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ABSTRACT

In 2019, the emergence of COVID-19 underscored the critical role of mathematical modeling 
in understanding and forecasting global health crises. The rapid and often unnoticed spread 
of infectious diseases by asymptomatic carriers poses a significant challenge to public health 
efforts worldwide. Understanding and accurately modeling this transmission is crucial for 
developing effective vaccination strategies and controlling outbreaks. We address this critical 
issue by enhancing the SAIR model, a Susceptible-Asymptomatic-Infected-Recovered com-
partmental model, to better capture the dynamics of asymptomatic spread and vaccination ef-
fectiveness. This study focuses on the SAIR models to investigate the dynamics of COVID-19 
transmission, with a particular emphasis on asymptomatic individuals, who can unknowingly 
transmit the disease.
In this paper, we present two modifications to the SAIR model. The first modification as-
sumes that individuals gain lifelong immunity after recovering from the infection. The second 
modification, known as the SAIRS model, considers the possibility of reinfection, meaning 
recovered individuals can become susceptible again. By applying these enhanced models to 
real-world data on daily reported COVID-19 cases in Türkiye, we aim to gain a deeper under-
standing of the pandemic’s behavior and progression in the country.
The novelty of this work lies in the integration of a vaccine effectiveness parameter into the 
SAIR model, uniquely considering the delayed immunity of vaccinated individuals and the 
distinct transmission dynamics of both symptomatic and asymptomatic cases. Analyzing this 
parameter within a fuzzy environment enhances the accuracy of predictions, providing more 
dependable estimations of future disease scenarios. This approach offers a new dimension to 
epidemic modeling, contributing valuable insights to public health strategies and vaccination 
policies.
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INTRODUCTION

Coronaviruses are a diverse family of viruses known to 
infect both animals and humans, causing a wide spectrum 
of illnesses. These illnesses range from mild respiratory con-
ditions, such as the common cold, to more severe diseases 
like Middle East Respiratory Syndrome (MERS) and Severe 
Acute Respiratory Syndrome (SARS) in humans [1, 2]. In 
2019, a novel coronavirus, named severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), was identified as 
the root cause of a significant outbreak of pneumonia cases 
in China. This new virus rapidly spread, initially causing 
an epidemic within China, and swiftly expanding its global 
reach [3-5]. Recognizing the scale of the crisis, the World 
Health Organization promptly declared it a global pan-
demic, officially designating the disease as COVID-19, 
denoting the coronavirus disease of 2019 [6].

Mathematical modelling plays a pivotal role in the 
study of epidemics, serving not only to unravel the progres-
sion of diseases but also to offer forecasts regarding their 
future evolution [7–10]. The use of mathematical model-
ing approaches to understand the spread of epidemics has 
a long history. However, beginning in the middle of the 
20th century, mathematical epidemiology appears to have 
expanded tremendously. Hethcote [11] provided a detailed 
review of the mathematical modeling of infectious diseases, 
offering a comprehensive exploration of methodologies 
and techniques. Furthermore, mathematical modelling 
provides valuable insights into the dynamics, patterns and 
behaviours of epidemics, particularly in the context of a 
fuzzy environment [12-14].

Epidemiological models divide people into sub-groups 
or compartments such as healthy individuals but susceptible 
to the infection (Susceptible (S)), individuals currently car-
rying the infection (Infected (I)), recovered people from the 
disease (Recovered (R)). The disease is transmitted from the 
individuals in the infected compartment to the people in the 
susceptible compartment. This type of models are called SIR 
(Susceptible-Infected-Recovered) type models or, more broadly, 
as compartmental models. Research on epidemic modeling, 
particularly in the context of COVID-19, has been pivotal in 
understanding and predicting disease dynamics. Numerous 
studies have applied to SIR type models to analyze real-time 
data, providing valuable insights into the spread, transmis-
sion patterns, and impact of the virus [14-16].

The SIR model is defined by a system of three coupled 
non-linear ordinary differential equations [17]. Adding 
new compartments or new parameters can extend the 
model [18-20]. For example, in the SEIR model E stands for 
the group that have been infected but is not yet infectious, 
in the SIRD model, D stands for the group of deaths due to 
the disease, and in the SAIR model, A stands for the group 
of asymptomatic individuals that do not show any symp-
toms of the disease but spread the disease to others.

Government officials and public health decision-makers 
recognize the critical importance of isolating symptomatic 

individuals from healthy ones to protect the broader pop-
ulation from the rapid transmission of diseases [21, 22]. 
Nonetheless, the presence of unreported subclinical cases 
presents a significant challenge when attempting to accu-
rately determine the rate of disease transmission [23-25]. 
Therefore, it is crucial to investigate the influence of asymp-
tomatic individuals on the spread of disease.

MODIFICATIONS ON THE SAIR MODEL

In this joint paper, we present modifications to the SAIR 
model originally introduced by Robinson and Stilianakis in 
2013 [26]. The SAIR model classifies the population into 
four distinct sub-groups or compartments, specifically as 
susceptible (S), asymptomatic (A), infected (I), and recov-
ered (R). Notably, the infected individuals are further cate-
gorized into two compartments. The first group, referred to 
as “asymptomatic (A),” comprises individuals who remain 
free of disease symptoms but can still transmit the infec-
tion. The second group, named “infected (I),” includes indi-
viduals displaying symptoms of the disease.

The transitions among subgroups in the modified SAIR 
models are visually represented in a schematic illustra-
tion in Figure  1. Individuals in the susceptible (S) group 
become infected upon contact with either symptomatic or 
asymptomatic infected individuals. Following contraction 
of the disease, they initially transition to the asymptomatic 
state, often with a delay between infection and the onset of 
symptoms. Subsequently, if symptoms develop, individuals 
progress to the symptomatic state of infection, namely the 
infected (I) group. Alternatively, they may move directly to 
the recovered (R) group without developing any symptoms. 
The left panel of Figure 1 illustrates the scenario of lifelong 
immunity, while the right panel depicts the possibility of 
non-lifelong immunity in the SAIRS model.

In our models, we have streamlined the model origi-
nally proposed by Robinson and Stilianakis [26], omitting 
constant birth and natural death rates for simplification. 
Instead, we introduce a crucial parameter to account for 
vaccination effectiveness. For example, the vaccine was 
added to the SAIR model in [20], but individuals were 
directly transferred into the recovered group. Our pro-
posed approach differs by addressing the specific scenario 
where vaccinated individuals do not immediately enter the 
recovered state, which introduces a novel dimension to the 
analysis of disease spread in the presence of vaccination. To 
the best of our knowledge, this paper stands as the first inte-
gration of the vaccination effectiveness parameter into the 
SAIR model, while considering that vaccinated individuals 
do not directly transition to the recovered compartment.

Understanding the impact of vaccination is crucial for 
managing pandemics like COVID-19. With this adapta-
tion, our objective is to gain a more comprehensive under-
standing of how vaccinations impact disease dynamics and 
transmission. This refined approach allows for a focused 
exploration of the complex interaction between vaccination 
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efficacy and the spread of the disease, potentially reveal-
ing invaluable insights to guide and improve public health 
strategies and vaccination campaigns.

One of the two altered SAIR models is referred to as 
the modified SAIR model with lifelong immunity as visually 
illustrated in the left panel of Figure 1. Here we assume that 
all infected individuals eventually return to a healthy state. 
The system of the model is given below;

Here, βA and βI are the transition rates of the asymptom-
atic and symptomatic compartments respectively, γA and γI 
are the recovery rate from the asymptomatic and symp-
tomatic infections respectively, δ is the rate of pre-clinical 
individuals from the asymptomatic to the symptomatic 
compartment; and τ is the vaccine effectiveness parameter. 

Introducing our second modified model, known as 
the modified SAIR model with non-lifelong immunity (or 
the modified SAIRS model), we introduce a new parameter 
denoted as a. This parameter signifies the transition from 
compartment R to compartment S as seen in the right panel 
of Figure 1. In this model, we assume that immunity follow-
ing recovery is of a temporary nature. As a result, individ-
uals who have recovered lose their immunity and return to 
a susceptible state. The system of this model is as follows:

In both of the modified SAIR models, we consider a 
normalized population, i.e.

St + At + It + Rt =1.

where Pt denotes the number of individuals in the compart-
ment P at time t. This normalization allows us to focus on 
relative proportions and analyze disease dynamics within a 
consistent and closed population.

In our study, we estimate the transition parameters 
among compartments by fitting the real data in a least 
squares sense. This process involves finding optimal param-
eters for our models by minimizing the difference between 
the observed data and model predictions. It is a common 
practice in various scientific fields, allowing for accurate 
analysis and prediction using real-world data.

We obtain our real-world data from daily reports pro-
vided by the Ministry of Health of Turkey [27]. Along with 
fitting the model to the real data, we also consider future 
disease estimations for various time periods to assess the 
performance of the models over time.

Recognizing that epidemiological research often 
involves inherent imprecision and uncertainty, particularly 
given the diverse ways diseases can manifest, we incor-
porate fuzzy logic into our methodology. This approach 
enhances the precision and accuracy of our results, partic-
ularly in situations where imprecision and uncertainty are 
common.

Fuzzy Modelling
Fuzzy modeling, originating from the pioneering work 

of Lotfi A. Zadeh, who introduced the fuzzy set theory 
[28], has evolved into a fundamental tool for addressing the 
vagueness and uncertainty frequently associated with sci-
entific concepts. These notions of imprecision and uncer-
tainty play a pivotal role in various scientific and real-world 
scenarios. In the pursuit of more accurate mathematical 
representations, Zadeh pioneered a new set concept, one 
that extended beyond the traditional boundaries of crisp 
set theory, incorporating elements with a function known 
as the membership function, denoted as μ(X) = X → [0,1], 
with X representing the universal set in a given context.

Fuzzy logic, derived from the fuzzy set theory, nota-
bly emphasizes the concept of degrees of belonging [29, 

Figure 1. The flow diagrams of SAIR models with lifelong (left panel) and non-lifelong (right panel) immunity.
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30]. This refined approach deviates from rigid categori-
zations of right or wrong, instead focusing on the shades 
of gray that exist in between. Over the years, fuzzy logic 
has evolved significantly, emerging as a powerful tool for 
effectively modeling and addressing uncertainty, a feature 
particularly valuable in fields such as artificial intelligence, 
decision-making systems, and control engineering [31, 32].

The search of precision and efficiency has driven the 
exploration of various methods that utilize fuzzy logic to 
offer optimal solutions in practical scenarios [33, 34]. Fuzzy 
modeling has found its application in diverse domains, 
from classifying vegetation units in ecological studies to 
interpreting and refining weather forecasts, thus exem-
plifying its enduring relevance in addressing multifaceted 
aspects of life today [35, 36].

The integration of fuzzy logic in SIR type models has 
been explored in recent research, showcasing its potential 
to enhance the adaptability and precision of these models. 
For instance, [14] investigated an SIR epidemic model for 
COVID-19 spread with fuzzy parameters, emphasizing 
the importance of incorporating uncertain parameters to 
reflect real-world complexities. These studies underscore 
the growing significance of fuzzy parameters in SIR-type 
models, offering valuable insights into the complexities of 
infectious disease dynamics and their control. The adapt-
ability and the concept of degrees of membership make 
fuzzy modeling an invaluable tool for handling real-world 
scenarios characterized by uncertainty and imprecision, 
ultimately enhancing the decision-making and prob-
lem-solving capabilities across a spectrum of disciplines 
[37, 38].

Contributions and Organization of the Paper
Firstly, we employ modified SAIR models as a primary 

tool. These models enable us to derive valuable insights into 
the complex patterns of disease transmission, the effective-
ness of control measures, and the influence of vaccination 
strategies. By adapting these models to the unique circum-
stances of the pandemic, we aim to provide a deeper under-
standing of the COVID-19 dynamics within Turkey.

Our focus centers on analyzing the dynamics of 
COVID-19 through the examination of real-time data on 
daily reported cases in Turkey, provided by the Ministry 
of Health. In a significant and innovative step, we extend 
the classical SAIR models into a fuzzyfied environment 
by expanding the traditional, crisp vaccination parameter 
τ into a fuzzy set theoretical framework. This extension is 
crucial, as it provides us with the ability to account for the 
various uncertainties and vagueness that often surround 
vaccination strategies.

Our proposed approach introduces a novel dimension 
to the analysis of disease spread in the presence of vaccina-
tion by addressing the specific scenario where vaccinated 
individuals do not immediately transition to the recovered 
state. To the best of our knowledge, this paper represents 
the pioneering instance of incorporating the vaccination 

effectiveness parameter into the SAIR model under these 
considerations, offering a unique and valuable perspective 
on disease dynamics. Additionally, the incorporation of a 
fuzzy logic framework enhances the practicality and appli-
cability of our findings. Our aspiration is that these research 
outcomes will be instrumental in guiding policymakers and 
health authorities as they formulate and fine-tune more 
effective strategies to combat the disease. This paper thus 
contributes to the advancement of disease modeling and 
provides valuable insights that may play a crucial role in 
reducing the impact of the virus.

The organization of this paper follows a structured 
framework. Introduction section sets the stage for our 
comprehensive analysis. Within this section, we provide 
essential background information, covering topics such 
as coronaviruses, mathematical modeling, and SIR-type 
models. Furthermore, we discuss the modifications of 
the SAIR Model, considering both lifelong and non-life-
long immunity, and clarify the concept of fuzzy modeling, 
emphasizing its significance in addressing vagueness and 
uncertainty. Additionally, we examine the vaccine effective-
ness parameter, considering its impact on disease transmis-
sion in a fuzzy context.

In the result section, we focus on two specific time peri-
ods characterized by rapid increases in daily active COVID-
19 cases. We examine the parameter estimations of both 
modified SAIR models, one with lifelong immunity and the 
other with non-lifelong immunity. Additionally, our study 
includes a forward-looking analysis of 7 days taking into 
account the vaccine effectiveness parameter within a fuzzy 
environment for both time periods using these models.

Finally, we provide a summary of the paper and discuss 
the key findings and results in the conclusion section.

 The derived knowledge from the literature review 
highlights the critical importance of understanding the 
dynamics of infectious diseases, particularly concerning 
asymptomatic transmission and vaccination effectiveness. 
Synthesizing insights from previous studies, we identi-
fied gaps in current modeling approaches, specifically the 
need to incorporate lifelong immunity and the possibil-
ity of reinfection into existing models. Additionally, our 
review underlines the significance of considering delayed 
immunity in vaccination strategies to provide a more accu-
rate representation of disease transmission dynamics. The 
novelty of this work lies in the innovative modifications 
to the traditional SAIR model to incorporate both lifelong 
immunity and the possibility of reinfection, resulting in 
the SAIRS model. Moreover, our integration of a vaccine 
effectiveness parameter that accounts for delayed immu-
nity provides a more realistic representation of vaccina-
tion impacts on disease transmission. By applying these 
enhanced models to real-world data from COVID-19 cases 
in Turkey and analyzing them within a fuzzy environment, 
we can achieve more accurate and reliable predictions of 
future disease scenarios. 
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RESULTS AND DISCUSSION

Epidemics of viruses have consistently presented major 
health problems, leading to high mortality rates in human 
communities. This joint article focuses on understand-
ing the outbreak of the coronavirus in Turkey, employ-
ing essential mathematical models to analyze its spread 
and impact on public health and the healthcare system. 
Mathematical models play a crucial role in systematically 
quantifying disease transmission dynamics, considering 
various factors such as assumptions, variables, and parame-
ters. Researchers continuously validate and fine-tune these 
models by comparing their predictions with real-world 
data, aiding in effective public health responses and guiding 
strategies for future challenges.

In this section, we apply the modified SAIR models with 
lifelong and non-lifelong immunity to the real data (the 
number of infected and recovered cases) of COVID-19 in 
Turkey in order to estimate the parameters in the models.

In Figure  2, we show the numbers of the daily active 
cases in the upper panel and the cumulative recovered 
cases in lower panel, where the data is obtained from the 
Ministry of Health of Turkey. It is important to emphasize 
that the daily active cases differ from the daily new cases 
reported by the Ministry of Health at the end of each day. 
The daily active cases are computed by subtracting the total 
of recovered and deceased cases from the overall infected 
cases, as expressed in the formula:

Active cases = Infected cases - (Recovered cases + Deaths).

It is seen from the upper panel of Figure  2 that there 
are several peaks in the number of the daily active cases. 
We focus on two periods (shaded regions P1 and P2) where 

rapid increases in the number of the daily active cases 
occurred. Here; P1 denotes the period from 13 March to 20 
April 2021 and P2 denotes the period from 23 December 
2021 to 10 January 2022. In both time intervals, we apply 
the real data to our models, resulting in the estimation of 
the model parameters for each period.

The Modified SAIR Model with Lifelong Immunity
We should consider that the modified SAIR mod-

els given in systems  (1) and (2) are normalized models. 
Therefore, to estimate the model parameters effectively, the 
real data needs to be prepared for fitting the normalized 
model in each period.

Data preparation involves several steps. Firstly, we nor-
malize the data, which includes the counts of infected, recov-
ered, and deaths. This normalization process entails dividing 
each data set by the maximum value of the recovered cases, 
ensuring that all values fall within the range of 0 to 1.

Data preparation is a critical phase in our analysis, 
involving several essential steps. Firstly, we initiate the 
process by normalizing the data, specifically focusing on 
infected, recovered, and deaths. This normalization proce-
dure involves dividing each dataset by the maximum value 
of the recovered cases, ensuring that all data points are 
scaled to fall within the standardized range of 0 to 1.

Additionally, it is crucial to emphasize that we treat 
each period as an independent entity. In other words, at 
the beginning of each period, there are initially some indi-
viduals with infections (I0 > 0) and no individuals in the 
recovered state (R0 = 0). This separation of periods is a 
fundamental aspect of our modeling approach, allowing us 
to customize our analysis to the unique characteristics and 
dynamics of each time segment.

Figure 2. Daily number of active cases (upper panel) and cumulative number of recovered cases (lower panel) of COVID-19 
in Turkey. Two distinct periods are indicated by shaded regions P1 and P2 where the number of daily active cases show 
rapid increases. In the upper panel, P1 denotes the period from 13 March to 20 April 2021, and P2 denotes the period from 
23 December 2021 to 10 January 2022.
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We now have the data appropriately normalized for 
active and recovered cases. The number of active cases 
will be used to fit the data with the infected (I) compart-
ment and the number of recovered cases will be employed 
to model the recovered compartment (R). Additionally, 
we also need the initial values for the susceptible (S) and 
asymptomatic (A) compartments. Given that the number of 
asymptomatic individuals tends to be notably higher than 
symptomatic individuals, we assume that the initial count 
of asymptomatic individuals is double that of symptomatic 
individuals (i.e., A0 = 2I0). Finally we can calculate the ini-
tial value of susceptible (S) compartment as S0 = 1 - A0 - I0 
- R0 since the sum of the normalized constant population is 
given by St + At + It + Rt =1. 

The modified SAIR model with lifelong immunity shown 
in Figure 3 has six parameters; namely the transition rate of 
the asymptomatic compartment βA, the transition rate of 
the symptomatic compartment βI, the recovery rate from 
the asymptomatic infection γA, the recovery rate from the 

symptomatic infection γI, the rate of pre-clinical individuals 
from the asymptomatic to the symptomatic state δ and the 
vaccine effectiveness parameter τ. Using the built-in func-
tion lsqcurvefit in MATLAB software [39], we estimate these 
parameters using the real data of the active and recovered 
cases during the period P1 and show the estimations of the 
model parameters in Table 1. We note that the value of βA is 
greater than the value of βI as expected since the transition 
of the virus is largely carried by asymptomatic individuals. 
This observation aligns with findings from previous research 
emphasizing the substantial role of asymptomatic carriers 
in disease transmission dynamics [21, 23]. The higher esti-
mated transition rate of the asymptomatic compartment (βA) 
underscores the importance of considering the contribution 
of asymptomatic individuals when modeling disease spread. 
Estimating these parameters is crucial as they provide 
valuable insights into the underlying mechanisms driving 
COVID-19 transmission dynamics, aiding in more informed 
decision-making by public health authorities.

    

Figure 3. The flow diagram and the model equations of the modified SAIR Model with lifelong immunity.

Figure 4. Application of the modified SAIR model with lifelong immunity to the real data for the period P1. The upper left 
figure shows the normalized data of daily number of active cases and cumulative number of recovered cases during the 
period P1 from 13 March to 20 April 2021. The lower left figure illustrates model simulation. The right figure provides a 
visual comparison of the real data (filled circles) and the model fitting (solid curves).
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In Figure 4, we show the model fitting to the real data 
for the period P_1 from 13 March to 20 April 2021. The 
upper left panel of Figure 4 shows the real data of the active 
(filled red circles) and recovered cases (filled green circles) 
normalized by the maximum of the recovered cases in the 
period P1 (from 13 March to 20 April 2021). The lower left 
panel shows the model simulation using the parameters 
estimated by the real data. Here, the solid blue curve rep-
resents the susceptible (S) compartment, the solid purple 
curve represents the asymptomatic (A) compartment, the 
solid red curve represents the infected (I) compartment, and 
the solid green curve represents the recovered (R) compart-
ment. It is seen that the asymptomatic (A) curve (purple) 
is located above the the symptomatic (I) curve (red). This 
observation aligns with the fact that asymptomatic individ-
uals, often more numerous in society, play a significant role 
in disease transmission. The right panel of Figure 4 shows 
the comparison between the normalized real data and the 
model simulation. The model demonstrates a strong align-
ment with both active and recovered cases. For comprehen-
sive parameter values related to this period, refer to Table 1. 

Fitting the model to the real data of the second period 
(P2), we can extract the estimated model parameters tai-
lored to the unique characteristics of P2. The estimated 
model parameters for the two periods are given in Table 2.

Now that we have successfully estimated the parame-
ters for both periods, we can illustrate the model’s perfor-
mance by comparing it with the real data over an extended 
time-frame. This extended analysis allows us to assess how 
well the model aligns with the actual data beyond the initial 
periods of study.

In Figure 5a, we extend our analysis for an additional 7 
days, commencing on 20 April 2021, immediately following 
the conclusion of period P1. During this 7-day extension, 
we continue to track the performance of the model, and 
it is evident that we achieve a strong alignment between 
the model (illustrated by solid lines) and the real data 
(illustrated by data points). This observation emphasizes 
the model’s effectiveness in capturing and predicting the 
dynamics of the COVID-19 outbreak.

A similar analysis was conducted for period P2, as 
depicted in Figure 5b. Here, we examined the performance 

Table 2. Parameter estimation of the modified SAIR model with lifelong immunity using the real data of active and re-
covered cases during the periods P1 from 13 March to 20 April 2021 and P2 from 23 December 2021 to 10 January 2022

βA βI γA γI δ τ
P1 0.3653 0.3243 0.0001 0.0882 0.0324 0.2179
P2 0.3526 0.2268 0.0001 0.0712 0.0277 0.3110

Table 1. Parameter estimation of the modified SAIR model with lifelong immunity using the real data of active and recov-
ered cases during the period P1 from 13 March to 20 April 2021

Model parameters βA βI γA γI δ τ
Estimated values 0.3653 0.3243 0.0001 0.0882 0.0324 0.2179

Figure 5b. 7 days of future estimation for the period P2. The shad-
ed region illustrates the model fitting to real data for the period 
P1 from 23 December 2021 to 10 January 2022. The white region 
represents the comparison between the model estimation and the 
real data for an additional 7 days until 17 January 2022.

Figure 5a. 7 days of future estimation for the period P1. The sha-
ded region illustrates the model fitting to real data for the period 
P1 from 13 March to 20 April 2021. The white region represents 
the comparison between the model estimation and the real data 
for an additional 7 days until 27 April 2021.

Figure 5. 7 days of future estimation of the SAIR model with lifelong immunity for periods and
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of the model for an additional 7 days, starting from 10 
January 2022. Once again, we found a compelling fit 
between the model and the real data, confirming the mod-
el’s reliability in projecting short-term trends and outcomes 
beyond the initial study periods.

In our pursuit of a more comprehensive understanding 
of the dynamics of COVID-19 and the efficacy of vaccina-
tion in Turkey, we have taken a step further by transform-
ing the modified SAIR model with lifelong immunity into a 
fuzzyfied environment. This transition introduces a degree 
of fuzziness into the model, providing us with a more flexi-
ble framework that can better account for the complexities 
and uncertainties associated with the real-world data.

The crisp vaccination parameter τ holds a central role 
in our model. It represents the effectiveness of vaccination 
efforts in reducing disease transmission. The value of τ 
directly influences how the model simulates the interplay 
between vaccinated and unvaccinated individuals in a pop-
ulation, affecting the overall disease dynamics. By extend-
ing this parameter into a fuzzy sense, we acknowledge that 
the real-world effectiveness of vaccination is not a fixed, 
precise value. Instead, it can vary in response to numerous 
factors such as vaccine coverage, vaccine hesitancy, and the 
emergence of new variants.

As displayed in Table 2, we have calculated crisp values 
for the vaccination parameter τ for two distinct periods, 
with values of 0.2179 for P1 and 0.3110 for P2. However, 
upon closer examination of the crisp solutions in Figure 6, 
we notice that some segments of these solutions deviate 
either above or below the real data points. This deviation 
suggests that the model’s performance could be further 
enhanced by exploring a range of values for the vaccination 
parameter τ during these specific periods, thus introduc-
ing a sense of fuzziness. By investigating these upper and 

lower bounds for the vaccination parameter τ, we aim to 
gain deeper insights into the vaccine’s real-world impact on 
disease dynamics. This approach not only makes our model 
more adaptable to the variable nature of COVID-19 but 
also better aligns it with the complexities of the fluctuations 
and dynamics of the pandemic.

In Figure  6, we explore the lowest and the highest 
bounds of the α-cuts for the parameter τ for P1, which 
range from 0.1179 to 0.3179. In the fuzzy environment, we 
can express this as  
where 0 ≤ α ≤ 1. Similarly, we examine the lowest and the 
highest bounds of the α-cuts for the parameter τ for P2, 
which span from 0.2110 to 0.4110. In fuzzy theory, we can 
state this as  where 
0 ≤ α ≤1. As a result, we observe that the real data points 
for both P1 and P2 fall within the curves defined by these 
upper and lower bounds. This observation highlights the 
dynamic nature of the fuzzy framework in addressing the 
variability and uncertainties associated with the real data. 
Consequently, it provides a more robust representation of 
the complex dynamics of the COVID-19 pandemic during 
these periods.

The Modified SAIR Model with Non-Lifelong Immunity
In this section, we replicate the computations performed 

for the modified SAIR model with lifelong immunity in 
the context of the modified SAIR model with non-lifelong 
immunity as shown in Figure 7. 

We estimate the model parameters using real data on 
active and recovered cases during periods P1 and P2, pre-
senting the parameter estimations in Table 3. It’s worth not-
ing that, as expected for SAIR models, the value of βA is 
greater than that of βI.

Figure 6a. Fuzzy environment for the period P1 with a 7-day future 
estimation. I, Iupper, and Ilower represent the crisp, upper-bound, 
and lower-bound solutions, respectively. The shaded region illus-
trates the model fitting to real data for the period P1 from March 
13 to April 20, 2021. The white region represents the comparison 
between the model estimation and real data for an additional 7 
days until 27 April 2021.  

Figure 6b. Fuzzy environment for the period P2 with a 7-day fu-
ture estimation. I, Iupper, and Ilower represent the crisp, upper-bound, 
and lower-bound solutions, respectively. The shaded region illus-
trates the model fitting to real data for the period P2 from 23 De-
cember 2021 to 10 January 2022. The white region represents the 
comparison between the model estimation and real data for an 
additional 7 days until 17 January 2022.

Figure 6. Simulation of the modified SAIR model with lifelong immunity using the vaccine effectiveness parameter τ in 
fuzzy environment for the periods P1 and P2.
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With the estimated parameters now available for both 
periods P1 and P2, we can proceed to compare the model’s 
performance with real data over an extended time frame. 
In Figure 8a, we continue our analysis for an additional 7 
days, commencing on April 20, 2021, immediately follow-
ing the conclusion of the period P1. This extension reveals a 
close alignment between the predictions of the model (solid 
lines) and the real data (data points).

We have similarly executed a parallel analysis for the 
period P2, as illustrated in Figure 8b, encompassing an addi-
tional 7 days starting from January 10, 2022. This extended 
analysis confirms the ability of the model to offer accurate 
predictions and highlights its effectiveness in capturing the 

dynamics of the COVID-19 outbreak, even beyond the ini-
tially studied periods. 

We now adapt the modified SAIR model with non-life-
long immunity to a fuzzy environment, extending the crisp 
vaccination parameter τ in a fuzzy context. As indicated in 
Table 3, the crisp values of the vaccination parameter τ are 
0.3926 and 0.2661 for periods P1 and P2, respectively. In 
Figure 6, some parts of the crisp solutions for both periods 
P1 and P2 exhibit values that are either above or below the 
real data. Consequently, we proceed to explore a range for 
the upper and lower bounds of the vaccination parameter τ 
for these specific time intervals.

Table 3. Parameter estimation of the modified SAIR model with non-lifelong immunity using the real data of active and 
recovered cases during the periods P1 from 13 March to 20 April 2021 and P2 from 23 December 2021 to 10 January 2022

βA βI γA γI δ τ α
P1 0.3823 0.0001 0.0001 0.0981 0.0354 0.3926 0.0074
P2 0.5072 0.3030 0.0167 0.0536 0.0192 0.2661 0.1296

      

Figure 7. The flow diagram and the model equations of the modified SAIR Model with non-lifelong immunity.

Figure 8a. 7 days of future estimation for the period P1. The 
shaded region illustrates the model fitting to real data for 
the period P1 from 13 March to 20 April 2021. The white 
region represents the comparison between the model esti-
mation and the real data for an additional 7 days until 27 
April 2021.

Figure 8b. 7 days of future estimation for the period P2. The 
shaded region illustrates the model fitting to real data for 
the period P1 from 23 December 2021 to 10 January 2022. 
The white region represents the comparison between the 
model estimation and the real data for an additional 7 days 
until 17 January 2022.

Figure 8. 7 days of future estimation of the SAIR model with non-lifelong immunity for period and
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In Figure  9, we establish the lower and upper bounds 
of the α-cuts for the parameter τ within P1, which span 
from 0.2926 to 0.4926. In fuzzy theory, this range can be 
expressed as  for 
0 ≤ α ≤ 1. A similar analysis applies to P2, where the param-
eter τ varies between 0.1661 and 0.3661, represented as 

 for 0 ≤ α ≤ 1. 
Consequently, the actual data for both periods P1 and P2 falls 
within the boundaries defined by these upper and lower limits. 

This comprehensive analysis has emphasized the capabil-
ities of fuzzy modeling in understanding the dynamics of the 
COVID-19 pandemic. By applying fuzzy frameworks to both 
SAIR models with lifelong and non-lifelong immunity, we 
have not only demonstrated the adaptability and versatility 
of these models in capturing real-world complexities but also 
highlighted their capacity to provide accurate predictions. 
The incorporation of fuzzy parameters, such as τ, has allowed 
us to better align model outputs with actual data, ultimately 
enhancing the reliability of our predictions. Additionally, our 
examination on the upper and lower bounds of the parame-
ter τ within the fuzzy environment has illustrated the sensi-
tivity of the model to this pivotal parameter, underscoring its 
importance in pandemic modeling.

CONCLUSION

The transmission of infectious diseases occurs in a 
diverse population. With epidemiological modeling, we 
can divide the heterogeneous population into subgroups or 
subpopulations, where each group can have similar charac-
teristics. SIR (Susceptible-Infected-Recovered) type models 
are compartmental models that can be expanded by incor-
porating new compartments and new parameters into the 

models. In this paper, we consider the SAIR (Susceptible-
Asymptomatic-Infected-Recovered) model, where the pop-
ulation is divided into four subgroups; namely susceptible 
(S), asymptomatic (A), infected (I), and recovered (R). The 
main idea of considering the infected individuals into two 
groups, asymptomatic (A) and infected (I), is due to the 
fact that some individuals do not show any symptoms of 
the disease but can spread the disease to others, thus cat-
egorizing them as asymptomatic individuals. Conversely, 
individuals who contract the disease and display symptoms 
can be identified and isolated from the broader society, cat-
egorizing them as symptomatic infected individuals.

In this paper, we modified the SAIR model in two 
distinct ways. The first version includes lifelong immu-
nity, where individuals who recover from the disease are 
protected from future infections. In contrast, the second 
version incorporates non-lifelong immunity, allowing indi-
viduals who have recovered to potentially become infected 
again. Both models involve multiple parameters that deter-
mine the transition rates between various components. In 
particular, we emphasize a crucial parameter related to the 
vaccination of the disease. Here we assume that the vac-
cinated individuals do not directly move to the recovered 
state. Significantly, the vaccine effectiveness parameter in 
these models is addressed from a fuzzy perspective due to 
its significant role in preventing the spread of the disease.

 Our study addresses into the assumption that vacci-
nated individuals do not directly transition to the recovered 
state within the SAIR model framework. This assumption is 
crucial as it acknowledges the possibility of vaccinated indi-
viduals contracting the disease despite vaccination. By not 
immediately moving vaccinated individuals to the recov-
ered state, we capture the temporal gap between vaccination 

Figure 9a. Fuzzy environment for the period P1 with a 7-day 
future estimation. I, Iupper, and Ilower represent the crisp, up-
per-bound, and lower-bound solutions, respectively. The 
shaded region illustrates the model fitting to real data for the 
period P1 from March 13 to April 20, 2021. The white region 
represents the comparison between the model estimation 
and real data for an additional 7 days until 27 April 2021.

Figure 9b. Fuzzy environment for the period P2 with a 7-day future 
estimation. I, Iupper, and Ilower represent the crisp, upper-bound, 
and lower-bound solutions, respectively. The shaded region il-
lustrates the model fitting to real data for the period P2 from 23 
December 2021 to 10 January 2022. The white region represents 
the comparison between the model estimation and real data for an 
additional 7 days until 17 January 2022.

Figure 9. Simulation of the modified SAIR model with non-lifelong immunity using the vaccine effectiveness parameter 
in fuzzy environment for the periods and
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and the development of immunity. This delay accounts for 
scenarios where vaccinated individuals may still be suscep-
tible to infection or transmission, thereby providing a more 
realistic illustration of disease dynamics in the presence of 
vaccination. This modeling approach enables us to explore 
the complexities of disease spread, particularly the potential 
for breakthrough infections among vaccinated individuals, 
and underscores the importance of vaccination effective-
ness in minimizing disease transmission. 

From the available data on COVID-19 cases in Turkey, 
we derive the parameters for the two modified SAIR mod-
els. It is important to note that we have access to only two 
types of real data; infected and recovered cases, as provided 
by the Ministry of Health. However, our models consist 
of four compartments. To bridge this gap, we calculate 
the number of active cases, as daily infected cases do not 
precisely correspond to the active cases used in the SAIR 
model. This involves creating the active case data set by 
subtracting the number of deaths and recovered cases from 
the total infected cases.

Based on the estimated model parameters, it is worth 
mentioning that the transition rate of the asymptomatic 
compartment βA is higher than that of the symptomatic 
compartment βI. This observation aligns with the under-
standing that the virus is predominantly transmitted by 
asymptomatic individuals from a biological standpoint. 
Additionally, our model simulations closely match the data 
for Active and Recovered cases. Furthermore, the 7-day 
future predictions are consistent with the data provided by 
the Ministry of Health in Turkey. This reflects the model’s 
effectiveness in capturing and predicting the dynamics of 
the COVID-19 pandemic.

Introducing fuzziness into the model has effectively 
accommodated real data within the range defined by the 
upper and lower bounds of the simulations. This approach 
simplifies the management of infected individuals, leading 
to earlier diagnoses and financial benefits. Working within 
a fuzzy environment consistently provides valuable new 
insights and information in disease research. Furthermore, 
implementing fuzzy models can reduce healthcare costs 
and allocate resources more efficiently, benefiting health-
care systems and alleviating economic burdens.
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