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ABSTRACT

In today’s digital environment, a major amount of information is exchanged over insecure 
communication channels. In such an environment, cryptology plays a crucial role in ensuring 
that data is transmitted accurately and secure. Maximum distance separable (MDS) matrices 
which are derived from MDS codes, enhance the strength of cryptographic systems and con-
tribute significantly to durability against different types of attacks. MDS matrices are widely 
used in the diffusion layers of lightweight block ciphers due to their easy usage and security. 
In addition, involutive MDS matrices with a minimum XOR number have lower costs and less 
memory because they allow the same matrix in encryption and decryption. For this reason, 
MDS matrices have been an area of interest. In this study, it is aimed to obtain 4x4 involutive 
MDS matrices on F24, F26 and F27 finite fields that have not been studied before. After that, we 
have determined the matrices that have minimum XOR numbers. Thus, we have obtained 4x4 
involutive MDS matrices with good properties to be used in block ciphers.
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INTRODUCTION

Maximum Distance Separable (MDS) matrices have 
gained considerable interest, particularly because of their 
application in the diffusion layers of cryptographic algo-
rithms. Their use enhance encryption strength and improve 
resistance against a wide range of cryptanalytic attacks [1]. 
Therefore, MDS matrices derived from MDS codes are 
used in most block ciphers such as Advanced Encryption 
Standard (AES) [2] and they are also used in hash functions 
such as Whirlpool [3], Photon family [4] and Whirlwind 
[5].

MDS matrices also prove the security of differential and 
linear cryptanalysis because block ciphers which use MDS 

matrix are secure. For this reason, it is important to find 
MDS matrices with good application properties [6]. On the 
other hand, MDS matrices have great advantages in block 
encryption. Thanks to involutive MDS matrices, lower 
costs are obtained by using the same matrix in encryption 
and decryption. In addition, one of these advantages is that 
involutive MDS matrices use less memory in encryption 
[7].

The methods of creating MDS matrices can be divided 
into two groups. These are direct creation methods and 
search-based methods. The first group includes methods 
based on Cauchy matrices [8], complementary matrices [4, 
9], Vandermonde matrices [10, 11], abbreviated BCH codes 
[12, 13] and skew recursive structures [14]. The second 
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group consists of some interesting ideas. These are made 
using recursive structures [15, 16], hybrid structures [17] 
and special matrix forms [9, 18, 19]. There are hybrid meth-
ods (Generalized Hadamard Matrices) that combine direct 
generation methods with search-based methods. For one 
of the easiest construction methods that provides effective-
ness, Hadamard matrices-like matrix forms are also used in 
circular and finite fields [6].

When examining methods for constructing MDS 
matrices, it is observed that the search-based approach 
requires verifying that all square submatrices of the gen-
erated matrix also satisfy the MDS property. This sig-
nificantly increases the computational cost of the search 
process. Moreover, due to the vast search space for potential 
matrix elements, the practicality of this method becomes 
highly limited, particularly in environments with con-
strained system resources making it inefficient in terms 
of memory, speed, and overall performance under cer-
tain conditions. In contrast, the direct generation method 
enforces specific matrix structures and coding techniques 
to construct MDS matrices, thereby significantly reducing 
the search space and eliminating the need for an exhaustive 
search. However, when employing structured matrices such 
as Hadamard, Circulant, Toeplitz, or Circulant-like forms, 
additional search efforts are still required, as these forms do 
not inherently guarantee the MDS property. Consequently, 
despite their structural advantages, such matrices must still 
undergo verification processes to ensure they satisfy MDS 
criteria.

The GHadamard matrix represents a hybrid construc-
tion technique that incorporates Hadamard matrices—a 
class of structured matrices—within its substructure to 
directly generate new MDS matrices without requir-
ing an exhaustive search. The motivation for employing 
Hadamard matrices lies in their crucial part in the con-
struction of involutive MDS matrices. The classical defini-
tion of Hadamard matrices is extended and refined within 
the GHadamard framework [20], allowing for more flexi-
ble and efficient matrix generation. This study focuses on 
the construction of MDS matrices suitable for lightweight 
block ciphers. Specifically, we explore the concept of invo-
lutive MDS matrices, the XOR count as a performance 
metric, and two structured approaches: the Generalized 
Hadamard and the Cauchy-based Hadamard matrix forms. 
Subsequently, practical applications of these methods are 
discussed. Throughout the study, matrices are studied in 
4x4 dimensions due to ease of use and security in cryptol-
ogy. Using the irreducible polynomial x4 + x + 1 in the finite 
field F24, a 4x4 involutive MDS matrix is constructed with 
the Generalized Hadamard matrix form. The 4x4 involutive 
MDS matrix on the finite field F28 was studied with differ-
ent method [7]. In this study, 4x4 involutive MDS matrices 
are constructed using the Generalized Hadamard matrix 
form and the Cauchy-based Hadamard matrix form over 
the finite fields F26 and F27. For F26, the irreducible polyno-
mials x6 + x + 1 and x6 + x3 + 1 are utilized, while for F27, the 

polynomials x7 + x + 1 and x7 + x3 + 1 are employed. These 
constructions demonstrate the applicability of both matrix 
forms across different field sizes and irreducible polynomial 
selections. Subsequently, we compute the XOR counts of the 
generated matrices, which serve as a measure of implemen-
tation efficiency. In certain applications, we derived novel 
4x4 involutive MDS matrices by applying isomorphisms 
to previously constructed matrices. This approach enabled 
us to evaluate and compare the XOR numbers of both the 
original and the newly derived matrices, offering insights 
into their relative computational efficiency.

Preliminaries
Some important properties of MDS matrices can be 

given by:
1. The square matrix of A is MDS if and only if every sub-

frame matrix of A is regular (invertible).
2. The property of an MDS matrix is preserved in per-

mutations of rows/columns. Similarly, multiplying a 
row/column by a non-zero 𝑐 ∈ 𝐹2𝑚 does not affect its 
property of being MDS. In general, Let 𝐴 be 𝑘𝑥(𝑛 − 𝑘) 
matrix, minimum distance 𝑑 of [𝑛 , 𝑘, 𝑑 ] 𝐶 code whose 
generator matrix is 𝐺 = [𝐼|𝐴]  is preserved after the 
above operations are applied to 𝐴 [6].

3. The property of an MDS matrix is preserved under 
transpose processing [6].
Definition 1. Let 𝐴 be a matrix. Matrices with 𝐴.𝐴=𝐼 or 

matrices whose inverse is equal to itself are called involutive 
matrices [7].

Definition 2. The 4x4 involutive MDS matrix form 
given below is called Generalized Hadamard.

where 𝑎0,  𝑎1,  𝑎2,  𝑎3,  𝑏1,  𝑏2,  𝑏3 ∈  𝐹2𝑟\{0} [7].
Definition 3. A Cauchy matrix 𝐶 is a 𝑘𝑥𝑘 matrix formed 

by two discrete sets of elements from {𝛼0,  𝛼1,  … ,  𝛼𝑘− 1} and 
{𝛽0,  𝛽1,  … ,  𝛽𝑘− 1} such that  over 𝐺 𝐹(2𝑟) [21].

Proposition 4. Let 𝐺 = {𝑥0,  𝑥1,  … ,  𝑥𝑛 − 1} be additive sub-
group of 𝐹2𝑟. Let 𝑦𝑗 =  𝐼 + 𝑥𝑗 be elements of 𝐺 where 𝑗 = 0, 1, 
… ,  𝑛 − 1 and for 𝐼 ∉ 𝐺 , 𝐼 + 𝐺 be a coset. Then for all 0 ≤ 𝑖, 
𝑗 ≤ 𝑛 −  1, 𝑛 𝑥𝑛 matrix 𝐴 = (𝑎𝑖, 𝑗) is MDS matrixx such that 

 [22].
Remark 5. If matrix 𝐴 is an 𝑛 𝑥𝑛 matrix in the form spec-

ified in Proposition 1, matrix 𝑐 − 1𝐴 becomes an involutive 
MDS matrix such that 𝑐 is the sum of elements in any row 
here [22].

Proposition 6. Let 𝐻 = (ℎ𝑖, 𝑗) be a 2𝑛 𝑥2𝑛  matrix and its 
first row is (ℎ0,  ℎ1,  … ,  ℎ2𝑛 − 1). In this case, 𝐻 becomes 
Hadamard if and only if ℎ𝑖, 𝑗 =  ℎ𝑖⊕𝑗, where 𝑖 ⊕ 𝑗 is equal to 
the n-bit binary of 𝑖 and 𝑗 [22].
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Remark 7. Let 𝐺 = {𝑥0,  𝑥1,  … ,  𝑥2𝑛 − 1} be additive sub-

group of 𝐹2𝑟 and 𝑥𝑖 +  𝑥𝑗 =  𝑥𝑖⨁𝑗 where 𝑖 ⊕ 𝑗 is equal to the 

n-bit binary of 𝑖 and 𝑗. Then, for  

is Hadamard [22].
Proposition 8. Let 𝐺 = {𝑥0,  𝑥1,  … ,  𝑥2𝑛 − 1} be additive 

subgroup of 𝐹2𝑟 which is linear span of 𝑛 linear indepen-
dent elements {𝑥0,  𝑥1,  … ,  𝑥2𝑛 − 1} such that  
where 𝑖𝑛 − 1,  … ,  𝑖1,  𝑖0 is binary representation of 𝑖. For 

 and 𝑙 ∈ 𝐹2𝑟⁄𝐺 , let 𝑦𝑖 =  𝑙 + 𝑥𝑖. 𝐴 = (𝑎𝑖, 𝑗) 
matrix is a Hadamard MDS matrix where  [22].

Proof. Let’s consider the matrix 𝐻 = (ℎ𝑖, 𝑗) =  (𝑥𝑖 +  𝑥𝑗). 

Then, ℎ𝑖, 𝑗 =  𝑥𝑖⨁𝑗. From Proposition 2, H is Hadamard. 

So,  From Remark 2, 𝐴 is 

Hadamard and from Proposition 1, 𝐴 is MDS. Then 𝐴 is 
Hadamard MDS matrix [22].

Remark 9. The matrix  is a Hadamard involutive 
MDS matrix where 𝑐  is the sum of the elements in any row.

Definition 10. The XOR number of the α element over 

 is the number of XORs required to apply the multipli-

cation of α with any 𝛽 element on  [21].

For example; on the finite field , let’s take one 

element of the MDS matrix which is α. Since we are on F26 
we should take polynomial of the fifth degree, then we mul-
tiply them:

𝛼(𝑎5𝛼5 +  𝑎4𝛼4 +  𝑎3𝛼3 +  𝑎2𝛼2 +  𝑎1𝛼 + 𝑎0) 
=  𝑎4𝛼5 +  𝑎3𝛼4 +  𝑎2𝛼3 +  𝑎1𝛼2 +  (𝑎5 +  𝑎0)𝛼 + 𝑎5

When we look at the all coefficients, there is only one 
addition in the coefficient of the polynomial which is 𝑎5 
+  𝑎0. Thus, this element of the MDS matrix have 1 XOR 
number. After finding XOR numbers of all elements of the 
MDS matrix, total XOR number is sum of the all of them.

APPLICATIONS OF 4X4 INVOLUTIVE MDS MA-
TRIX OVER FINITE FIELDS F24 

Creating A 4x4 Involutive MDS Matrix Over Finite Field F24

Example 11. Let’s consider finite field . Let α 
be the root of x4 + x + 1. Then,

𝑀1 =  𝐺 ℎ𝑎𝑑 (𝑎0,  𝑎1,  𝑏1,  𝑎2,  𝑏2,  𝑎3,  𝑏3) =  𝐺 ℎ𝑎𝑑 (1, 𝛼,  𝛼3 +  
𝛼, 𝛼 +  1, 𝛼, 1,  𝛼2 +  𝛼)

Let’s create a 4x4 involutive MDS matrix.

where  

. Total num-

ber of XORs = 66 + 4.3.4 = 114

Creating A 4x4 Involutive MDS Matrix Over Finite Field F26

Example 12. F26 be defined by the irreducible polyno-
mial 𝑝2(𝑥) = 𝑥6 +  𝑥3 +  1. Let 𝛼 + 1 be the root of the poly-
nomial 𝑝2(𝑥). Let 𝑦𝑖 =  𝐼 + 𝑥𝑖 and 𝐺  be a additive subgroup 
where

Then the elements are 𝑦0 =  𝛼5 +  𝛼2 +  𝛼 + 1, 𝑦1 =  𝛼5 +  1, 
𝑦2 =  𝛼5 +  𝛼3 +  𝛼2 +  1, 𝑦3 =  𝛼5 +  𝛼3 +  𝛼 + 1 for 0 ≤ 𝑖 ≤ 3, 
respectively. Accordingly, the Hadamard-Cauchy matrix 
can be constructed as follows:

 

But this matrix isn’t involutive. To find involutive matrix 
from M1, we have to calculate  where c is the sum of the 
elements of any row of the matrix or 

 𝑐 = 𝛼3 +  𝛼2 +  𝛼 + 1 + 𝛼 +  𝛼5 +  𝛼4 +  𝛼3 +  𝛼 + 𝛼4 
+  𝛼 + 1 = 𝛼5 +  𝛼2 =  (𝛼 + 1)7 
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The matrix  is 4x4 involutive Hadamard-Cauchy 

matrix over . The number of XORs required for this 

matrix is 49 + 4.4.6 = 145.
Now let’s look at the change in the XOR numbers of the 

matrices using isomorphism. Let’s take the finite field  
where 𝑝(𝑥) =  (𝑥6 +  𝑥 + 1). Let 𝛼 = 𝛽 +  1 be the root of 𝑝(𝑥).

Is there any  such that . 
For 𝑝2(𝑥) = 𝑥6 +  𝑥3 +  1,

((𝛽 + 1)7)6 +  (𝛽 + 1)7)3 +  1 =  (𝛽 + 1)42 +  (𝛽 + 1)21 
+  1 =  𝛽3 +  𝛽3 +  1 +  1 =  0

Using the isomorphism 𝑓7, 1: 𝛼 → (𝛽 +  1)7, from the 

 over the field , the matrix  can be created over 

 as follows:

The number of XORS required for this matrix is 39 + 
4.3.6 = 111.

Example 13. F26 be defined by the irreducible polyno-
mial 𝑝(𝑥) =  (𝑥6 +  𝑥 + 1). Let 𝛼 be the root of the polyno-
mial 𝑝(𝑥). The matrix 𝑀3 =  𝐺 ℎ𝑎𝑑 (𝑎0,  𝑎1,  𝑏1,  𝑎2,  𝑏2,  𝑎3,  𝑏3) 
=  𝐺 ℎ𝑎𝑑 (1, 𝛼32,  𝛼32,  𝛼, 𝛼, 𝛼35,  𝛼34) is 4x4 involutive MDS 
matrix over .

The number of XORs required for this matrix is 24 + 
4.3.6 = 96.

Creating A 4x4 Involutive MDS Matrix Over Finite Field F27

Example 14. F27 be defined by the irreducible polyno-
mial 𝑟(𝑥) =  𝑥7 +  𝑥3 +  1. Let 𝛼 be the root of the polynomial 
𝑟(𝑥). Let 𝐺 = {𝑥0 =  𝛼2 +  𝛼 , 𝑥1 =  𝛼3 ,  𝑥2 =  𝛼4 ,  𝑥3 =  𝛼4 +  
𝛼3 +  𝛼2 +  𝛼} be additive subgroup and 𝐼 = 𝛼6 +  𝛼5. So, 𝑦0 
=  𝛼6 +  𝛼5 +  𝛼2 +  𝛼 , 𝑦1 =  𝛼6 +  𝛼5 +  𝛼3 , 𝑦2 =  𝛼6 +  𝛼5 +  

𝛼4 , 𝑦3 =  𝛼6 +  𝛼5 +  𝛼4 +  𝛼3 +  𝛼2 +  𝛼 where 𝑦𝑖 =  𝐼 + 𝑥𝑖 for 
0 ≤ 𝑖 ≤ 3.

 

The matrix 𝑀4 is Cauchy based Hadamard matrix but 
not involutive matrix. We can make the matrix involutive 
by dividing the matrix by  obtained or by 𝑐  by 
summing the elements in any row of the matrix.

𝑐 = 𝛼5 +  𝛼2 +  𝛼6 +  1 +  𝛼5 +  𝛼2 +  𝛼3 +  1 +  𝛼6 
+  𝛼3 +  1 +  𝛼 + 1 = 𝛼

The matrix is now the involutive MDS matrix. The num-
ber of XORS required for this matrix is 284 + 4.4.7 = 396. 

Let’s consider the finite field F27/q(x) where 𝑞(𝑥) =  𝑥7 +  
𝑥 + 1. Let 𝛽 be the root of 𝑞(𝑥). Is there any 𝛽𝑠𝑢 such that 
𝑟(𝛽𝑠𝑢 ) =  0?

𝑟(𝛽11) =  (𝛽11)7 +  (𝛽11)3 +  1 =  𝛽77 +  𝛽33 +  1 
=  𝛽5 +  𝛽3 +  𝛽2 +  1 +  𝛽5 +  𝛽3 +  𝛽2 +  1 =  0

Using the isomorphism 𝑓11, 1: 𝛼 → 𝛽11, from the matrix 
 over the field F27/r(x), the 4x4 involutive Hadamard-

Cauchy MDS matrix  can be created over F27/q(x) as 
follows:
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The number of XOR required for this matrix is 87 + 
4.4.7 = 199.

Example 15. Let’s create a 4x4 involutive MDS matrix 
on F27 according to the generalized Hadamard matrix form. 
𝑎0 =  1,  𝑎1 =  𝛼 + 1, 𝑎2 =  𝛼2 +  𝛼, 𝑎3 =  𝛼2 +  1, 𝑏1 =  𝛼, 
𝑏2 =  𝛼4 +  𝛼 , 𝑏3 =  𝛼3 +  𝛼 + 1,  , 

. Also, if 
𝑎0 +  𝑎1 +  𝑎2 +  𝑎3 =  1, the matrix will be involutive. Since 
1 +  𝛼 + 1 + 𝛼2 +  𝛼 + 𝛼2 +  1 =  1, the matrix we create will 
be involutive.

The total number of XORs required is 245 + 4.7.3 = 329.

RESULTS AND DISCUSSION

In this study, 4x4 involutive MDS matrices are created on 
finite fields F27, F26, F24 and which have not been studied before, 
using the MDS creation methods found in the literature. Then, 
the number of XORs required for the created matrix is calcu-
lated. New MDS matrices are produced with the help of iso-
morphism from the new MDS matrix we created in some of 
our applications, and comparison was made by calculating 
the XOR numbers in these matrices. The 4x4 involutive MDS 
matrices with the lowest XOR number according to the gener-
alized Hadamard form below have been obtained by writing 
the code given in the sample pseudo code in Algorithm 1 in 
the Magma Programming Language. 

Over the finite field F26/x6 + x3 + 1

The XOR number is 154.

The XOR number is 140.
Over the finite field F27/x7 + x3 + 1

The XOR number is 206.

The XOR number is 205.

Figure 1. The algorithm of finding MDS matrices
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CONCLUSION

In this study, it is aimed to obtain 4x4 involutive MDS 
matrices on F24 , F26 and F27 fields that have not been studied 
before. On the finite field F24, using the irreducible polyno-
mial x4 + x + 1, a 4x4 involutive MDS matrix is built with 
the GHadamard matrix. Over the finite field F26, 4x4 invo-
lutive MDS matrices are built using the GHadamard and 
Cauchy Hadamard matrix forms, based on the irreducible 
polynomials x6 + x + 1 and x6 + x3 + 1. Similarly, within 
the field F27, matrices were generated using the same matrix 
forms in conjunction with the irreducible polynomials x7 
+ x + 1 and x7 + x3 + 1. Following the construction, the 
XOR numbers of the resulting matrices were computed to 
evaluate their implementation efficiency. In some cases, 
new 4x4 involutive MDS matrices were further derived 
through isomorphisms applied to the initial matrices. In 
particular, some of the matrices obtained via isomorphism 
performed lower XOR counts compared to their original 
matrices. Based on these results, the matrices with mini-
mal XOR numbers were identified. Consequently, efficient 
4x4 involutive MDS matrices with desirable cryptographic 
properties were obtained, making them suitable candidates 
for use in lightweight block cipher designs.
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