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ABSTRACT

Bone fractures are common injuries that need timely and accurate diagnosis. Conventional 
diagnostic procedures, such as X-ray imaging, are critical in finding fractures, but they usually 
depend on manual interpretation, which can lead to human errors and inefficiency. To solve 
these issues, our study intends to create an automated method for detecting bone fractures us-
ing machine learning and image processing. This method consists of several phases, including 
feature extraction, edge detection, pre-processing, as well as machine learning categorization. 
In addition to identifying the existence of a broken bone in X-ray pictures, this system will la-
bel the position of several fracture types within the image. To achieve high accuracy, a modern 
object recognition algorithm is trained using a collection of X-ray pictures. By uploading their 
x-ray photos to the platform, customers will be able to examine and detect fractures remotely
thanks to a website that has been built. The model achieved an accuracy of 76% and processed 
images at an average speed of 30 ms per image.
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INTRODUCTION

X-ray imaging is a widely utilized technique in the
medical field for the diagnosis of various medical condi-
tions, including bone fractures, lung diseases, and tumours. 
However, the interpretation of X-ray images can be a com-
plex and time-consuming task, particularly for radiologists 
who lack experience or are burdened with heavy work-
loads. Consequently, there is a pressing need to expand 
computerized and precise methods for X-ray examination 

that can assist healthcare professionals and enhance patient 
outcomes.

In the pursuit of this goal, prior studies have made nota-
ble contributions in the field. For instance, in reference 
[1], highlights that the Support Vector Machine (SVM) 
algorithm achieved the highest accuracy in their research. 
Additionally, Sreelakshmi [2] investigated using MATLAB 
7.8.0 as an application package for images capturing, pro-
cessing, and UI enhancement, whereas Rajesh Raman and 
associates [3] achieved a respectable 85% level of accuracy 
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in bone fracture detection. 10 deep learning algorithms 
were employed in their investigation to identify fractures, 
and the outcomes were then compared. Various augmenta-
tion techniques were tested, and the most suitable method 
for X-ray images was identified [4].

In developed regions, experienced radiologists accu-
rately interpret X-ray images, while smaller hospitals in 
underdeveloped areas may lack skilled surgeons [5]. This 
shortage of radiologists can delay patient care, impacting 
surgical success rates. Recent studies show a 26% increase 
in misinterpreted X-ray images [6]. In recent times, object 
detection models have gained significant attention and 
have been increasingly utilized for fracture detection [7], 
a widely explored subject in the realm of computer vision 
(CV) [8]. In the field of object detection, deep learning tech-
niques have become the leading approach. These methods 
utilize neural networks to automatically learn and extract 
features from images, enabling precise identification of 
objects, including fractures [9]. Deep learning methods can 
be categorized into two-stage and one-stage algorithms. 
In the case of two-stage algorithms [9,10], exemplified by 
R-CNN and The odds of its variations, location, and class 
are determined in two steps. On the other hand, one-
stage techniques generate these probabilities immediately, 
improving the speed of model inference [11,12].

In this research, we used the GRAZPEDWRI-DX data-
set to instruct the model through the YOLOv8 method. 
Then, based on experimental data, a comparative study 
was conducted with different models [13], and the results 
showed that our model had the greatest mean average accu-
racy (mAP 50) as well as F1 score value. 

Inspired to develop a strong deep learning framework 
built around YOLOv8 that can locate fractures in bones 
within x-ray pictures, we suggest a website that allows users 
to view and diagnose fractures from a distance. Our work’s 
primary contributions may be summed up as follows:

The main goal of this Endeavour is to develop the model 
that can recognize fractures in x-ray pictures. The main 
objective is to reduce the possibility of mistakes during 
X-ray image interpretation by helping surgeons analyze 
X-ray pictures on their own. 

The YOLOv8 model is now performing better than 
before. Based on the GRAZPEDWRI-DX dataset, our 
model has the greatest average mean accuracy in fracture 
identification, according to the experiment findings. Finally, 
we created a website that enables customers to upload their 
x-ray pictures to the platform and remotely see and locate 
fractures in those photos. The aim of the present work is 
to Develop a robust and efficient model for bone fracture 
detection using YOLOv8 aims to significantly enhance 
accuracy compared to existing methods. This involves close 
collaboration with medical professionals to ensure the sys-
tem’s clinical relevance and practicality. The goal is to accu-
rately identify various types of bone fractures from X-ray 
images using a trained deep learning model, ensuring the 
model’s broad applicability across multiple body parts and 

diverse medical scenarios. Additionally, a user-friendly web 
application will be designed to allow medical professionals 
and users to remotely access and detect fractures in X-ray 
images with ease, thereby improving accessibility and con-
venience in fracture diagnosis2. 

Literature Survey
The study aims to propose a system using x-ray images 

to identify hand bone fractures quickly and accurately [15]. 
The system detects and classifies fractures using machine 
learning and image processing techniques. It uses super-
vised learning with labelled examples of transverse and 
oblique fractures to classify instances [14]. The system 
starts by collecting labelled x-ray hand images, including 
both normal and fractured hands. These images are fil-
tered to reduce noise and edge detection methods are used 
to identify the edges. The images are then transformed 
into features. Classification algorithms are created based 
on these features. The system’s effectiveness and precision 
are evaluated through testing procedures. T.K. Hazra and 
S. Dutta proposed a method for classifying bone fractures 
based on GLCM values and other features, achieving algo-
rithmic accuracy [16].The latest in the YOLO series, YOLO 
(V7), significantly improves detection speed and accuracy, 
with E-ELAN recommended for enhancing learning capac-
ity [17]. The two primary stages of the method that Kamil 
Dimililer suggested are processing and categorization. 
During the processing stage, fracture areas and improve 
picture quality using methods like SIFT feature extraction 
and Haar Wavelet transformations. Matlab is employed for 
system implementation and simulation [18]. In x-ray pic-
tures, broken bones are identified faster using RCNN and 
then classified using a more precise identification method 
[19].

Rui-Yang Ju and Weiming Cai present a way to use 
data enhancement on the original data set to improve the 
YOLOv8 model’s performance [20]. Hang Min and his col-
leagues work explores the feasibility of Deep Learning (DL) 
for Distal Radius Fracture (DRF) classification but notes 
limitations due to small datasets and inter-observer vari-
ance [21]. Although DL algorithms perform on par with 
physicians, there are still issues with their clinical applica-
tion. These can be resolved by using sophisticated visualiza-
tion techniques, comprehensive clinical data interpreting, 
treatment suggestions, and enhanced interpretability [22]. 
FPNs are commonly employed to address variance in object 
sizes utilizing several layers of feature maps in identifying 
objects, especially crack detection in PXR. We also explore 
the ‘Bag-of-words’ model for picture classification and 
Haralick’s statistical equations for texture description [23-
25]. On the other hand, not much research has been done 
on using the YOLO model to identify fractures. This study 
uses the technique that Ultralytics announced in 2023 to 
train the model in order to detect fractures in x-ray pictures 
[26]. 
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MATERIALS AND METHODS

In this work, we use the You Only Look Once (YOLO) 
object identification framework to accurately identify frac-
tured bones in x-ray pictures by their specific location and 
position. By utilizing Yolov8’s enhanced accuracy in object 
recognition and localization tasks, we want to significantly 
improve medical imaging processes and raise the bar for 
fracture diagnosis in medical pictures. YOLO v8 Modified 
Architecture as shown in figure 1.

Dataset
The Medical School at the University of Graz has made 

available the GRAZPEDWRI-DX dataset, It comprises 
20,327 X-ray pictures of pediatric wrist injuries. Several pedi-
atric radiologists from University Medical Institute Graz’s 
Institute for Orthopaedic Surgery gathered these pictures 
during a ten-year period, from 2008 to 2018. The dataset, 
which has bounding boxes added to the photographs to rep-
resent different circumstances, is annotated in nine different 
classifications and is available to the public [27]. 

Data Augmentation
To increase the size of our dataset throughout the mod-

el-training process, we used data augmentation approaches. 
Specifically, we manipulated in the original X-ray images’ 
contrast and brightness to enhance the visibility of bone 
anomalies.

YOLOv8 Representation
YOLOv8 served as an initial model for our investiga-

tion. The most recent model in the YOLO lineup of real-
time image detection systems, YOLOv8, offers cutting-edge 
precision and quickness. YOLOv8 is an excellent choice for 
detecting fractures of bones in x-ray pictures since it builds 

on the advances achieved in previous versions of YOLO and 
adds new features and improvements. 

YOLOv8 incorporates the latest designs in backbone 
and neck architectures, enhancing its ability to extract 
features and detect objects. Compared to conventional 
anchor-based techniques, the model’s anchor-free splits 
Ultralytics head improves accuracy and streamlines the 
detection process [28]. YOLOv8 is perfect for real-time 
object identification in a variety of applications since it is 
designed to balance processing speed and precision. With 
YOLOv8, a variety of pre-trained models are offered, offer-
ing customized solutions for various jobs and performance 
requirements. The four key parts of the YOLOv8 algo-
rithm’s architecture are the lost function, neck region, the 
head, and backbone:

Backbone
In YOLOv8 model it uses a customized version of the 

CSPDarknet53 architecture as its backbone. The primary 
job of the backbone is to extract significant characteristics 
from the input image [29]. It does this by identifying basic 
patterns in the initial layers and adjusting to different scales 
of representation as the network progresses. This hierarchi-
cal representation is crucial for accurate object detection.

Neck
The neck is a crucial link connecting the backbone and 

head, performing feature fusion, integrating contextual 
information, and reducing dimensionality. It combines 
features from different scales, improves object detection at 
varying resolutions, considers broader scene context, and 
reduces data resolution and dimensionality for faster com-
putation. However, this reduction may affect the model’s 
quality [30].

Figure 1. YOLO v8 modified architecture.
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Head
The YOLOv8 network’s final component is the head, 

which produces bounding boxes, confidence scores, and 
object categories for identified objects. The head generates 
bounding boxes for potential objects, assigns confidence 
scores to each box, and categorizes the objects based on 
their respective categories. This enables the identification 
of specific objects within the scene [31].

YOLOv8 is a single-stage object detector that consists 
of three main components: backbone, neck, and head. The 
backbone is a convolutional neural network that extracts 
features from the input image. The neck is a collection of 
neural network layers that combines and mixes features to 
pass it to the next stage for prediction. The head is the final 
output layer that consumes features from the neck and cre-
ates prediction outputs.
•	 Backbone: In YOLOv8, the backbone serves as a criti-

cal component responsible for extracting features from 
input images. YOLOv8 employs ResNeXt as its backbone 
architecture, a cutting-edge convolutional neural net-
work (CNN) design that builds upon the foundation of 
ResNet. ResNeXt introduces innovative enhancements 
to the traditional ResNet architecture, primarily through 
the implementation of grouped convolutions and a split-
transform-merge strategy. Grouped convolutions allow 
ResNeXt to divide the input channels into multiple groups 
and perform convolutions independently within each 
group. This strategy facilitates richer feature representa-
tions by encouraging diverse feature learning across differ-
ent groups. The split-transform-merge strategy employed 
by ResNeXt involves splitting the input feature maps into 
smaller subsets, transforming them through separate 
pathways, and then merging the transformed features back 
together. This approach enhances feature diversity and 
encourages cross-channel interactions, leading to more 
expressive feature representations. Importantly, ResNeXt 
achieves these improvements in model capacity and gener-
alization capabilities without significantly increasing com-
putational complexity. By leveraging grouped convolutions 
and the split-transform-merge strategy, ResNeXt enhances 
feature extraction efficiency and enables the backbone to 
capture more discriminative features from input images. 

•	 Neck: In YOLOv8, the neck plays a pivotal role as an 
intermediary between the backbone and the head, facil-
itating seamless information flow and enhancing the 
model’s capabilities. Employing the Spatial Pyramid 
Pooling Fusion (SPPF) structure, the neck in YOLOv8 
is designed to perform several essential tasks.

•	 Feature fusion: One of the primary functions of the 
neck is to merge features from multiple scales. By inte-
grating features extracted at different spatial resolu-
tions, YOLOv8 can effectively detect objects of varying 
sizes within the input images. This feature fusion pro-
cess enables the model to maintain robustness across a 
wide range of object scales, enhancing its overall detec-
tion performance.

•	 Contextual information: Another critical task of the 
neck is to incorporate contextual information from the 
surrounding scene. By considering the broader context 
in which objects are situated, the neck enhances the 
model’s understanding of the scene, leading to more 
accurate and contextually informed object detection. 
This contextual awareness enables YOLOv8 to make 
more informed decisions when identifying and localiz-
ing objects within complex scenes.

•	 Dimensionality reduction: While maintaining com-
putational efficiency, the neck in YOLOv8 performs 
dimensionality reduction on the fused features. By 
reducing the spatial resolution of the feature maps, the 
neck effectively compresses the information while pre-
serving essential semantic details. This dimensionality 
reduction process optimizes computational resources 
and facilitates efficient processing of features during 
subsequent stages of the model.

•	 Head: In YOLOv8, the head serves as the final stage of 
the object detection pipeline, responsible for producing 
the model’s ultimate predictions. Comprising multiple 
convolutional layers followed by fully connected layers, 
the head operates on the fused features provided by the 
neck to generate the final output. This component of the 
model performs several crucial functions:

•	 Bounding Box Prediction: The head predicts bound-
ing boxes that delineate the spatial extent of detected 
objects within the input image. These bounding boxes 
define the regions of interest where objects are localized.

•	 Confidence Score Assignment: For each predicted 
bounding box, the head assigns a confidence score that 
reflects the model’s confidence in the accuracy of the 
prediction. This score indicates the likelihood that the 
predicted bounding box contains a valid object.

•	 Object Categorization: Additionally, the head catego-
rizes detected objects into specific classes or categories, 
such as “person,” “car,” or “dog.” This classification step 
enables YOLOv8 to provide not only the location of 
objects but also their semantic labels.

•	 Loss: In YOLOv8, the loss function plays a crucial role 
in guiding the training process by quantifying the dis-
parity between predicted values generated by the model 
and the ground truth annotations associated with the 
training data. YOLOv8 employs a combination of loss 
terms to effectively train the model:

•	 Localization loss: This loss term evaluates the accuracy 
of the bounding box predictions made by the model. 
It measures the discrepancy between the predicted 
bounding box coordinates and the ground truth bound-
ing box coordinates, thereby guiding the model to accu-
rately localize objects within the input image.

•	 Confidence loss: The confidence loss assesses the confi-
dence scores assigned to the predicted bounding boxes. 
It quantifies the model’s certainty or confidence in its 
predictions, penalizing inaccurate confidence scores 
and encouraging the model to assign higher confidence 
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to accurate detections while penalizing false positives 
and false negatives.

•	 Class loss: This component of the loss function ensures 
the accurate classification of detected objects. It mea-
sures the disparity between the predicted class proba-
bilities and the ground truth class labels associated with 
each bounding box. By penalizing misclassifications 
and encouraging correct classifications, the class loss 
term guides the model to accurately identify the seman-
tic labels of detected objects.
The overall loss used in YOLOv8 training is a weighted 

sum of these individual loss components. By combining 
localization, confidence, and class losses in a weighted 
manner, YOLOv8 optimizes the model parameters during 

training to minimize the overall loss and improve its per-
formance in object detection tasks.

The Medical University of Graz has released the 
GRAZPEDWRI-DX37 dataset, consisting of 20,327 X-ray 
images depicting wrist trauma in pediatric patients. These 
images were collected over a decade, from 2008 to 2018, 
by a team of pediatric radiologists at the Department of 
Pediatric Surgery in the University Hospital Graz. All 
radiographs have been de-identified, and the DICOM pixel 
data has been converted to 16-Bit grayscale PNG images. 
The filenames and accompanying text files provide basic 
patient information such as age and sex. Multiple pediat-
ric radiologists annotated the dataset images by delineating 
pathologies like fractures or periosteal reactions using lines, 
bounding boxes, or polygons, as well as tagging general 

Figure 3. Algorithm for experimentation.

Figure 2. X-ray images for experimentation.
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image characteristics. The dataset is meticulously catego-
rized into nine distinct classes, with bounding boxes out-
lining the regions of interest.

We randomly segment the GRAZPEDWRI-DX data-
set into three subsets: a training set, a validation set, and 
a test set, constituting roughly 70%, 20%, and 10% of the 
original dataset, respectively. Specifically, the training set 
encompasses 14,204 images (about 69.88%), the validation 
set includes 4,094 images (about 20.14%), and the test set 
contains 2,029 images (about 9.98%) as shown in Figure 2. 
It is important to note that each split is generated randomly 
and therefore cannot be reproduced.

Challenges encountered include class imbalance, where 
certain types of fractures were underrepresented. This was 
addressed using oversampling and data augmentation. 
Additionally, variability in image quality due to different 
X-ray machines was mitigated through contrast adjustment 
and normalization techniques.

It was conducted an error analysis to understand com-
mon misclassifications and suggest ways to mitigate these 
errors as shown in figure 3.

EXPERIMENTATION

We employ the YOLOv8 model during the model’s 
training procedure. We established 200 as the overall num-
ber of epochs. While our current model parameters were 
chosen based on initial performance benchmarks and com-
putational constraints, further tuning and the inclusion of 
more sophisticated features could enhance accuracy. Future 
work will explore hyperparameter optimization and the 

integration of additional data attributes to validate this 
hypothesis. Preliminary tests with different parameter sets 
have shown promise, indicating a possible increase in accu-
racy, though these are still in the exploratory phase.
•	 Accuracy: Accuracy = (TP + TN) / (TP + TN + FP + FN) ​
•	 Precision: Precision = TP / (TP + FP)​
•	 Recall: Recall = TP / (TP + FN) ​
•	 F1-Score: F1 = 2×Precision×Recall / Precision + Recall ​

These formulae will be accompanied by explanations of 
their relevance to the evaluation of the model’s performance.

Intersection over Union (IoU)
The intersection over Union (IoU), a commonly used 

metric in object identification, measures the degree of overlap 
between the projected bounding box and the ground truth. 
The higher the IoU, the more accurate the prognosis [31]. 

The Precision-Recall Curve (P-R Curve)
Plotting on the x-axis recall versus on the y-axis pre-

cision, each point on the P-R Curve represents a distinct 
threshold value. Recall is the responsiveness of the method, 
demonstrating its capacity to identify all pertinent exam-
ples; In contrast, precision represents the proportion of 
accurate positive forecasts. 

F1-score
This measure, which provides a balanced estimation 

of the model accuracy, is described as combining recall 
and precision, Precision and Confidence, Recall and 
Confidence, F1 score Confidence Curve into one figure 
4, 5, 6 and 7 simultaneously.. Because it takes into consid-
eration the two types of error and incorrect results in its 

Figure 4. Precision-recall curve.
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computation, the F1-score is especially helpful in situations 
when the category allocation is asymmetrical. 

Web App
 Upon finishing the training of the model, we make use 

of a Python framework called Streamlit, for the creation of 

a web application. Streamlit is an open-source framework 
for quickly creating visually appealing web applications for 
machine learning and data science. This Python library is 
designed specifically for machine learning engineers. Our 
model has been converted to the onnx format and inte-
grated into the web application. The working of the web 

Figure 6. Recall-confidence curve.

Figure 5. Precision-confidence curve.
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Figure 7. F1 score confidence curve.

Figure 8. Demonstration of utilizing the web application for remotely detecting fractures.
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application is illustrated in Figure 10. The application, titled 
“Bone Fracture Detection,” allows users to upload images, 
make predictions by adjusting the threshold slider, and 
download the results. In essence, the application is intended 
to aid surgeons in analyzing fractures in x-ray images.

RESULTS AND DISCUSSION

We assessed the YOLOv8 model’s capacity to iden-
tify fractures in x-ray pictures of human wrists in our 
investigation. We assessed the reliability of our YOLOv8 
program against other advanced models based on the 
GRAZPEDWRI-DX dataset, and the model demonstrated 
exceptional performance. When compared to earlier mod-
els, our YOLOv8 model continuously showed better accu-
racy in diagnosing bone fractures. We assessed accuracy 
criteria including recall, precision, and F1-score to demon-
strate the versatility and efficacy of our method across a 
range of fracture patterns. 

Table 1 shows the comparison of our model with 
YOLOv5, YOLOv7, YOLOv7 using Convolution Block 
Attention Module (CBAM), along with YOLOv7 algo-
rithm using Global Attention Mechanism (GAM) in terms 
of mAP, precision, recall, and F1 values. The outcomes 
unequivocally show that our model outperforms other 
models with the greatest values of performance metrics.

The creation of an application for mobile devices espe-
cially intended for the identification for fractures in x-ray 
pictures is the main objective of this work. We use a fracture 

Figure 10. Illustrations of detecting fractures on X-ray im-
ages (images predicted by the model).

Figure 9. Illustrations of detecting fractures on X-ray images (images labeled manually).
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detection framework for our method. The results shown in 
Figure 8 and 9 shows a contrast between the outcomes our 
model anticipated and the ones that came from radiologists’ 
manual annotation. The results unambiguously show that 
our approach performs better when it comes to detecting 
fractures in situations where there is just one fracture. It 
is crucial to remember that in situations when there are 
numerous, dense fractures, forecast accuracy are affected.

Our results indicate that the YOLOv8 model can sig-
nificantly reduce diagnostic times in clinical settings, pro-
viding near-instantaneous fracture detection. However, 
limitations include the model’s dependency on high-qual-
ity images and potential performance variability across dif-
ferent patient demographics. To address these limitations, 
future work will involve extensive testing in diverse clini-
cal environments and the development of adaptive mod-
els that can handle varying image qualities. Our findings 

demonstrate that the YOLOv8 model not only outperforms 
previous models in terms of mAP but also offers practical 
improvements in speed and accuracy, which are critical in 
clinical settings. This enhanced performance can greatly 
aid in timely and accurate diagnosis of pediatric wrist frac-
tures, especially in emergency departments where rapid 
decision-making is crucial. 

We have also compared our results with existing litera-
ture. For example, the study by Rui-Yang Ju and Weiming 
Cai reported a mAP of 0.634 using an improved YOLOv7 
model. Our YOLOv8 model’s superior performance with a 
mAP of 0.762 underscores the advancements made in our 
approach. These results highlight the effectiveness of our 
model in detecting fractures, potentially reducing the rate 
of missed diagnoses. The confusion matrix for distribution 
of false positives and false negatives is shown in Figure 11.

Table 1. Model compatibility result

Model Precision Recall F1 mAP 50
YOLOv5 0.682 0.581 0.607 0.626
YOLOv7 0.556 0.582 0.569 0.628
YOLOv7 (CBAM) 0.709 0.593 0.646 0.633
YOLOv7 (GAM) 0.745 0.574 0.646 0.634
Ours 0.801 0.712 0.753 0.762

Figure 11. The confusion matrix for distribution of false positives and false negatives.
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In terms of clinical relevance, we discussed the practi-
cal applications of our model. The high accuracy and speed 
of the YOLOv8 model can significantly assist clinicians in 
diagnosing fractures accurately and quickly. This is partic-
ularly beneficial in smaller hospitals with limited radio-
logical expertise. Moreover, integrating our model into 
mobile diagnostic tools can provide real-time assistance 
to surgeons and radiologists, thereby improving patient 
outcomes.

We have also addressed the limitations of our study 
more thoroughly. One limitation is the size of the 
GRAZPEDWRI-DX dataset. We acknowledge that larger 
and more diverse datasets are necessary for more robust 
validation. Additionally, while our model performs well in 
detecting fractures, it still faces challenges in distinguishing 
subtle fracture patterns, which we aim to address in future 
work.

Looking ahead, we propose several future research 
directions. We plan to expand our dataset to include more 
diverse patient populations and fracture types. We also aim 
to integrate additional imaging modalities, such as MRI 
and CT, to enhance the diagnostic capabilities of our model. 
Furthermore, exploring the application of our model in 
detecting fractures in other parts of the body and integrat-
ing it into comprehensive diagnostic tools will be valuable 
avenues for future research. 

CONCLUSION

The suggested YOLOv8 and image processing-based 
bone fracture identification system can accurately detect 
fractures from X-ray pictures. Although the YOLOv8 model 
has not received much attention in the field of medical 
image interpretation, In order to enhance the model’s per-
formance, we have employed it for fracture detection and 
included methods for augmenting data. Furthermore, we 
have created a web application which is intended to analyze 
-ray pictures in order to locate fractures. Our application’s 
main goal is to help surgeons correctly interpret these x-ray 
pictures, which will lower the possibility of a misdiagno-
sis and, in the end, provide a more thorough informational 
framework for surgical treatments. The program is being 
hosted locally for the time being, but we want to deploy it 
eventually. Once our program is implemented, It will make 
it possible for inexperienced surgeons in underdeveloped 
nations to study x-ray pictures on their mobile devices.
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