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ABSTRACT

In this paper, a non-linear system of differential equations is presented as a mathematical 
model to explain the interactions of three species in an ecosystem, which include prey, pred-
ator, and scavenger. The model takes into account the logistic growth of the prey population 
as well as the inter-species interactions. The paper uses local stability analysis to examine the 
system’s characteristics, including positivity, the boundedness of the solution, and the pre-
requisites for the three populations’ stable coexistence. The existence of limit cycles in the 
positive quadrant, a crucial component of the dynamics of ecological systems, and the system’s 
persistence requirement are also examined in this work. The article also includes numerical 
simulations to support the theoretical study and provide a clearer picture of the ecosystem’s 
long-term dynamics.
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INTRODUCTION

Ecology is a scientific field that focuses on examin-
ing the relationships between organisms and their envi-
ronment, including how they interact with each other. To 
understand the dynamics of intricately interconnected 
populations within an ecosystem, mathematical modeling 
is widely used [1-4].The predator-prey model, also known 
as the Lotka-Volterra model, is a widely recognized and 
established model in the field of mathematical ecology. It 
uses two connected non-linear differential equations to 

represent the interactions between a single population of 
predators and prey [5-8]. Researchers have broadened the 
scope of the Lotka-Volterra model to encompass multiple 
species, yet very few investigations have examined scaven-
gers within predator-prey models. Scavengers are essen-
tial to the cleansing of the environment. These critters are 
described as eating decaying plant or animal matter, animal 
remains, or both. Scavenger animals can therefore be herbi-
vores or omnivores. Scavengers rarely hunt their own prey, 
despite having the ability to do so [9-12].
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 Animals that are scavengers devour the remains of 
other animals that have either died naturally or have been 
killed by predators but have not been eaten by other ani-
mals. In essence, they are animals who consume corpses. 
Hyenas, vultures, and raccoons are a few well-known scav-
engers. By eating the left overs of animals killed by preda-
tors as well as plants or animals that have naturally passed 
away, scavengers serve a crucial part in the food chain. 
Decomposers break down the bones and other waste mate-
rials left behind after scavengers have cleaned the carcass. 
In essence, scavengers eat the leftover food scraps, which 
can include carrion, dead plants, diseased animals, and 
human-killed animals like those discovered as road kill or 
while hunting [13-15].

 The classification of scavenger’s animal contains a large 
number of mammals, fish, and insects which can be fur-
ther broken down into smaller categories. There exist two 
primary categories of scavengers: obligate scavengers and 
facultative scavengers. Additionally, termites also fall into 
this class. Regardless of their type, scavenger animals can be 
found all over the world and can adapt to almost any type of 
ecosystem [16-18].

 Obligate scavengers are animals that primarily depend 
on carrion, which refers to the meat and tissues of dead or 
decaying organisms, for their dietary needs. (Ex: vultures’ 
species are the best example of obligate scavenges. While 
most scavengers search on the ground, vultures can glide 
overhead, which consumes little energy and gives them a 
better view of the area so that they may locate food more 
quickly. Accipitridae and Cathartidae are two other families 
of birds considered obligate scavengers [19].

 Facultative scavengers are both scavengers and pred-
ators. Due to their hunting habits, they require higher 
amounts of energy, and hence their diet comprises of sub-
stantial quantities of food in a single meal. For example, 
a road kill animal is favorable for a facultative scavenger 
because the dead animal has not been eaten by another 
predator. In urban areas, raccoons and opossums also feed 
on trash left behind by humans [20,21].

As herbivores, termites play a crucial role in maintain-
ing the ecosystem by eliminating dead plant matter. They 
act as decomposers when they feed on the waste and bones 
left behind. Termites construct their nests using decaying 
plant material, which facilitates the transfer of nutrients 
back into the soil. Blowflies feed on the remains of decaying 
plants [22].

 Studies by Sadhukhan [1], Jansen and Van Gorder [2], 
and Ahmed and Bahlool [3] investigate the dynamics of 
prey, predators, and scavengers, considering factors such 
as harvesting, fear effects, and stability. Mellard et al. [4] 
and Alidousti [8] explore the ecological consequences of 
scavenging behavior, highlighting its impact on predation 
dynamics and system stability. Wilmers and Getz [9] and 
Colomer et al. [13] examine trophic interactions in eco-
systems, including the flow of resources to scavengers and 
the role of top predators in facilitating scavenging. Studies 

by Gupta and Chandra [11], Selvam et al. [16], and Abdul 
Satar and Naji [10] employ various modeling techniques, 
such as quadratic harvesting and fractional-order model-
ing, to analyze prey-predator-scavenger systems. Empirical 
studies by Fodrie et al. [17], Manfrin et al. [21], and Brown 
et al. [22] provide insights into real-world scavenging 
dynamics, including dietary changes in predators, invasive 
species impacts, and reproductive costs in scavenger flies.

 These works collectively underscore the complexity of 
three-species ecosystems and highlight the need for further 
research to elucidate the mechanisms driving prey-pred-
ator-scavenger interactions. Our study contributes to 
this body of literature by developing a novel mathemati-
cal model that integrates prey, predators, and scavengers, 
offering insights into the dynamics and stability of such 
ecosystems.

 Several authors [23-25] have investigated the model 
under various parameters with scavenger, prey predator 
species. Ben Nolting and their team analyzed a population 
model comprising of a predator, its prey, and a scaven-
ger, utilizing a three-species model. They incorporated an 
equation for the scavenger population into the traditional 
Lotka-Volterra equations. In order to show the interac-
tions of prey, predator, and scavenger populations, a model 
that emphasizes stable cohabitation as a stable equilibrium 
point will be developed in this work. The study investigates 
positivity, boundedness, examination of local and global 
stability, and model persistence. Based on the analytical 
conclusions, numerical simulations are run to show that 
the system is in a stable state. The research also examines 
the relationship between the rate of scavenger assault and 
the rate of intrinsic growth of the prey [26-28].

 The novelty of the current study lies in its exploration 
of a dynamic three-dimensional ecological system compris-
ing prey, predators, and scavengers. It uniquely emphasizes 
the significance of intraspecies competition and the adap-
tive role of scavengers in mitigating food supply fluctua-
tions. The study identifies scenarios leading to scavenger 
extinction due to mortality rate fluctuations and unveils 
the importance of insecure environmental conditions for 
species coexistence. Methodologically, advanced mathe-
matical tools are employed to establish system stability and 
persistence, contributing to a deeper understanding of eco-
logical dynamics [29,30].

Future research directions could involve deeper explo-
ration of intraspecies competition mechanisms, investiga-
tion into scavenger adaptation to environmental changes, 
and examination of factors influencing stability and per-
sistence in ecological communities. Additionally, empirical 
validation of theoretical findings, interdisciplinary collabo-
rations, and innovative modeling approaches could further 
enhance our understanding of ecological dynamics and 
inform conservation efforts.

 By conducting a meticulous analysis that combines 
theoretical insights with empirical simulations, we bridge 
the gap between mathematical abstraction and real-world 
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applicability. While existing literature has predominantly 
explored local stability and basic dynamics, our work 
advances the discourse by incorporating essential elements 
that influence the long-term behavior of the ecosystem. This 
contribution is particularly vital in a landscape where holistic, 
dynamic models are lacking. The interplay of unpredictabil-
ity and stability uncovered in our study presents a different 
picture of ecological resilience, shaping our understanding 
of how these ecosystems adapt to various challenges. The 
conclusions drawn from our study stands as a unique and 
impactful contribution to the field of ecological sciences.

MATHEMATICAL MODEL FORMULATION

  

(1)

where
Ø	R is the natural growth rate of the source prey.
Ø	A is the intensity of competition among individuals of 

the same prey species.
Ø	B is the rate of coefficient of predation, which quantifies 

the effect of predator attacks on the prey population.
Ø	C is the intrinsic mortality rate of predators.
Ø	D is the enhancement in the reproductive rate of preda-

tors for each prey consumed.
Ø	E is the inherent mortality rate of scavengers.
Ø	F is the efficiency of scavengers in benefiting from the 

corpses of prey that die due to natural causes.
Ø	G is the efficiency of scavengers in benefiting from the 

corpses of predators that die due to natural causes.
Ø	H is the effectiveness of scavengers in exploiting the car-

casses of prey that have been killed by predators.
Ø	I is the competition within the same species of 

scavengers.
Now, we transform

then the model (1) takes the following form

  

(2)

where 

Positivity of the Solution
To demonstrate the biological significance and lucidity 

of model (2.1), it is imperative to ensure that all variables 
denoting populations are positive. This theorem guarantees 
that system (2.1) solutions are positive with regard to the 
specified beginning conditions.

Theorem

The spaceare   

   sys-

temically invariant (1).

Proof 
The phase space (1) is the positive octant 

 and since if 𝑥 = 
0, then 𝑥 ̇, 𝑦̇, 𝑧̇ ≥ 0. Consequently, none of the system’s tra-
jectories can intersect the coordinate planes, making them 
invariant sets of system (1). When the initial value of the 
solution is positive, it will persist in the positive octant  
indefinitely, guaranteeing the presence of a non-negative 
solution with positive initial conditions [4, 10].

The three functions 

𝑓1(𝑥 , 𝑦, 𝑧) = 𝑥 (1 − 𝑥  − 𝑦),

𝑔1(𝑥 , 𝑦, 𝑧) = 𝑦(−𝑐 + 𝑑𝑥 )

ℎ1(𝑥 , 𝑦, 𝑧) = 𝑧(−𝑒 + 𝑓𝑥  +  𝑔𝑦 +  ℎ𝑥 𝑦 − 𝑧

are continuous in the positive octant
 and

As a result, the model’s positive solution (1) is real and 
distinct. 

BOUNDEDNESS OF SOLUTION

Theorem
All solutions of (𝑥 (𝑡) , 𝑦(𝑡) , 𝑧(𝑡) )  of (1) are bound with 

favorable initial conditions. 

Proof
(i) Assume 𝑥 (0) = 𝑥 0 > 0,  𝑦(0) = 𝑦0,  𝑎𝑛𝑑 𝑧(0) = 𝑧0 > 0,  

then from (1) we get
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Thus, x(t) is bounded.
(ii) Considering any real numbers as “a” and “b,” such that 

𝑎 > 𝑏 > 0 and  then we get

 Let 𝑆(𝑡) =  𝑎𝑑𝑥 (𝑡) + 𝑏 𝑦(𝑡)  and 0 < 𝛾 < 𝑐, 
 then 

𝑆′(𝑡) + 𝛾 𝑆(𝑡) = 𝑎𝑑(𝛾 + 1) 𝑥 (𝑡)  + (−𝑎 + 𝑏 ) 𝑑𝑥 (𝑡) 𝑦(𝑡) 
− 𝑎𝑑𝑥 2(𝑡) + (𝛾 − 𝑐) 𝑏 𝑦(𝑡) ≤ 𝑎𝑑(𝛾 + 1) 

 Hence S(t) is bounded. Since x(t) is bounded, y(t) is 
also bounded.
(iii) Let 𝑙𝜖𝑅 such that 𝑙 > 0 which satisfies 

 For 𝑡 → ∞ , we have 𝑧(𝑡) ≤ 𝑚
 Thus, z(t) is bounded.

Existence of Equilibria
When population growth rates cease, the dynamical sys-

tem reaches its equilibrium point. The fact that equilibrium 
circumstances are non-negative has biological significance.
(i) When 𝑥 = 𝑦 =  𝑧 = 0, a trivial equilibrium point is 

denoted by 𝐸0(0,  0,  0) .
(ii) In cases where the prey population x is non-zero, but 

the predator and scavenger populations y and z are 
both zero we get 𝑥 = 1 which is denoted by 𝐸1(1,  0,  0) .

(iii) When prey and predator population 𝑥 = 𝑦 =  0 but 
scavengerpopulation𝑧 ≠ 0, we get 𝑧 = −𝑒 . Thus, we 
have (0,  0,  −𝑒 ) . Yet, because the z coordinate is nega-
tive, this equilibrium position seems implausible.

(iv) When prey and scavenger population 𝑥 ≠ 0, 𝑧 ≠  0 and 
predatorpopulation 𝑦 = 0, we get 𝑥 = 1, 𝑧 =  ℎ − 𝑒  and 
is denoted by 𝐸2(1,  0,  ℎ − 𝑒 ) and it exists if ℎ − 𝑒 > 0.

(v) If the prey and predator populations x and y are non-
zero, but the scavenger population z is zero, then

   (3)

  
(4)

 

where, 𝑎3 =  𝑟2𝑑, 𝑎2 =  −𝑐𝑟2,  𝑎3 =  𝑎𝑑 +  𝛽, 𝑎0 =  −𝑎𝑐
By Descarte’s rule of sign, equation (4) has either two 

positive roots and one negative root or three positive roots 
depending on the condition 𝑎𝑑 > −𝛽.
(vi) Finally, the co-existence equilibrium point 𝐸(𝑥 ⋆,  𝑦⋆,  

𝑧⋆) exists if

and 𝑥 ⋆ is the positive root of the cubic equation

where 𝑏 3 =  𝑟3𝑑, 𝑏 2 =  −𝑐𝑟3,  𝑏 1 =  𝑎𝑟𝑑 + 𝛽,  𝑏 0 =  −𝑎𝑐𝑟

ANALYSIS OF THE EQUILIBRIUM POINT 
STABILITY 

Local Stability Analysis
 This section examines the system’s (2.2) local stability 

near its positive equilibrium point 𝐸0(0,  0,  0) , 𝐸1(1,  0,  0) ,  
𝐸2(1,  0,  𝑓 − 𝑒 ) , 𝐸(𝑥 ⋆,  𝑦⋆,  𝑧⋆).

The Jacobian matrix 

where,

(i) The Jacobian matrix at 𝐸0(0,  0,  0)  is
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The eigenvalues of the Jacobian matrix at E0 are 𝜆1 =  
−𝑟, 𝜆2 =  −𝑟𝑐, 𝜆3 =  −𝑟𝑒 

Therefore, the equilibrium point E0 is an unstable sad-
dle point.
(ii) The Jacobian matrix at 𝐸1(1,  0,  0)  is

The eigenvalues of the Jacobian matrix at E1 are 𝜆1 =  
−𝑟, 𝜆2 =  𝛽 + 𝑟(𝑑 − 𝑐) , 𝜆3 =  𝑟𝑓 − 𝑟𝑐

Consequently, the equilibrium points E1 along the axial 
direction is a stable node if d < c and 𝑓 < 𝑒 , which signifies 
the persistence of the prey population while the predator 
and scavenger populations will go extinct.
(iii) The Jacobian matrix at 𝐸2(1,  0,  𝑓 − 𝑒 )  is

 The eigenvalues of the Jacobian matrix at E1 are 

Therefore, the equilibrium point E2 is a stable node if 𝑑
< 𝑐 and 𝑓 < 𝑒  

Theorem
The interior equilibrium point 𝐸⋆(𝑥 ⋆,  𝑦⋆,  𝑧⋆) is locally 

asymptotically stable if 𝐶1 > 0,  𝐶3 > 0, and 𝐶1𝐶2 −𝐶3 > 0.

Proof
The characteristic equation of the Jacobian matrix 𝐽(𝐸⋆) 

is given by 

𝜆3 +  𝐶1𝜆2 +  𝐶2𝜆 + 𝐶3 =  0

where 𝐶1 =  −𝑐11 − 𝑐22

where, 

According to Routh-Hurwitz criteria, all the roots of the 
characteristic equation are negative real numbers or com-
plex roots with negative real parts if 𝐶1 > 0,  𝐶3 > 0, and 
𝐶1𝐶2 > 𝐶3. Therefore, the interior equilibrium point 𝐸⋆(𝑥 ⋆,  
𝑦⋆,  𝑧⋆) is locally asymptotically stable.

GLOBAL STABILITY ANALYSIS

In this part, we examine the equilibrium points’ overall 
stability. Here, we build the appropriate Lyapunov function 
to demonstrate the system’s (2) interior equilibrium point’s 
global stability.

Furthermore, the Dulac function is employed to estab-
lish the non-existence of a limit cycle surrounding the equi-
librium point.

Theorem
The interior equilibrium point 𝐸⋆(𝑥 ⋆,  𝑦⋆,  𝑧⋆) is globally 

asymptotically stable if 

Proof
Let us choose a suitable Lyapunov function

Differentiating the above equation with respect to time, 
it is obtained that

Using the set of differential equations (2.2) and defini-
tion of equilibrium points, we have 
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If  and  holds, then  if 

Persistence of the Model
If 𝑥 (0) > 0 and  which means that each 

population x(t) remains positive over time, if each compo-
nent of the system persists, the system is regarded as per-
sistent. The population’s long-term survival is referred to 
as persistence. Below, we demonstrate how system (2.2) 
endures.

To show that y(t) persist, consider 

Hence, y(t) continues.
If x(t) persists, then consider

Because y(t) is constrained, we have 𝑦(𝑡) ≤  𝑀 for some 
𝑀 > 0

Thus x(t) persists if 0 ≤  𝐵 < 1
To prove z(t) persists:

Hence z(t) persists.
Hence, each element of the system in model (2) endures, 

leading to the persistence of the entire system.

Numerical Simulations
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With a variety of parameters, numerical simulation 
tries to evaluate analytic results and investigate how prey, 
predator, and scavenger populations interact. Time series 
plots and phase space diagrams are produced by changing 
parameter values to display various dynamic results.

 In Figure 1, the parameter values are c = 0.17,  d = 0.29,  
e = 0.109,  h = 0.2, g = 0.25, f = 0.5. 

The phase space diagram and time series plot show how 
x(t), y(t), and z(t) behave with different beginning values 
as they converge to the asymptotically stable equilibrium 
point E4 (0.8, 0.6, 0.20). All three populations will survive 
because the simulation shows that the system solution 
approaches E4 as t approaches infinity and that E4 is glob-
ally asymptotically stable.

 In Figure 2, the parameter values are c = 0.5, d = 0.6, e = 
0.2,  h = 0.2, g = 0.3, f = 0.4. The simulation also demonstrates 
that the system’s solution goes to E4 as t approaches infinity, 
this implies that E4 is globally asymptotically stable and all 
three populations will coexist. The parameter values in Figure 
3 are c = 0.5, d = 0.4, e = 0.3, h = 0.4, g = 0.5, f = 0.6. Hence, 
we conclude that the three populations move in the direc-
tion of the interior equilibrium point E4 and the stable node 
(0.796,0.203,0.401). Since the system’s solution curve tends 
to the inner equilibrium point, suggesting that it is globally 
asymptotically stable, the three populations coexist after an 
increase in time without experiencing any progressive change.

In Figure 4, the parameter values are c = 0.3, d = 0.6, e = 
0.1, h = 0.2, g = 0.3, and f = 0.4.

The phase space diagram for this situation demonstrates 
that the solution curves converge to the inner equilibrium 

points, demonstrating that the system is globally stable and 
that the three populations coexist.

In Figure 5 displays parameter values of c = 0.4, d = 0.3, 
e = 0.4, h = 0.19, g = 0.382, and f = 0.296. The solution curve 
moves towards the asymptotically stable equilibrium point E1 
from the initial states, indicating its stability. As t approaches 
infinity, the curve converges to E1, which is globally stable, 
leading to the persistence of prey population while the pred-
ator and scavenger population become extinct.

In Figure 6, the parameters c = 0.6, d = 0.4, e = 0.79, 
h = 0.3, g = 0.7, and f = 0.8 are displayed. The phase por-
trait shows that predator and prey populations will cohabit 
without experiencing any notable changes over time in the 
absence of a scavenger population. The curve’s asymptotic 
stability and overall stability are demonstrated by the fact 
that it ultimately converges to the equilibrium point E3 
(0.79, 0.3, 0). So, for the specified parameter values, the 
population of prey will continue to exist but the population 
of scavengers will vanish.

In Figure 7 displays parameter values of c = 0.4, d = 0.5, 
e = 0.4, h = 0.2, g = 0.3, and f = 0.5. The population of x(t) 
and z(t) converge towards the asymptotically stable equi-
librium point E2 (1, 0.1, 0.2), indicating global stability. It 
can be inferred that the prey and scavenger populations can 
coexist if the predator population dies out. This conclusion 
is justified as the prey population has sufficient food to sur-
vive and reproduce, and scavengers can sustain themselves 
on the carcasses of naturally dead prey. However, it should 
be noted that in this case, none of the population densities 
remain constant.

Figure 1. The parameter values are c = 0.17, d = 0.29, e = 0.109, h = 0.2, g = 0.25, f = 0.5. Here, the phase space diagram and 
time series plot for the specified parameters x(t), y(t), and z(t) are shown.
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Figure 2. The parameter values in Figure 2 are c = 0.5, d = 0.6, e = 0.2, h = 0.2, g = 0.3, and f = 0.4. The simulation also 
reveals that the system’s solution goes to E4 as t tends to infinity, suggesting that E4 is asymptotically stable universally.

Figure 3. The parameter values in Figure 3 are c = 0.5, d = 0.4, e = 0.3, h = 0.4, g = 0.5, and f = 0.6. Here, we draw the 
conclusion that the three populations move towards the stable node and interior equilibrium point E4 (0.796,0.203,0.401).
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Figure 5. The parameter values in Figure 5 are c = 0.4, d = 0.3, e = 0.4, h = 0.19, g = 0.382, and f = 0.296.The solution curve 
at the starting states in this figure travels in the direction of the axial equilibrium point E1, indicating that it is asymptoti-
cally stable.

Figure 4. The parameter values in Figure 4 are c = 0.3, d = 0.6, e = 0.1, h = 0.2, g = 0.3, and f = 0.4. The phase space dia-
gram in this case demonstrates that the solution curves converge to the internal equilibrium points, demonstrating that 
the system is globally stable.
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Figure 6. The parameter values in Figure 6 are c = 0.6, d = 0.4, e = 0.79, h = 0.3, g = 0.7, and f = 0.8. The phase portrait in 
this case indicates that if the scavenger population goes extinct, there will be a coexistence of the predator and prey with 
no gradual change over time. With the system being asymptotically stable and the equilibrium point being globally stable, 
the curve converges to the equilibrium point E3 (0.79,0.3,0).

Figure 7. The parameter values in Figure 7 are c = 0.4, d = 0.5, e = 0.4, h = 0.2, g = 0.3, and f = 0.5. The population x(t) and 
z(t) in this figure travel in the direction of equilibrium point E2 (1,0.1,0.2), suggesting that the equilibrium point is stable 
in the asymptotic sense and, as a result, the curve is asymptotically stable throughout.
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RESULTS AND DISCUSSION

The non-linear system of differential equations intro-
duced in this study provides comprehensive insights into 
the dynamics of prey, predators, and scavengers within an 
ecosystem. By integrating the logistic growth of the prey 
population and inter-species interactions, the model elu-
cidates crucial aspects of the system’s behavior, including 
positivity, boundedness of solutions, and prerequisites for 
stable coexistence. Local stability analysis identifies the 
existence of limit cycles in the positive quadrant, under-
scoring their significance in ecological dynamics. Moreover, 
the study rigorously examines the persistence requirement 
of the model, shedding light on the conditions necessary 
for long-term viability. Numerical simulations corroborate 
theoretical findings, enhancing our understanding of the 
ecosystem’s long-term dynamics. Importantly, the research 
highlights the adaptive role of scavengers in mitigating 
food supply fluctuations, while also identifying scenarios 
that may lead to scavenger extinction due to mortality rate 
fluctuations. These findings deepen our understanding of 
ecosystem dynamics and have implications for conserva-
tion efforts, emphasizing the importance of considering 
intraspecies competition and environmental uncertainties 
in ecological modeling. 

CONCLUSION

 The current study looks at a three-dimensional dynamic 
system that includes populations of prey, predators, and 
scavengers. The stability of the system is heavily reliant on 
competition within species. Scavengers help in dealing with 
fluctuations in the food supply in the environment. Due to 
fluctuations in the mortality rate of the scavenger popula-
tion, the species exhibits complex behavior. The scaveng-
ing species can go extinct as a result of a rise in mortality. 
Insecure circumstances permit coexistence of the three 
populations. Using Lyapunov functions for inner equilib-
rium points and Dulac’s criterion for equilibrium points, it 
is determined for some conditions that the limit cycle of 
the model system does not exist. The solution is shown to 
be positive and bounded, and the absence of periodic solu-
tions establishes the system’s overall stability. The study also 
determines the persistence of the three populations. The 
species’ unpredictable and irregular behavior may be stable 
under certain parameters.
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