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ABSTRACT

The primary objective of the present study is to investigate the influence of magnetohydrody-
namic (MHD) flow and heat transfer behavior of Jeffrey fluid under natural convection within 
a square cavity filled with a permeable matrix. This investigation is significant because enhanc-
ing heat transfer capabilities in systems such as nuclear reactor cooling is crucial for ensuring 
efficient thermal management. The cavity is configured with cold vertical walls, an adiabatic 
top surface, and a heated bottom surface, while a constant vertical magnetic field is applied at 
the left wall. The momentum transfer in the permeable matrix is modelled using the Darcy–
Forchheimer approach, and the Galerkin finite element method (GFEM) is employed within 
COMSOL Multiphysics 6.1 to solve the governing equations. The study examines a range of 
Rayleigh numbers (10³ ≤ Ra ≤ 106), Darcy numbers (10-5 ≤ Da ≤ 10-3), and Hartmann num-
bers (10 ≤ Ha ≤ 40), providing a detailed analysis of the Nusselt number, velocity distribution, 
isocontours, isotherms, temperature profiles, and stream functions. Key findings of the study 
reveal that as the Hartmann number increases, the velocity distribution exhibits a monotonic 
rise which indicating the strong influence of the magnetic field on flow dynamics. Numerical 
results of the study demonstrate that with an increase in the Hartmann number (Ha) from 10 
to 40, the average Nusselt number on the hot wall decreases from 13.645 to 12.380 at a Rayleigh 
number (Ra) of 106 indicate a reduction in heat transfer efficiency due to the damping effect of 
the magnetic field. For lower Rayleigh numbers (Ra = 103) the Nusselt number remains nearly 
constant around 5.728 across varying Hartmann numbers which shows that the magnetic field’s 
impact is less significant under weaker convective conditions. The results of the study show a 
high degree of consistency with previous studies, demonstrating the robustness of the numerical 
approach. This work advances the understanding of MHD natural convection with Jeffrey fluids 
by offering specific, quantitative insights that go beyond previous literature, particularly in the 
context of optimizing heat transfer in engineering applications. The novelty of present findings 
are particularly relevant to geophysical applications, such as modeling the movement of magma 
in volcanic cavities, as well as industrial processes like polymer mixing.
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INTRODUCTION

Heat may move from one fluid to another or from 
one surface to a fluid that flows over it via bulk flow or 
mixedmolecule diffusion. Convection is the term for this 
action. The heat transport in convection was calculated 
via Newton’s law of cooling [1, 2]. Since natural convec-
tion heat transfer is frequently employed in engineering 
systems, much research has been conducted on this topic. 
Natural convection is a thermofluidic process that moves 
heat across temperature gradients because of buoyancy.The 
physics of natural convection and computer analysis are 
fundamental to many industries, including the cooling of 
heat-generating components, solar energy gathering, heat 
exchanger design, metrology, building insulation, crystal 
formation, and the nuclear industry [3, 4].

The phenomenon of heat transmission has numerous 
applications in science, engineering, and industry, making 
it a valuable research topic. As a scenario, heat is dissipated 
by electronic equipment, which in turn drives the textile 
industry, building cooling and heating systems, automobiles, 
phase-change materials, etc. Due to the aforementioned uses, 
academics are now interested in studying heat transport 
mechanisms through theoretical and experimental investi-
gations, which will save time and money. The emphasis of 
research has shifted within this paradigm to effective means 
of heat transfer across Newtonian and non-Newtonian fluids 
in a range of geometries [2, 5–10]. Newtonian fluids are no 
longer regarded as appropriate, as non-Newtonian fluids are 
utilized in technical and engineering applications. These flu-
ids are employed in a wide range of technological and indus-
trial processes, such as the extraction of petroleum products 
from crude oil, food processing, biotechnology, and drilling 
activities [11]. This has increased scientists’ curiosity about 
the intricacy of non-Newtonian fluids. Stress causes a vari-
ety of materials to vary in viscosity, including blood, honey, 
ketchup, egg whites, mayonnaise, paints, slurries, and melting 
chocolate. These materials also behave in a non-Newtonian 
manner. Since the flow behavior of non-Newtonian fluids 
is complicated, their characteristics cannot be sufficiently 
represented by a single model. Researchers have sometimes 
created a variety of flow models, the Maxwell model [12] 
including the power-law model [13], the Jeffrey model [14, 
15], and other viscoplastic flow models, in an effort to better 
understand the process behind the movement of these fluids. 
A thorough analysis of fluid flow and heat pattern migration 
is necessary in both simple and complicated systems.

Numerous scholars have used theoretical analysis and 
numerical experimentation to study natural convection in 
a variety of cavities. Raisi [16] investigated non-Newtonian 
fluid flow inside a square cavity under natural convection 
with a heat source at the bottom of the square enclosure. 
The findings of the study were that the average Nusselt 
number increases for shear-thinning fluids and decreases 
for shear-thickening fluids compared with Newtonian flu-
ids. In addition to magnetic flux, Dimitrienko [17] reported 

that the angle of inclination has a significant effect on flow 
and heat transmission. The digital investigation of free con-
vection caused by a thermally driven flow in the presence of 
an angled magnetic flux, taking into account the effects of 
Rayleigh Ra, Hartmann Ha, and flux angles, was conducted 
by Liao et al. [18]. Their findings revealed that the direction 
of the applied magnetic flux had a significant effect on the 
streamlines and isotherms. Additionally, as the Hartmann 
number increased and the applied magnetic field became 
stronger, the mean Nusselt Nu and maximum streamline 
function decreased.Laminar magnetohydrodynamic free 
convection of a non-Newtonian fluid in a square box with a 
constant magnetic flux in several directions. 

Because of their many technological uses, heat trans-
fer and other non-Newtonian fluid flows have attracted 
increasing research attention. The shear stress‒strain rela-
tionships for these fluids are very different from those of 
the typical Newtonian model. Several mathematical mod-
els have been proposed to explain the various properties 
of non-Newtonian fluids. Numerous sectors, such as solar 
energy, aviation, and the military, employ holes extensively. 
This type of heat exchanger, which employs non-Newto-
nian fluids, has been studied by several academics [19–24]. 
Owing to their widespread usage, non-Newtonian fluids 
have been the subject of studies on heat transfer in cavities 
filled with them [25–28].

Jeffrey fluid flow has numerous applications in numer-
ous technical domains. Jeffrey fluid is extensively used in 
the polymer industry and in industrial fluids, including 
paint, paper, ketchup, and toothpaste. The magneto hydro-
dynamics (MHD) flow study views the fluid as electrically 
conducting, in contrast to conventional hydrodynamic 
flow. Moreover, it is not magnetic; rather, the item itself 
is not affected by electric currents; rather, the magnetic 
field is. A few current research endeavors pertaining to 
MHD include the fields of aerodynamics, flow manage-
ment, metal forming, communications, high-speed aero-
dynamics, cooling nuclear reactors, plasma containment, 
propulsion and power generation, and electrical compo-
nent transmission lines. A wide range of technical fields 
heavily depend on the usage of MHD phenomena, such as 
plasma research [29],boundary layer drag reduction [30], 
unswerving numerical simulations [31] medical science 
[32, 33],and seawater propulsion [34]. The instinct system 
of cilia motion has been deliberated specifically using the 
MHD flow of the Jeffrey flow model, metal extrusion pro-
cesses, metallurgical material processing, chemical engi-
neering flow control, oscillating current [35] and peristalsis 
flow [36-38]. Numerous industrial processes, including 
material production, continuous strip and filament cool-
ing, and the distillation of molten metals and nonmetallic 
enclosures, rely heavily on a uniform magnetic field. A few 
MHD Jeffrey flow investigations with various geometries 
are available [39–44].”

Magnetohydrodynamic (MHD) flows have garnered 
significant interest due to their wide-ranging applications 
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in engineering and natural processes. While MHD effects 
on Newtonian fluids have been extensively studied, there 
is a noticeable gap in the literature regarding non-Newto-
nian fluids, particularly within porous media under natu-
ral convection conditions. This gap is significant given the 
relevance of non-Newtonian fluids, such as Jeffrey fluids, 
in modelling complex scenarios like magma movement 
in volcanic cavities and industrial processes involving 
polymer mixing. Previous research has focused primar-
ily on simplified conditions that do not capture the intri-
cacies of real-world applications, leaving the interaction 
between MHD and non-Newtonian fluids underexplored. 
To address this research gap, the present study investi-
gates the effects of MHD on Jeffrey fluids within a porous 
square cavity. Utilizing COMSOL Multiphysics 6.1, the 
study solves the intricate, nonlinear governing equations 
through the Galerkin finite element method (GFEM). The 
analysis is extended to other non-Newtonian fluids, includ-
ing Casson and Carreau fluids, and explores the impact of 
varying thermal and magnetic boundary conditions, as well 
as time-varying and spatially varying magnetic fields. This 
research enhances the understanding of complex interac-
tions between fluid rheology, magnetic fields, and porous 
media, providing insights crucial for optimizing both natu-
ral and industrial processes.

PHYSICAL PROBLEM

Description of the Model
The current physical formulation aims to investigate the 

natural convection flow and heat transfer in a porous square 
enclosure filled with a non-Newtonian fluid with a constant 

magnetic field. Figure 1 shows a geometrical depiction of 
the cavity and the coordinate system. The temperatureTh 
preserves the lower wall. Tc, the sidewall of the hollow is 
maintained cool. It is assumed that the upper wall is adia-
batic. A constant magnetic field of strength B0 is applied to 
the left wall. Boussinesq’s approximation is used to satisfy 
the density in the buoyancy component, which suggests 
that the fluid’sphysical and chemical properties of the fluid 
and the porous media are taken for granted. Additionally, 
the fluid and porous media characteristics remain constant. 
The Darcy‒Forchheimer model describes momentum 
transfer in porous materials.

Governing Equations
The conservation of mass, momentum, and energy 

is used in the following governing equations for steady 
two-dimensional natural convection flow in a porous cav-
ity [26, 45].

  (1)

  (2)

  (3)

  (4)

with restricted circumstances

 u(x,0) = 0; u(x,L) = 0; u(0,y) = 0; u(L,y) = 0; (5)

Figure 1. Schematic diagram of the physical system.
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 v(x,0) = 0; v(x,L) = 0; v(0,y) = 0; v(L,y) = 0; (6)

 T(x,0) = Th; (x,L) = 0; T(0,y) = Tc; T(L,y) = Tc (7)

The following transformations can be used to obtain the 
dimensionless governing equations:

  

(8)

The resulting dimensionless partial differential equa-
tions can be expressed as

  (9)

  (10)

  (11)

  (12)

The beginning and boundary conditions are given in 
nondimensional form.”

 U(X,0) = 0; U(X, 1) = 0; U(0,Y) = 0; U(1, Y) = 0; (13)

 V(X,0) = 0; V(X, 1) = 0; V(0,Y) = 0; V(1, y) = 0; (14)

  
(15)

where (u, v) represent the fluid velocity components in the 
(x, y)-directions, respectively. Where P is the dimensionless 
pressure, λ1 is the fluid parameter, θ is the dimensionless 
temperature, Pr is the Prandtl number, Ra is the Rayleigh 
number, and Da is the Darcy number.

Nusselt Number
In heat transfer, the ratio of convective to conduc-

tive heat transfer across a fluid barrier is measured via 
the dimensionless Nusselt number. It is frequently used 
to explain forced convection and natural convection heat 
transfer. According to the local Nusselt number (Nu), the 
heat transmission coefficient is defined as

  (16)

where n denotes the normal direction on a plane.
The average Nusselt number is the average value of the 

Nusselt number over a specified region or surface. It is often 
employed in engineering analyses and design calculations 
related to heat exchangers, pipes, and other components 

where heat transfer is a critical consideration. The average 
Nusselt numbers at the bottom are defined as

  (17)

Problem Explanation and Mathematical Formalism
To evaluate the steady laminar, nondimensional funda-

mental equations 9–12 are solved with the aid of the multi-
physics 6.1 software COMSOL, and the distinct boundary 
conditions 13–15 are resolved (Fig.2). Numerous scientific 
and engineering environments based on partial differential 
equations may be modelled and simulated via this pro-
gramme. Initially, by employing the Galerkin finite element 
method to numerically simulate the required issue, weak 
formulations of nonlinear governing differential equations 
are generated. The finite element method discretizes large 
regions into smaller, more manageable units called finite 
elements, which are then used to solve partial differential 
equations.

Figure 2. Flowchart for the solution procedure.
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A biquadratic element is a type of finite element used in 
finite element methods (FEMs). It refers to a two-dimensional 
element where the interpolation functions (shape functions) 
are quadratic polynomials in both the x and y directions. The 
grid points (or nodes) are the discrete locations in the compu-
tational domain where the field variables are calculated. The 
domain consists of 20 × 20 biquadratic elements [46]. Since 
each biquadratic element spans 3 nodes in each direction, the 
total number of grid points can be calculated as: 

Number of grid points = (Number of elements×2) + 1
Therefore, the computational domain consists of a 41 × 

41 grid of points, as illustrated in Figure 3. It forms a mesh 
over the entire domain. These points include the nodes of 
the elements where calculations are performed. It provides 
a relatively fine resolution for the simulation, allowing for 
a detailed representation of the flow and thermal fields 
within the cavity.

Comparative Analysis and Study Validation
To verify our numerical scheme, Basak et al. [47] stud-

ied the natural convection of a Newtonian fluid in a square 
enclosure. The enclosure was maintained with a hot bottom 
wall and two cold sidewalls with an adiabatic top wall. The 
calculation is carried out for different Rayleigh numbers 
(Ra = 103, 104, 105, and 106) with varying Darcy numbers 
(Da = 10-3, 10-4, and 10-5) for the average Nusselt number. 
The results for natural convection in a square porous cavity 
filled with Newtonian fluids have been replicated and com-
pared with those of Basak et al. [47]. Eliminating the Jeffrey 
parameter leads to a Newtonian fluid, as shown in equa-
tions 10 and 11. Figure4 depicts the obtained results and 
literature values, which indicate good agreement between 
the produced results and those of Basak et al. [47].

RESULTS AND DISCUSSION

The current work aims to analyse the steady laminar flow 
of natural convection heat transfer characteristics of com-
plex fluid in a porous square cavity with a magnetic effect. 
This segment describes the outcomes based on the velocity 
distribution, Nusselt number, velocity surface, stream lines, 
isotherms, temperature surface, and temperature contours 
against different parameters, such as (λ1), (Da), (Pr), (Ha) 
and (Ra). All the results are computed for fixed values of Ra 
= 103, Da = 10-3, Ha = 40, Pr = 10 and λ1= 1.

Impact of the Velocity Distribution
The U velocity distribution with respect to the fixed 

Rayleigh number and Hartmann number changes, as 
shown in Figure 5(a), from 10 ≤ Ha ≤ 40, Ra = 103, and Da 
= 10-3. With respect to the increase in the u-velocity and 
Hartmann number, there is a symmetrical observation 
for the velocity distribution. Initially, the velocity in the u 
direction decreases to the minimum point, increases to the 
maximum point and then gradually decreases to 0. Point 
0.5 cuts the increasing and decreasing order symmetri-
cally. From points 0 to 0.5, the velocity decreases to the 
minimum point and then gradually increases. An increase 
in the U velocity from 0 to 0.5 indicates that the magnetic 
field enhances the horizontal motion of the fluid. From 
points 0.5 to 1, the velocity increases to the maximum 
point and then progressively decreases. The velocity oscil-
lates around point 0.5. Toward the centre (approximately 
x = 0.5), the velocity becomes very small and eventually 
approaches zero at x = 1. The velocity field seems to be 
relatively smooth and continuous. The Hartmann num-
ber (Ha) represents the ratio of electromagnetic forces to 

Figure 3. Optimum mesh geometry for the system config-
uration.

Figure 4. A comparison between the average Nusselt num-
ber at the bottom wall in the current investigation and the 
work of Basak et al. [47].
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viscous forces in a conducting fluid. By selecting values 
between 10 and 40, we can observe the effects of vary-
ing electromagnetic force strengths relative to viscous 
forces. The chosen range allows for the observation of a 
symmetrical velocity distribution, which is an important 
aspect of the flow dynamics in the presence of a magnetic 
field. The symmetrical nature of the u-velocity distribu-
tion around the center (x = 0.5) can be clearly studied 
within this Hartmann number range, providing insights 
into how the magnetic field stabilizes the flow and reduces 
turbulence. The gradual suppression of horizontal motion 
from x = 0.5 to x = 1 at higher Hartmann numbers can be 
effectively analysed within this range. A decrease in the U 
velocity from 0.5 to 1 signifies the suppression of horizon-
tal motion within the fluid [48]. In practical applications, 
such as cooling systems in nuclear reactors or electronic 
devices, the suppression of horizontal convection can lead 
to changes in heat transfer efficiency. Reduced horizontal 
motion might decrease the overall convective heat trans-
fer but can increase the stability and predictability of the 
cooling process.

The velocity values are provided for various positions 
along the x-axis. The y-component of the velocity indicates 
the velocity of the fluid in the y-direction at each corre-
sponding x coordinate. Figure 5(b) illustrates how the v-ve-
locity distribution changes in relation to the fixed Hartmann 
and Rayleigh numbers, from 10 ≤ Ha ≤ 40, Ra = 103, and 
Da = 10-3. With increasing v-wave velocity, the Hartmann 
number decreases. The velocity profile shows variations 
along the x-coordinate, reaching its maximum negative 
value at x = 0.5. The velocity then starts to decrease and 
approaches zero toward the right end (x = 1). The velocity 
takes the wave path when the Hartmann number increases. 
As the Hartmann number increases, the v-velocity exhibits 
wave-like oscillations or paths, where the vertical motion 
periodically increases and then decreases, forming a char-
acteristic wave pattern. This can occur due to the interplay 
of Lorentz forces, fluid inertia, and restoring forces such as 
pressure gradients and buoyancy.

Figure 6(a) shows the velocity distribution with 
respect to changes in the Darcy number and fixed 
Hartmann number and Rayleigh number. The y-axis in 
the figures represents the fluid velocity in dimensionless 
units. The velocity is typically nondimensionalized by a 
characteristic velocity scale, where u varies from 10-3 ≤ Da 
≤ 10-5, Ra = 103, and Ha = 40. In general, an increase in 
the Darcy number and velocity is observed as the trend 
decreases. However, the velocity oscillates around point 
0.5. For Darcy numbers 10-3, the velocity increases as x 
increases and gradually decreases to zero. For Darcy num-
bers 10-4, the velocity gradually increases and then sud-
denly decreases when it reaches the maximum point. For 
Darcy numbers 10-5, there is not much variation in the 
velocity when x increases. The velocity is constant at y = 
0. The initial increase in horizontal velocity is due to the 
increased resistance to vertical flow, forcing the fluid to 

channel more horizontally. A subsequent decrease in hor-
izontal velocity occurs as the permeability becomes very 
low, resulting in significant resistance to flow and damp-
ing of fluid motion.

The distributions of the v-velocity with respect to vari-
ations in the Darcy number, fixed Hartmann number, and 
Rayleigh number are depicted in Figure 6(b). The values 
vary from 10-3 ≤ Da ≤ 10-5, Ra = 103, and Ha = 40. The 
y-axis shows the dimensionless vertical velocity (v). As the 
Darcy number decreases, indicating lower permeability, 
the resistance to fluid flow through the porous medium 
increases. This affects the vertical velocity (v). In general, 
with increasing Darcy integer, the velocity seems to be sinu-
soidal. It is symmetrical about the point 0.5. When Da = 
10-3, the velocity distribution has a long sinusoidal path. 
This is due to the vertical velocity as periodic instabilities 
and MHD waves develop due to the interaction between 
buoyancy forces and the increased resistance of the porous 
medium. For Da = 10-4, the velocity distribution has a small 
sinusoidal path compared with that for Da = 10-3, and for 
Da = 10-5, the velocity distribution remains constant at the 
y = 0 point.

Figure 7(a) shows that the distributions of the u-ve-
locity distributions with respect to a fixed Darcy number, 
Hartmann number and Rayleigh number differ from those 
for 103 ≤ Ra ≤ 106, Da = 10-3, and Ha = 40. The y-axis indi-
cates the dimensionless horizontal velocity (u). The veloc-
ity field shows nonlinear behaviour, and its x-component 
varies significantly with spatial position. The x-compo-
nent of the velocity is initially positive, peaks at approxi-
mately x = 0.15, then becomes negative and decreases as x 
increases. The velocity profile exhibits complex patterns, 
suggesting that intricate fluid flow behaviour is influenced 
by specific parameters. With increasing Rayleigh number, 
the velocity increases in the u direction. Higher velocities 
at increased Rayleigh numbers suggest enhanced mixing 
and more efficient heat transfer within the cavity. This is 
crucial for applications where rapid thermal equilibration 
is desired.

With respect to the fixed Hartmann number, Darcy 
number, and variation in the Rayleigh number, the dis-
tributions of the v-wave velocities differ for 103 ≤ Ra ≤ 
106, Da = 10-3, and Ha = 40, and the y-axis preserves the 
dimensionless vertical velocity, v, as shown in Figure 7(b). 
They-component of the velocity field is important and 
changes significantly with spatial location. With respect to 
the origin (x = 0), the velocity field is not symmetric [49].” 
It is shaped differently, with several peaks and troughs. At 
approximately x = 0.05, the y-component of the velocity 
reaches its highest negative value, whereas at approximately 
x = 0.5, it reaches its maximum positive value. The com-
plicated fluid flow behaviour, which is impacted by partic-
ular factors, is indicated by the velocity profile. The graph 
indicates that the velocity along the y-axis increases with 
increasing Rayleigh number.
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Impact of the Thermal Distribution
The Hartmann number characterizes the strength of 

the magnetic field in a fluid. An increase corresponds to a 
stronger magnetic field. In the presence of a magnetic field, 
particularly in the context of natural convection, magnetic 
forces can suppress buoyancy-driven fluid motion. Natural 
convection relies on density differences caused by tempera-
ture gradients to drive fluid motion. A stronger magnetic 
field can counteract these buoyancy forces. Figure 8(a) 
shows the local Nusselt number distribution for a fixed Pr = 
10, Ra = 105, and Da = 10-3and the variation in the Hartmann 

number fluctuates from 10 ≤ Ha ≤ 40 for the hot bottom 
wall. The graph clearly shows that as the Hartmann number 
increases, the local Nusselt number decreases. Interestingly, 
the change in fluid behaviour occurs between points 0.3 
and 0.4. The local Nusselt number tends to decrease near 
the sidewall of the cavity. This reveals that the interaction 
between the non-Newtonian characteristics of the Jeffrey 
fluid and the magnetic field creates a complex interplay. 
The rheological properties of the fluid, such as elasticity 
and shear-thinning, may be altered by the magnetic field, 
which impacts the fluid’s response to temperature gradients 

(a)

(b)

Figure 6. Effect of the Darcy number on the velocity profile 
for Pr = 10, Ra = 103, Ha = 40, 10-3 ≤ Da ≤ 10-3 (a) u-velocity 
and (b) v-velocity.

(a)

(b)

Figure 5. Effect of the Hartman number on the velocity 
profile for Pr = 10, Ra = 103, and Da = 10-3, 10 ≤ Ha ≤ 40 (a) 
u-velocity (b) v-velocity.
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[50]. The same trend is followed for the cold wall, as shown 
in Figure 8(b).

A dimensionless metric called the Darcy number (Da) 
is used in fluid dynamics to describe how a fluid flows 
through a porous material. Its definition is the relation-
ship between the fluid’s dynamic viscosity and the porous 
medium’s permeability. For a fixed Rayleigh number 
Ra = 103, Pr = 10, Ha = 40, and a Darcy number rang-
ing from 10-3 ≤ Da ≤ 10-5 for the heated bottom wall of 
the square enclosure, Figure 9(a) shows the local Nusselt 
number distribution. As the Darcy number decreases, the 

local Nusselt number increases. The pattern for the cold 
left wall shown in Figure 9(b) is a decrease in the local 
Nusselt number inside the cavity for every decrease in 
the Darcy number. The behaviour of the fluid changes at 
some point. For Da = 10-3, the fluid changes its behaviour 
between points 0.1 and 0.2, and for Da = 10-4, the fluid 
changes its behaviour around point 0.2. For Da = 10-5, a 
partially smooth curve is observed from the bottom side 
to the top side. At certain y-coordinates, there are sharp 
changes in the temperature gradient, suggesting regions 

(a)

(b)

Figure 8. Effects of the Hartmann number on the local 
Nusselt number for Pr = 10, Ra = 105, Da =10-3, and 10 ≤ 
Ha ≤ 40: (a) Bottom hot wall and (b) left cold wall.

(a)

(b)

Figure 7. Effects of the Rayleigh number on the velocity 
profile for for Pr = 10, Da = 10-3, Ha =40, 103 ≤ Ra ≤ 106: 
(a) u-velocity and (b) v-velocity.
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of intense temperature variation. The graph shows that as 
the Darcy number (Da) decreases, the resistance to fluid 
flow through the porous medium decreases. A decrease in 
Da could indicate more fluid motion or less flow blockage 
in relation to the local Nusselt number (Nu), which would 
alter convective heat transfer.

The relationship between the Rayleigh number and the 
Nusselt number is often associated with natural convection 
in fluid systems. The Nusselt number characterizes the con-
vective heat transfer, and the Rayleigh number is a dimen-
sionless parameter that represents the ratio of buoyancy to 

viscosity forces. Figure 10(a) shows that the local Nusselt 
number distribution for a fixed Pr = 10, Ha = 40, and Da 
= 10-3 varies with Rayleigh number 103 ≤ Ra ≤ 106 on the 
bottom hot wall. An increase in the Rayleigh number cor-
responding to the Nusselt number decreases. Intriguingly, 
the difference between Raleigh numbers 103, 104 and 105 is 
less than that of 106 near the sidewall. The increasing trends 
suggest that buoyancy has a stronger impact on heat trans-
mission. The heated wall exhibited a similar tendency, as 
shown in Figure 10(b).”

(a)

(b)

Figure 10. Effect of the Rayleigh number on the local Nus-
selt number for Pr = 10, Da = 10-3, Ha =40, and 103 ≤ Ra ≤ 
106: (a) bottom hot wall and (b) left cold wall.

(a)

(b)

Figure 9. Effect of the Darcy number on the local Nusselt 
number for for Pr = 10, Ra = 106, Ha =40 and, 10-3 ≤ Da ≤ 
10-5: for the (a) bottom hot wall and (b) left cold wall.
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Impact of the Temperature Distribution
The temperature profile for constant parameters, such 

as Pr = 10, Ra = 105, and Da = 10-3, is shown in Figure 11(a), 
and it fluctuates for Hartmann numbers of 10 ≤ Ha ≤ 40. The 
graph unequivocally demonstrates that as the Hartmann 
number increases, the trend of the temperature profile 
decreases. This pattern indicates that a stronger magnetic 
field tends to reduce the velocity of the conducting fluid 
because of the Lorentz force. This suppression may result 
in a decrease in the fluid’s convective heat transfer. The 
y-axis shows the dimensionless temperature, θ. This nondi-
mensionalization helps in comparing different temperature 
profiles irrespective of the actual temperature values, with a 
focus on the relative changes and distributions. The increas-
ing influence of the magnetic field may cause changes in the 
flow patterns inside the hollow. This may have an effect on 
convective heat transfer, which might alter the distribution 
of temperatures. The temperature distribution becomes less 
steep, indicating a more uniform temperature distribution 
across the cavity. The stronger magnetic field dampens fluid 
motion, leading to more conductive rather than convective 
heat transfer. This concept, which is applied in biomedical 
devices that rely on non-Newtonian fluids, such as blood, 
can use magnetic fields to manage heat transfer effectively. 
The ability to control fluid flow and temperature distribu-
tion with varying Ha is crucial for devices such as artificial 
organs or thermal therapy equipment.

Figure 11(b) shows the temperature profile for fixed 
parameters such as Pr = 10, Ha = 40, and Ra = 105, and 
the Darcy number varies from 10-3 ≤ Da ≤ 10-5. The 
graph indicates that the trends of the temperature profile 
decreased with decreasing Darcy number. This is because a 
lower Darcy number denotes less permeability and higher 
resistance. The Darcy number is related to the resistance 
to fluid motion. This increased resistance can lead to sup-
pressed buoyancy-driven flow within the cavity. A more 
gradual temperature profile is produced as the fluid motion 
becomes less forceful due to the decreasing dominance of 
buoyant forces. Convective heat transmission decreases 
with less fluid motion. Heat transmission to the top areas of 
the cavity is less effective, as the hot fluid at the bottom wall 
rises more slowly. The temperature distribution becomes 
more stratified as a result of this restriction on convective 
heat transfer. Consequently, a lower Darcy number results 
in a more gradual temperature profile within the cavity by 
reducing permeability, inhibiting buoyancy-driven flow, 
limiting convective heat transfer, and enhancing thermal 
stratification. In nuclear reactors, heat transfer manage-
ment is crucial for both safety and performance. A lower 
Darcy number can aid in limiting convective heat transfer, 
minimizing hotspots and ensuring a more uniform tem-
perature distribution in the reactor core. This decrease in 
heat transmission can improve the stability and safety of 
nuclear reactors, allowing for more accurate control over 
reactor parameters.

(a)

(b)

(c)
Figure 11. Effects of the Hartmann number, Rayleigh number 
and Darcy number on the temperature profile with a fixed Pr = 
10: (a) Da = 10-3, Ra =105, 10 ≤ Ha ≤ 40. (b) Da = 10-3, Ha =40, 
103 ≤ Ra ≤ 106 (c) Ra = 105, Ha =40, 10-3 ≤ Da ≤ 10-5.
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Figure 11(c) shows the temperature profiles for fixed 
parameters such as Pr = 10, Ha = 40, and Da = 10-3, for 
Rayleigh numbers of 103 ≤ Ra ≤ 106. Notably, the increas-
ing Rayleigh number of the temperature profile also tends 
to increase. This pattern shows that buoyancy-driven con-
vection causes fluid circulation in response to temperature 
changes within the cavity. As Ra increases, the differences 
in temperature between the hot and cold limits become 
more apparent. The warmer fluid close to the heated sur-
face rises, whereas the colder fluid at the cold surface 
decreases. Increased buoyancy-driven flow, enhanced con-
vective heat transfer, and increased thermal mixing caused 
by an increase in the Rayleigh number all contribute to 
increased temperatures. Solar collectors and geothermal 
energy systems frequently use non-Newtonian fluids to 
improve thermal performance. The capacity to detect and 
improve natural convection inside the system increases 
the overall energy conversion efficiency. The findings of 

temperature profiles with variable Ra values can help in the 
design of more efficient energy systems, ensuring effective 
heat extraction or dissipation.

Velocity Surface, Stream Line, Temperature Surface, and 
Isotherm Contour

Figure 12 shows the velocity surface for Pr = 10, Ra = 
106, Da =10-3, and 10 ≤ Ha ≤ 40. Heat transfer is observed 
for increased Hartmann numbers. The bottom walls of 
the closed surface were heated. The fluid behaviour in 
the bottom wall changes with increasing Hartmann num-
ber. As the Hartmann number (Ha) increases, there is a 
noticeable suppression of velocity within the cavity. This 
suppression occurs because the magnetic field exerts a 
Lorentz force that opposes fluid motion, particularly in 
the horizontal direction. The resulting velocity profile 
becomes more uniform at higher Ha, indicating stronger 
magnetic damping effects.

 

(a) (b)

 

(c) (d)

Figure 12. (a,b,c,d) Velocity surface forPr = 10, Da = 10-3, Ra =106, 10 ≤ Ha ≤ 40.
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The streamlines of the velocity for Pr = 10, Ra = 106, 
Da = 10-3, and 10 ≤ Ha ≤ 40 are shown in Figure 13. A hor-
izontal magnetic field is applied. The streamlines reveal 
that at lower Ha, the fluid motion is more vigorous, with 
pronounced circulation cells forming due to buoyancy 
forces. There is evidence of both clockwise and anticlock-
wise circulation development. The circulation split into 
two rollers that were vertical. The direction of circulation 
is anticlockwise near the right wall and clockwise near the 
left wall. As the Hartmann number increases, the fluid 

rises from the bottom wall’s center to its highest point. 
After that, it flows smoothly to the side to create a vertical 
roll. The temperature contours are concentrated towards 
the sidewall and bottom wall margins as a result of the 
enhanced circulation, which may result in a higher con-
vectional heat transfer rate.

Figure 14 shows the surface temperatures for Pr = 10, Ra 
= 106, Da = 10-3, and 10 ≤ Ha ≤ 40. As the Hartman num-
ber increased, the trend increased. The fluid flow increases 
from the bottom and from the middle part, and the fluid 

 

(a) (b)

 

(c) (d)

Figure 13. (a,b,c,d) Stream line for Pr = 10, Da = 10-3, Ra =106, 10 ≤ Ha ≤ 40.
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spreads to the side and top wall. With increasing Hartmann 
number, the thickness of the fluid flow increases. At lower 
Ha, the temperature surface shows significant thermal gra-
dients, corresponding to active convective heat transfer. 
As Ha increases, these gradients diminish, indicating that 
convection is being suppressed and conduction becomes 
more dominant, leading to a more uniform temperature 
distribution.

The temperature contours for Pr = 10, Ra = 106, 
Da = 10-3, and 10 ≤ Ha ≤ 40 are displayed in Figure 15. 
Remarkably, eddies within the square cavity are found to 
exhibit an increase in the Hartmann number. Few eddies 
developed at the top of the cavity’s two corners at Ha = 
10. Few eddies form inside the larger eddies at the cavity’s 
upper two corners for Ha = 20. Furthermore, eddies that 

formed at the top walls of the two corners, Ha = 30 and 
40, likewise rose. The formation of multiple eddies can 
impact heat transfer within the cavity. Smaller, localized 
eddies can enhance mixing and thus improve heat transfer 
efficiency in certain regions while potentially reducing it 
in others because of the dampening effect of the magnetic 
field. The contours are closely spaced at lower Ha, show-
ing strong convective heat transfer with steep temperature 
gradients. 

The isotherm surfaces for Pr = 10, Ra =106, Da =10-3, 
and 10 ≤ Ha ≤ 40 are displayed in Figure 16. The isotherm 
decreases as the magnetic field increases, and heat is trans-
ferred from the bottom of the porous medium to its top 
surface. These findings indicate that increasing the mag-
netohydrodynamic effect decreases the isotherm effect.

 

(a) (b)

 

(c) (d)

Figure 14.(a,b,c,d) Temperature surface for Pr = 10, Da = 10-3, Ra =106, 10 ≤ Ha ≤ 40.
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Figure 17 shows the contour lines of isotherms for Pr = 10, 
Ra = 106, Da = 103, and 10 ≤ Ha ≤ 40. An increase in the 
Hartmann number decreases in the contour lines. That is, 
for a higher Hartmann number, the contour line occupies 
the cavity. From the analysation, it is clear that with a lower 
Ra, the isotherms suggest a reduced convective activity, 
with more conduction-dominated heat transfer. The pres-
ence of a magnetic field further stabilizes the temperature 

distribution, smoothing out the isotherms, particularly at 
higher Ha values.

Average Nusselt Number
The average Nusselt number, a dimensionless metric, is 

used to quantify the effectiveness of convective heat trans-
mission in a fluid. It is common to describe the ratio of con-
ductive to convective heat transfer. The Nusselt number is 
the ratio of conductive heat transmission to convective heat 

 

(a) (b)

 

(c) (d)

Figure 15. (a,b,c,d) Temperature contour for Pr =10. Ra = 106 , Da = 10-3, 10 ≤ Ha ≤ 40.
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transfer over a boundary layer. The average Nusselt number 
is the mean value across the whole surface. With respect 
to the Rayleigh number, Darcy number and Hartmann 
number, Table 1 shows the average Nusselt number. The 
Rayleigh and Hartmann numbers and the average Nusselt 
number had a negative relationship. It is difficult to enable 
efficient convective heat transmission when the mean 
Nusselt number decreases in conjunction with increasing 
Rayleigh and Hartmann numbers. One reason for this could 
be that convective currents are not as powerful as magnetic 
field effects. Furthermore, Table 2 shows the relationships 
between the Rayleigh number and the Hartmann number, 
Darcy number and average Nusselt number in cold wall 
cavities. The table illustrates the complex interplay between 
magnetic field effects, buoyancy-driven convection, and 

conductive heat transfer. The results indicate a change in 
the prevailing regime in favour of a magnetic effect-domi-
nated regime that amplifies the influence of conductive heat 
transfer processes while decreasing convective heat transfer. 
While combing the effect, at low Ra (103), the Nusselt num-
ber remains almost constant across different Ha and Da, 
indicating that convection is weak, and heat transfer is pri-
marily by conduction. At higher Ra (106), significant vari-
ations in Nu are observed, demonstrating that convection 
becomes dominant, but is increasingly modulated by the 
magnetic field (Ha) and the porous medium (Da). These 
findings are critical for applications where controlling ther-
mal transport is crucial, such as in cooling systems or geo-
logical formations where fluid flow occurs through porous 
materials.

 

(a) (b)

 

(c) (d)

Figure 16. (a,b,c,d) Isotherm surface for Pr = 10, Da = 10-3, Ra =105, 10 ≤ Ha ≤ 40.
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(a) (b)

 

(c) (d)

Figure 17. (a,b,c,d). Isotherm Contour for Pr = 10, Da = 10-3, Ra =105, 10 ≤ Ha ≤ 40.

Table 1. Effects of the Hartmann number, Rayleigh number and Darcy number on the average Nusselt number for the 
bottom (hot) wall

Rayleigh number

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Hartmann number Ha = 10 5.72857 5.74285 7.15135 13.64529
Ha = 20 5.72849 5.73983 6.86564 13.34419
Ha = 30 5.72840 5.73694 6.52641 12.90466
Ha = 40 5.72832 5.73479 6.23704 12.38008

Darcy number Da = 10-3 5.72832 5.73479 6.23704 12.38008
Da = 10-4 5.72797 5.72908 5.74968 7.43254
Da = 10-5 5.72784 5.72766 5.72604 5.72456
Da = 10-6 5.72780 5.72729 5.72220 5.67105
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CONCLUSION

In a square cavity filled with a permeability matrix, the 
primary goal of the current work is to investigate the impact 
of MHD on Jeffrey fluid flow under natural convection flow. 
The complex, nonlinear mathematical equations that con-
trol the Jeffrey fluid are very detailed. Therefore, to provide 
a numerical solution, one may often utilize the COMSOL 
Multiphysis 6.1 approach. The Nusselt number, velocity 
surface, stream lines, isotherms, temperature surface, and 
temperature contours were all solved via the Galerkin finite 
element method. Non-Newtonian fluids are useful when 
modelling the movement of magma in volcanic cavities or 
other geological structures. Jeffrey fluids provide a more 
accurate picture of the complex rheological behaviour of 
molten rock. When mixing polymers or other materials in 
chemical processes, the behavior of non-Newtonian fluids 
in cavities is crucial. Jeffrey fluids allow a better under-
standing and simulation of the component distribution and 
mixing efficiency in such processes. These findings provide 
valuable insights for a broader audience interested in the 
application of MHD and non-Newtonian fluid dynamics 
in geological and industrial processes. Understanding the 
intricate behavior of Jeffrey fluids under varying magnetic 
fields and permeable conditions can lead to better predic-
tions and optimizations in relevant applications, such as 
magma flow modelling and polymer processing. The find-
ings of the current analysis are as follows:
1. The increase and subsequent decrease in the U-wave 

velocity with increasing Hartmann number reflect the 
complex interplay between the magnetic field strength 
and fluid dynamics. At lower Hartmann numbers, hor-
izontal flow is enhanced, whereas at higher Hartmann 
numbers, the damping effects of the magnetic field 
dominate, reducing the horizontal velocity.

2. An initial increase in vertical velocity occurs because 
of constrained vertical pathways that focus on fluid 
motion. The formation of sinusoidal patterns in the 
vertical velocity as periodic instabilities and MHD 

waves develop is due to the interaction between buoy-
ancy forces and the increased resistance of the porous 
medium.

3. The initial increase in horizontal velocity is due to the 
increased resistance to vertical flow, forcing the fluid to 
channel more horizontally. A subsequent decrease in 
horizontal velocity occurs as the permeability becomes 
very low, resulting in significant resistance to flow and 
damping of fluid motion.

4. An initial increase in vertical velocity occurs because of 
constrained vertical pathways that focus on fluid motion. 
The formation of sinusoidal patterns in the vertical veloc-
ity as periodic instabilities and MHD waves develop is 
due to the interaction between buoyancy forces and the 
increased resistance of the porous medium.

5. At higher Rayleigh numbers, convective heat transfer 
is dominant, leading to higher average Nusselt num-
bers. However, this is modulated by both the strength 
of the magnetic field and the permeability of the porous 
medium.

NOMENCLATURE

u,v Velocity component of x,y direction (ms-1)
U,V Dimensionless velocity component
x, y Cartesian coordinates (m)
X,Y Dimensionless Cartesian coordinates
p Pressure (Nm-2)
P Dimensionless Pressure
Pr Prandlt number
Da Darcy number
Ra Rayleigh number
T Temperature (K)
Th Temperature of hot bottom wall (K)
Tc Temperature of vertical cold wall (K)
Nu Nusselt number
Nuavg Average Nusselt number
L Side of the square cavity (m)
K Porosity of the material (m2)

Table 2. Effects of the Hartmann number, Rayleigh number and Darcy number on the average Nusselt number for the left 
(cold) wall

Rayleigh number

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Hartmann number Ha = 10 2.863931 2.8639 3.51644 6.95268
Ha = 20 2.86398 2.86336 3.37372 6.78630
Ha = 30 2.86404 2.86298 3.20705 6.54320
Ha = 40 2.86410 2.86292 3.06870 6.25312

Darcy number Da = 10-3 2.86410 2.86292 3.06870 6.25313
Da = 10-4 2.86432 2.86420 2.86770 3.69930
Da = 10-5 2.86441 2.86502 2.87109 2.93773
Da = 10-6 2.86440 2.86488 2.86967 2.91806
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Greek symbols
B Coefficient of thermal expansion (k-1)
α Thermal diffusivity (m2s-1)
θ Dimensionless Temperature
ρ Density of fluid (kgm-3)
λ1 Jeffrey fluid parameter
σ Electrical conductivity (Sm-1)
v Kinematic Viscosity (m2s-1)
µ Dynamic Viscosity (Nms-1)”
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