.008
li : l1 = 2.009 l2 = 2.112 l3 = 2.215 l4 = 2.318 l5 = 2.421

Figure 8. Graph of λ, l with respect to P.

Table 4. Hypothetical numerical values of set S3 and set S4

Pi : P1 = 200 P2 = 400 P3 = 600 P4 = 800 P5 = 1000
λi : λ1 = 2.041 λ2 = 2.021 λ3 = 2.011 λ4 = 2.010 λ5 = 2.008
li : l1 = 0.6977 l2 = 1.0577 l3 = 1.4177 l4 = 1.7777 l5 = 2.1377
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curve associated with safety factor λ for the first time at the 
intersection point (see Figure 9).

The calculated threshold using this graphical method 
closely aligns with the value suggested by earlier studies, 
standing at 32.22 mm, a figure notably close to the previ-
ously established threshold of 36.7 mm. This congruence 
not only underscores the robustness and validity of the pro-
posed graphical method but also highlights its effectiveness 
in accurately predicting landslide triggers in the region. 
The consistency between the findings of this method and 
the results of prior research reinforces confidence in our 
understanding of landslide dynamics in the Kalimpong 
Region.

The proposed graphical method for determining the 
rainfall threshold for landslide initiation requires data on 
rainfall amount (P), the generalized Cheeger constant (λ) of 
domain D, and the parameter l, which represents the geo-
logical material content within domain D. In this compar-
ative study, rainfall data from the Kalimpong Region of the 
Darjeeling Himalayas from 2010 to 2016 is used. This study 
assumes that the relationship between rainfall and ground-
water table is similar to that of the site named Jiuqu in the 
Dashu district of Kaohsiung City,

Southern Taiwan, for the evaluation of parameter l, 
enabling comparison. The comparative study is tailored for 
the locations of the Kalimpong Region of the Darjeeling 
Himalayas, where the geographical characteristics align 
closely with the values of variables used in the determina-
tion of the generalized Cheeger constant. This similarity 
enhances the relevance and significance of the comparative 
study, providing valuable insights into landslide suscepti-
bility and rainfall thresholds for regions with comparable 
geological and topographical features.

RESULTS AND DISCUSSION

Implications of Geometric Shapes on the Rainfall 
Threshold

As the number of sides of the regular polygon of the 
same area increases, the value of the Cheeger constant 
decreases, and the disk exhibits the least value among all 
shapes of the same area. Suggesting that the value of the 
rainfall threshold of the domain with a circular-shaped 
base is the least among all bases of the same area and that 
of the domain with an equilateral triangular-shaped base is 
the largest among all bases (having the shape of a regular 
polygon) of the same area, the value of the rainfall thresh-
old decreases for the domain whose base (of equal area) 
is in the form of a regular polygon as the number of sides 
of the regular polygon increases. Thus, the current study 
gives important and interesting insights into the interplay 
between geometric shapes, their Cheeger constants, and the 
associated implications for rainfall thresholds in landslide 
prediction (see Figure 10).

Extension to Dynamic Generalized Cheeger Problems
The current study makes a notable extension of the 

classical study of generalized Cheeger problems to dynamic 
investigations. The present study ventures into the dynamic 
zone instead of usual static approaches, making simple clas-
sical Cheeger problems into a more versatile concept that 
allows the applicability of the generalized Cheeger concept 
for addressing complex and dynamic problems.

Exploration of Real-Life Applications
An honest attempt has been made in this paper to draw 

out more real-life applications emanating from simple clas-
sical Cheeger problems. The present study bridges the gap 
between pure mathematical concepts and practical benefits. 

Figure 10. Graph of λ for different shapes and parameter l 
with respect to rainfall.Figure 9. Graph of λ, l with respect to P.
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The endeavor is to understand the utility of Cheeger prob-
lems in diverse real-world applications.

Novelty in the Dynamic Generalized Cheeger Problem
A unique dynamic approach for the study of the general-

ized Cheeger problem departing from traditional approaches 
of static nature for the classical Cheeger problem leads to the 
development of an innovative graphical method for tempo-
ral landslide prediction and rainfall threshold determination, 
which preserves the novelty of the present study, thereby 
enhancing the potentiality of the simple classical Cheeger 
problem to predict physical phenomena.

Significance of the Dynamic Generalized Cheeger 
Problem

The driving force to dig into the dynamic general-
ized Cheeger problem originates from a recognition of its 
intrinsic worth. The developed approach has the potential 
to reveal fresh perspectives, not only enhancing the capa-
bilities of predicting spatial and temporal landslides but 
also opening routes for entirely new areas of research. The 
dynamic nature of the current study offers a promising 
pathway to the development of innovative methods and 
techniques.

Computational Efficiency of the Graphical Method
The peculiar traits of the proposed graphical method 

are that it is simple to understand, easy to operate, and 
involves less computational cost, making it an approachable 
and handy option for researchers seeking efficient methods 
for predicting temporal landslides and rainfall thresholds.

Effectiveness of the Graphical Method in Determining 
Threshold Rainfall

The comparative study underscores the effectiveness 
of the graphical method in determining threshold rainfall 
for landslide initiation. The threshold value determined 
through this graphical approach is strikingly similar to the 
one proposed in earlier research, standing at 32.22 mm. This 
figure closely mirrors the previously established threshold 
of 36.7 mm. The close alignment of the calculated thresh-
old rainfall values with those derived from previous studies 
reaffirms the reliability and accuracy of this method.

CONCLUSION

This paper has proposed the novel idea of studying the 
dynamic generalized Cheeger problem and developed a 
graphical method to predict temporal landslides and rain-
fall thresholds, respectively. The results of the current study 
provide valuable insights into the findings of the present 
research. The numerical illustrations provided demonstrate 
the reliability and robustness of the current study.

The numerical illustrations presented analyze discrete 
data of rainfall amount alongside corresponding values 
of safety factor λ and parameter l, representing geological 
material content within domain D. Curve fitting applied 

to these datasets reveals critical insights into landslide 
susceptibility. In Illustration 1, where the curve associated 
with parameter l consistently remains below that of safety 
factor λ, the hypothetical natural structure is deemed safe 
throughout the observed rainfall period. Conversely, in 
Illustration 2, the intersection point of the curves signifies 
an approximate rainfall threshold (Pf = 954 mm), marking 
the point at which the curve associated with parameter l 
surpasses that of safety factor λ for the first time. These 
findings offer valuable guidance for landslide risk assess-
ment, aiding in the identification of critical rainfall thresh-
olds and forming effective mitigation strategies. Moreover, 
the comparative study demonstrates the effectiveness of 
the graphical method in determining threshold rainfall 
for landslide initiation in the Kalimpong Region of the 
Darjeeling Himalayas by utilizing data from 2010 to 2016. 
The threshold value derived using this graphical method 
closely resembles the figure suggested by prior research, 
measuring 32.22 mm. This result is remarkably close to the 
established threshold of 36.7 mm, reinforcing the reliability 
and consistency of the findings.

Future Directions and Potential Extensions:
The idea of studying the time-varying (dynamic) gen-

eralized Cheeger problem is worthy of doing, as it may 
reveal new insights into developing new tools not only for 
temporal and spatial prediction of landslides but also for 
an entirely new area of research. The dynamic study of the 
generalized Cheeger problem may emerge as a useful and 
versatile tool for unknotting intricate challenges across 
diverse research domains in the near future. While the cur-
rent study adheres to the usual metric space, by changing 
the metric space, it can unlock solutions to numerous prob-
lems in diverse fields. A dynamic study of the generalized 
Cheeger problem has great scope for future work. Temporal 
and spatial landslide prediction can be done with different 
landslide triggering factors, either one at a time or with 
multiple factors simultaneously, for better predictions with 
real data. The threshold value of a single landslide trigger-
ing factor can be calculated with the proposed graphical 
method, and this deterministic model can be integrated 
with some other probabilistic models to get better temporal 
and spatial landslide prediction and forecasting.
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APPENDIX A

In Appendix A, a brief account of the various causes and triggering factors of landslides is given as A.1 [31] and the 
relationship between causal factors of landslides and landslide predicting parameters involved in the present study as A.2 
in the tabulation form, respectively.

A.1 Various Causes and Triggering Factors of Landslides
1 GROUND CONDITIONS
1.1 Collapsible material, plastic fragile substance, sensitive substance, sheared ma- terial, weathered substance, and 

fissured/jointed substance.
1.2 Structural discontinuities (including faults, unconformities, flexural shears, sed- imentary contacts) and adversely 

oriented mass discontinuities (including bed- ding, schistosity, cleavage).
1.3 Effects of permeability contrast and stiffness contrast on ground water (stiff, dense substance over plastic substance).
2 GEOMORPHOLOGICAL CAUSES
2.1 Tectonic uplift and volcanism.
2.2 Crustal rebound.
2.3 Erosion of the slope toe due to wave, glacier, and streamflow.
2.4 Subterranean erosion and lateral margin erosion (solution, pipes).
2.5 The slope’s or its crest’s deposition loading.
2.6 Removal of vegetation due to erosion, forest fires, and dryness.
3 PHYSICAL CAUSES FOR LANDSLIDE
3.1 High precipitation and intense rainfall.
3.2 Rapid melting of deep snow.
3.3 Rapid drawdown after floods, high seas and natural dam breaches, etc.
3.4 Volcanic eruption and earthquake.
3.5 The weathering of expansive soils and the breaching of crater lakes.
3.6 Permafrost thawing and freeze-thaw weathering.
3.7 Shrink-and-swell weathering and freeze-and-thaw weathering.
4 MAN-MADE CAUSES FOR LANDSLIDING
4.1 Removal of vegetation/deforestation.
4.2 Quarrying, mining and generation of dumps for the settlement of loose waste.
4.3 Man-made vibrations (heavy machinery, traffic, pile driving).
4.4 Road and building constructon at hilly places.
4.5 Poor maintenance of drainage system and leakage of water from various services.
4.6 Drawdown of reservoirs and irrigation.
4.7 Loading of the slope or Unearthing of the slope.
4.8 Bad agricultural practices.
A.2 Relationship Between Landslide Predicting Parameters in the Present Study and Causal Factors of Landslides


