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ABSTRACT

A novel approach is introduced to study a lid-driven, skewed cavity flow via utilizing a non-or-
thogonal, body-fitted coordinate system, employing the primitive variables. The Navier-Stokes 
equations are fully transformed in the new coordinate system while including the independent 
variables, the velocity components as well as the directions in which the momentum equations 
are applicable. A non-staggered grid system is used for all variables by substituting the conti-
nuity equation with the Pressure Poisson Equation and its appropriate boundary conditions. 
The flow problem is solved for various skew angles of the cavity. The transformed energy 
equation is also numerically solved to predict the temperature field in the skewed cavities for 
different heating conditions at the cavity walls. The present study provides simplifications in 
numerical modelling of the flow system in cavities without large skewness. In addition, a good 
agreement is found with previously reported results for skew angles equal to or closer to 90 
degrees.
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INTRODUCTION

Lid-driven flow in a rectangular cavity is a benchmark 
problem in the field of computational fluid dynamics 
(CFD). High resolution results of the velocity distribution 
for this problem have been reported in various previous 
studies [1, 2]. An extension of this problem is the lid-driven 
flow in a skewed cavity [3]. This problem can be used as a 
benchmark for testing CFD codes that are written for flow 
simulation in complex, two-dimensional geometries. Many 
researchers have studied cavity flow and a thorough list of 

the early studies can be found in [3]. Benchmark results are 
also documented in [3] and [4]. Mansour et al. [5] obtained 
accurate results using the finite difference method for the 
problem of mixed convection in a lid-driven square cav-
ity that is partially heated from below, using a water-based 
nano-fluid. They explored the influence of Reynolds num-
ber, Nusselt number, and heat source location on stream-
lines and isotherm contours [5]. Taher et al. [6] investigated 
the cavity flow problem by considering partial heating 
applied to the bottom wall, with insulated top wall and with 
the opposite walls at various uniform temperature values. 
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Abbasian et al. [7] approached this problem by introducing 
sinusoidal heating on the sidewalls, maintaining insulation 
on both the top and bottom walls. Kamyar et al. [8] con-
ducted a comprehensive literature review and undertook a 
collective analysis of diverse forms of heat convection (nat-
ural, forced, or mixed) across various geometries that uti-
lized nanofluids. It is to be noted that the two-dimensional, 
steady-state, lid-driven cavity flow for large Reynolds num-
bers evolves to a vortex with an inviscid core surrounded by 
viscous boundary layers [9]. Hence, for low Reynolds num-
bers, as is the case in this study, the authors have assumed 
that the boundary layer effect is not important.

In the current study, a new approach is introduced to 
address the problem of a lid-driven flow in a skewed cav-
ity while employing the primitive variables, i.e. the veloc-
ity components and the pressure. The main objective of 
the paper is to derive, present and numerically solve the 
Navier-Stokes Equations (i.e. the collection comprising the 
continuity equation, the momentum equations, the energy 
equation and the pressure Poisson equation) in a non-or-
thogonal coordinate system. The various desirable features 
of the formalism employed in the present study and their 
advantages are listed below:
1) Structured grid connectivity matrix is not 

required; results in a sparse, 
banded matrix.

2) Body-fitted grid boundaries are modelled 
accurately; boundary 
conditions are implemented 
easily.

3) Velocity components 
intrinsic to the coordinate 
system

non-zero boundary velocities 
are not a linear combination 
of the Cartesian velocity 
components and are easily 
implemented.

4) Pressure-Poisson Equation primitive variables are 
employed; staggered grids are 
not required.

As is well known, utilizing structured grids instead of 
unstructured grids, results in general to a more efficient 
solution algorithm and this is because the connectivity 
information is built into a structured gird, whereas this 
information has to be explicitly supplied in the case of 
an unstructured grid. For irregular, complex geometries, 
structured grids can be constructed by means of the pro-
cedure of Numerical Grid Generation [10]. This procedure 
in essentially introduces a new, non-orthogonal, curvi-
linear coordinate system. However, it is then necessary to 
derive the balance equations in the new coordinate system. 
Usually, this implies re-writing of the balance equations in 
terms of the new curvilinear coordinates (ξ,η). However, in 
the case of the Navier-Stokes Equations, this also implies 
that the momentum balance equations be written in terms 
of the new velocity components as well as the direction of 
the momentum equation should be along the tangent to the 
new basis vectors. Hence, three different transformations 

have to be carried out. To the best of the knowledge of 
the authors, the complete set of these three transforma-
tions have not been attempted before in a numerical study. 
Moreover, appropriate mathematical tool for realizing these 
transformations is that of Tensor Calculus which again 
appears to be a novel aspect of this study.

A familiar problem in Computational Fluid Dynamics 
is that of the pressure-velocity coupling. Customarily, this 
is achieved by means of using three (in 2D) staggered grids 
as well as the SIMPLE algorithm. Another, infrequently 
used procedure of pressure-velocity coupling is to replace 
the continuity equation by the Pressure Poisson Equation 
(PPE). More detail about this equation is given in the next 
section. The benefit of using this approach is that a single 
grid is sufficient for all variables and three or more stag-
gered grids are not required. This is the approach utilized in 
this paper. A drawback of this approach is that the bound-
ary conditions for the PPE are all of the Neumann type and 
hence an integral constraint on the pressure variable has to 
be satisfied explicitly.

It is hoped that this approach of utilizing non-orthog-
onal, structured grids in the numerical solution of the 
Navier-Stokes Equations will be of assistance in the efficient 
solution of problems involving geometries in which it may 
be difficult to generate an orthogonal structured grid and 
therefore one is compelled to resort to using unstructured 
grids.

MATHEMATICAL FORMULATION

Description of the Problem
The problem investigated in the present study is two-di-

mensional, nevertheless the methodology employed is 
general and can possibly be extended to unsteady and 
three-dimensional flows. The schematic of the problem 
is shown in Figure 1. The fluid in contact with the all the 
boundaries have zero tangential and normal velocities with 
the exception of boundary B3 where the fluid has a tan-
gential velocity component of U (m/s). Furthermore, the 
boundaries B2 and B4 are insulated whereas the tempera-
tures of boundaries B1 and B3 are maintained at uniform 
but unequal values.

Mathematical Modelling
A skew cavity is innately represented by an oblique 

coordinate system and using such a system considerably 
simplifies the code as well as the implementation of the 
boundary conditions. The Cartesian system is represented 
by the (x,y) coordinates while the oblique system is repre-
sented by (ξ,η) coordinates. The skew cavity in the (x,y) 
coordinates (physical domain) transforms in to a rectangle 
in the (ξ,η) coordinates (computational domain) under the 
following transformation equations,

  (1)
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From many aspects, it is desirable to numerically solve 
the Navier-Stokes equations (NSE) in the (ξ,η) coordinate 
system. To this end, it is necessary to write the NSE in terms 
of the new coordinates. In the current study, this is achieved 
by means of the mathematical technique of tensor calculus. 
This technique provides the most efficient path to deriving 
the NSE in any general curvilinear coordinate system. We 
note here that since the NSE is a vector, partial differential 
equation (PDE) (a set of multiple, scalar PDEs) with the 
dependent variable also a vector, therefore, in writing the 
NSE in a general curvilinear coordinate system (of which 
the oblique coordinates are a special case), three separate 
transformations have to be carried out. These are,
1) Transform the independent coordinates: (x,y) → (ξ,η).
2) Transform the velocity components: {Vx,Vy} → {V(1),V(2)} 
3) Transform the set of two momentum equations that are 

in the {î,Ĵ} direction into a set of two equations that are 
in the {ê(1), ê(2)} direction.
{V(1),V(2)} are the (physical) velocity components, 

whereas {ê(1), ê(2)}are the (physical) basis vectors in the 
(ξ,η) coordinate system. Additionally, the pressure-veloc-
ity coupling is achieved by means of the Pressure Poisson 
Equation (PPE). This allows us to avoid using the staggered 
grid as well as the SIMPLE algorithm. In fact, a single grid 
is enough for all the variables. Having a single grid instead 
of three separate ones and avoiding the SIMPLE algorithm 
results in a more computationally inexpensive and effi-
cient procedure. Moreover, a finite difference technique is 
employed instead of the finite volume method. In addition, 
the energy equation is also transformed to the new (ξ,η) 
coordinate system.

Based on equations (1), the first step is to write the posi-
tion vector r. Various other entities are derived from it and 
will be described as they appear. The details can be found 
in [11] and [12]. Note that summation and range conven-
tions are used in some equations. Moreover, in the index 

notation, as used in tensor calculus, we denote (x,y) → (y1, 
y2) and (ξ,η) → (x1, x2) [11]. The terminology used for vari-
ous variables primarily follows that of [11]. 

  (2)

  (3)

  
(4)

  
(5)

  
(6)

  
(7)

  
(8)

The velocity vector V of the fluid in the Cartesian and 
the oblique coordinate systems is now explained. {Vx,Vy} are 
the velocity components in the Cartesian system whereas 
{V1,V2}, {V1,V2} and {V(1),V(2)} are respectively the covar-
iant, contravariant and physical components of the velocity 

Figure 1. Schematic and coordinate system for the skew cavity with inclination angle a.
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vector in the oblique (ξ,η) coordinate system. In the oblique 
coordinates, the velocity vector is written in various ways 
but ultimately, we are interested in the physical components 
of the velocity vector.

  (9)

The physical components of the velocity vector can also 
be defined directly as [12],

  (10)

Let u = V(1) and v = V(2) then we can finally write,

  (11)

In deriving the various equations below, we require the 
use of the concept of the covariant derivative from tensor 
calculus. The subscript |i denotes covariant differentiation 
with respect to the coordinate xi. The Continuity Equation 
in a general curvilinear coordinate system is written as [13],

  (12)

Introducing the physical components of the velocity 
vector and simplifying we get,

  (13)

The Navier-Stokes Equation (NSE) in a general curvi-
linear coordinate system, in vector form, is written as [13],

  (14)

Or, in component-form, it is written as,

  (15)

Or,

  

(16)

In equations (15) and (16), ρ, p and µ are the fluid den-
sity, pressure and absolute viscosity, respectively. After 

simplification, the two momentum equations in the ê(1) 
(ξ-direction) and the ê(2) (η-direction) are written as,

  (17a)

  (17b)

For the determination of the pressure variable, an alter-
native procedure is to replace the Continuity Equation by 
the Pressure-Poisson Equation (PPE). This is accomplished 
by taking the divergence of the Momentum Equations and 
then utilizing the Continuity Equation for simplification, 
where ever it is applicable [14]. These equations are pre-
sented below.

  (18)

  (19)

The steady-state, incompressible energy equation with 
negligible viscous dissipation and constant thermal con-
ductivity is written as [15],

  (20)

Or, in component-form, it is written as,

  (21)

After simplification, we write,

  
(22)

Equations (17), (19) and (22) require boundary condi-
tions for their solution. The velocity boundary conditions 
are straightforward. These are,

  (23)

For the PPE we require a boundary condition at each 
of the four boundaries B1 B2, B3 and B4 (Fig. 1). These 
boundary conditions are obtained by applying the normal 
component of the vector momentum equation at the bound-
ary in question. This is termed as the Neumann Boundary 
Condition for pressure [16]. At a point on the boundaries 
B1 and B3, the unit normal vectors are  and 

 respectively. At a point on the boundaries B2 and 
B4, the unit normal vectors are  and  
and respectively. So, for example, at a generic point on 
boundary B2, the normal component of the momentum 
equation is determined by taking the inner product of the 
vector momentum equation with the unit normal vector 

.
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  (24)

After all necessary simplifications we get,

  (25)

Moreover, it is of utmost importance that the continuity 
equation be also satisfied at the boundary [16]. At bound-
ary B2 this implies that,

  (26)

For the energy equation, the boundary conditions at the 
top and bottom wall are,

  (27)

The side walls are insulated which at the set of points 
(0,η) and (1,η) results in,

  
(28)

All the pressure boundary conditions, the simplified 
continuity equation and the temperature boundary condi-
tions at the four boundaries are presented in Table 1.

Finally, we note that for α = 90°, all the relevant equa-
tions, velocity components and the independent variables 
revert to those that are applicable in a Cartesian system.

It is now required to numerically solve equations (17), 
(19) and (22) simultaneously, subject to the boundary con-
ditions described in equations (23), (29) and (30). This task 
is accomplished by means of the finite difference method. 
The details are described in the next section.

Numerical Approach
In the current study, we have selected the finite-dif-

ference method for the numerical solution of the relevant 
equations due to the simplicity of implementation. The 
finite-volume and the finite element methods can also be 
used for the task; however, these methods are more help-
ful in situations where unstructured grids are being used 
and for cases in which the solution domain is multiply 
connected.

Referring to the computational domain in Figure 1, the 
ξ-axis is discretised in to Nξ number of divisions with the 
first and last nodes designated as 1 and Nξ+1 and the η-axis 
is discretised in to Nη number of divisions with the first and 
last nodes designated as 1 and Nη+1.

Equations (17) are non-linear, partial-differential-equa-
tions. Replacing the derivatives in these equations by their 
appropriate finite-difference approximations will result in 
a system of non-linear, simultaneous, algebraic equations. 
These can be solved, for e.g., by means of the Newton-
Raphson method. Alternately, the technique of iterative 
update along with under-relaxation can be utilized and 
this is the approach taken in our investigation. Equations 
(17) are first ‘linearized’ by replacing the u and v velocity 
component factors by  and  in the convective terms as 
described below,

   
(31a)

  
(31b)

When equations (31) are solved iteratively, the  and 
 velocity component factors are kept fixed in the current 

global iteration and are updated immediately with the 
newly obtained values of the u and v velocity components 
at the end of the inner iterations (to be discussed later). 
In equations (31), the diffusion terms are discretized by 
means of the second-order, central difference formulae. 
The cross-derivative terms are treated as a source term 
during the calculations. The pressure derivatives are also 
discretized by means of the second-order, central difference 
formulae. In order to obtain stable discretisation for the 
convective terms, second-order upwind (also called Linear 
Upwind) discretisation is used. This entails using sec-
ond-order backward difference formulae for positive flow 
direction and second-order forward difference formulae 
for negative flow direction, for the derivatives ∂u⁄∂ξ, ∂u⁄∂η, 
∂v⁄∂ξ, ∂v⁄∂η. It was found that for skewed cavities, first-or-
der upwind discretisation is not satisfactory. In equation 
(19) also, all the derivatives are approximated by means of 

Table 1. Pressure/Temperature B.C. and the continuity equation at the four boundaries

Boundaries Pressure B.C. Continuity Equation Temperature B.C.

(29)

(30)
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the second-order, central difference formulae. The various 
discretised equations are presented below,

  (32a)

  (32b)

where,

  
(33a)

  (33b)

  

(34)

  

(35)

  (36)

where,

  

(37)

It is pertinent to mention that the right-hand-side 
(RHS) of equation (19) involves derivatives of the velocity 
components that originate from the convective terms in 
the momentum equation. Hence, it is also necessary to use 
upwind differencing for these derivatives. The source term 
in Sp , equation (37) incorporates such differencing.

Applying equations (32) and (36) at each interior 
node results in a system of (pseudo) linear, simultaneous 

equations. This system is then solved iteratively by means 
of the Gauss-Seidel iterative method (constituting the inner 
iterations). The iterations start by assuming some suitable 
u- and v- velocity distributions and p-distribution inside the 
domain and then solving the system of equations to obtain 
the correct distributions. However, since the coefficients 
in equations (32) and the source term Sp are themselves 
functions of the velocity components, therefore the solu-
tion obtained is not correct. The coefficients are updated 
in the next global iteration by means of the new velocity 
components and the procedure is repeated. The previously 
described solution procedure is stabilized by employing the 
technique of under-relaxation. This is achieved by perform-
ing only one or a few Gauss-Seidel iterations in the current 
global iteration and then updating the coefficients in equa-
tions (32). However, to get a converged solution, equations 
(32) are slightly modified to incorporate under-relaxation 
as described below. It is not required to introduce under-re-
laxation in equation (36).

  
(38a)

  
(38b)

where ω is the under-relaxation factor and is taken to be 
equal to 0.3. Application of the velocity boundary condi-
tions is straight-forward, however, the pressure boundary 
condition implementation needs discussion. Let us focus at 
a generic point on boundary B2, (ξ,η) = (1,η). Discretising 
the pressure boundary condition at that point, we get,

  (39)

  (40)

In discretizing equation (40) we have utilized the u-ve-
locity values at the fictitious nodes (j,Nξ +2). These values 
are obtained through satisfying the continuity equation 
at the boundary, equation (39). In equation (40), we may 
observe that the pressure at any given boundary node is 
related to the pressure at its neighboring boundary nodes. 
Consequently, we need to solve a linear system of equa-
tions at every boundary to determine the pressure. Once 
again, we can use the Gauss-Seidel iterations to calculate 
the pressure. However, it is not necessary to get a con-
verged solution within every global iteration, instead a few 
iterations are enough. It is also important here to indicate 
that because of utilizing the linear (second-order) upwind 
scheme, at any interior node that is a neighbor of a bound-
ary node, equations (34), (35) and (37) may require val-
ues of the velocity variables that are outside the domain. 
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This situation is handled by utilizing a first-order upwind 
scheme at all such nodes. 

Finally, we mention that the boundary conditions for 
the pressure Poisson equation (19) are of the Neumann 
type and this implies that an integral constraint has to be 
satisfied if equation (19) has to have a solution. The math-
ematical form of the integral constraint in the oblique (ξ,η) 
coordinate system is described below.

  (41) 

  

(42)

In equation (42) above, the left-hand-side (LHS) should 
be equal to the (RHS), for the solution to exist for equation 
(19), having boundary conditions given by equations (29) 
and (30). During the numerical solution process this may 
not happen and therefore, before the pressure is updated 
through equation (36), it is required to modify the RHS of 
equation (19). This is done by adding the quantity described 
below to the RHS of equation (19) at all interior nodes.

where A is the total area of the skew cavity. In evaluating 
the second-order derivatives of the velocity components at 
the boundaries, it is necessary that the continuity equation 
is satisfied.

Once the velocity and pressure fields have been com-
puted, we may then proceed to the determination of the 
temperature field. To this end we need to discretize equation 

(22) in a fashion similar to that of the momentum equations 
(17). These equations are given below,

  (43)

where,

  
(44)

  

(45)

Finally, we note that the treatment of the insulated 
boundary condition of the energy equation for the determi-
nation of the unknown temperature at boundaries B2 and 
B4 is identical to that of the pressure boundary conditions.

RESULTS AND DISCUSSION

In the present study, the continuity equation (13), the 
momentum equations (17), the pressure poisson equation 
(19) and the energy equation (22) were solved for a skew cav-
ity with equal sides for Re = 100, Pr ≈ 0.69, Ra = 533, and for 
skew angle a = 60o, 75o, 90o, 105o and 120o. To have negligible 
free convection effects it was necessary to keep Ra number 
less than 1000 [17]. The final grid size used had Nξ × Nη = 
256 × 256 number of nodes for the case study. Grid indepen-
dence test showed that a grid size of Nξ × Nη = 128 × 128 was 
also acceptable but insufficient to resolve finer flow struc-
tures. The mathematical formalism was validated by com-
paring the relevant results with those published in [4] and 
with those obtained by solving the same problem through 
the Ansys 2023 R2 commercial software. Considerably good 
accuracy was obtained for the cases investigated.

Figure 2. Grid independence test results.
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Figure 2 shows the grid independence test results. 
The NSE were solved for a 60o skewed cavity for grids 
of sizes 32 × 32, 64 × 64, 96 × 96, 128 × 128, 196 × 196 
and 256 × 256. Three variable are plotted, these are: the 
mean of the absolute values of the normalized u-velocity 

 throughout the domain; the mean of the absolute 

values of the normalized v-velocity  throughout the 
domain; the maximum of the absolute values of the nor-
malized v-velocity , where U is the lid speed. 
It is observed that the test variables become effectively 
independent of grid size for grids of size greater or equal 
to Nξ × Nη = 128 × 128.

Figure 3. Normalized u-velocity distribution along the line a-b.

Figure 4. Normalized v-velocity distribution along the line c-d.
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Figure 3 shows the variation of the normalized u-veloc-
ity distribution along the line a-b with the normalized grid 
numbers. It is seen that the velocity is negative along some 
portion of the depth and positive along the remaining por-
tion. For all skew angles, the velocity is negative for a larger 
portion of the depth and is zero at around the 0.75 mark 
except for the 120o case for which it is zero at around the 0.65 
mark. The results are compared with those published earlier 
in [4] as well as with the simulation performed in Ansys, 
utilizing the finite volume method (FVM). It is observed 
that for all relevant skew angles, the results obtained in the 
present study are in close or acceptable agreement to those 
obtained in [4] as well as with the simulation results.

Figure 4 shows the variation of the normalized v-veloc-
ity distribution along the line c-d with the normalized grid 
numbers. It is observed that the velocity is positive along 
some portion of the breadth and negative along the remain-
ing portion. For all skew angles, the velocity is negative for 
a larger portion of the breadth and is zero at around the 0.6 
mark except for the 105o case and the 120o case for which 
it is zero at around the 0.55 and 0.5 marks respectively. The 
results are compared with those published earlier in [4] as 
well as with those obtained through the Ansys software. It 
is observed that for all relevant skew angles the agreement 
either excellent or acceptable.

Figure 5 shows (a coarse version) of the vector plot for 
the normalized velocity components. The central vortex 
can be clearly observed whereas some other flow struc-
tures are also hinted at. It is observed that the central vortex 

maintains the same relative position with respect to the 
boundaries. 

Figures 6 and 7 display the variation of the normalized 
temperature distribution Θ = (T - Tmin)⁄(Tmax-Tmin) along 
lines a-b and c-d with the normalized grid numbers for 
the case of the bottom surface at Tmax. In Figure 6, along 
line a-b, the temperature distribution can be seen to have 
a point of inflection which corresponds to the simultane-
ous effect of convection and diffusion of heat. In Figure 7, 
the slope of the temperature is zero or close to it, at the left 
and right boundaries which corresponds to the insulated 
boundary condition. The results are compared with those 
obtained from the Ansys software and it is observed that 
for all relevant skew angles the agreement is either close or 
acceptable.

Figures 8 and 9 display the variation of the normalized 
temperature distribution Θ = (T - Tmin)⁄(Tmax-Tmin)  along 
lines a-b and c-d with the normalized grid numbers for the 
case of the top surface at Tmax. In Figure 8, along line a-b, 
the temperature distribution can again be observed to have 
a point of inflection which corresponds to the simultane-
ous effect of convection and diffusion of heat. In Figure 9, 
the slope of the temperature is zero or close to it, at the left 
and right boundaries which corresponds to the insulated 
boundary condition. The results are compared with those 
obtained from the Ansys software and it is observed that 
for all relevant skew angles the agreement is either close or 
acceptable.

Figure 5. Velocity vector plots for cavities of various skew angles.
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Figure 7. Normalized temperature distribution along the line c-d for bottom heating source.

Figure 6. Normalized temperature distribution along the line a-b for bottom heating source.
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CONCLUSION

The present study explores the possibility of the numer-
ical solution of Navier-Stokes Equations (NSE) in non-or-
thogonal coordinate systems. Such coordinate systems offer 

more flexibility than strictly orthogonal coordinates and are 
believed to be able to successfully describe more complex 
regions. Moreover, they result in structured grids which are in 
general computationally less expensive than the unstructured 

Figure 8. Normalized temperature distribution along the line a-b for top heating source.

Figure 9. Normalized temperature distribution along the line c-d for top heating source.
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grids, which are customarily utilized in the finite-volume 
and the finite-element methods. The correct and complete 
derivation of the NSE that is applicable in non-orthogonal 
coordinate systems, involves the change of independent vari-
ables, the velocity components and the direction in which 
the momentum equations are valid. These derivations can be 
efficiently performed by means of the mathematical tool of 
Tensor Calculus and our paper describes them in detail. The 
mathematical formalism so obtained is validated by numer-
ically solving it for a bench mark problem of the skewed 
lid-driven cavity. The results acquired from these numerical 
studies are compared with those published earlier and with 
those obtained through an independent Ansys simulation of 
a similar problem. It was found that the present formulation 
produces results that are in good agreement with the earlier 
studies for relevant skew angles.

In general, the approach presented in this paper is more 
efficient than those based on the finite volume (FV) and 
finite element (FE) formulations. This is because the cus-
tomary FV & the FE methods employ unstructured grids 
that do not have the connectivity information built in to 
them. Hence, connectivity information is to be provided 
separately and this contributes to the computational over-
head. Moreover, unstructured meshes results in matrices 
that may be sparse but that are not banded. This means that 
efficient matrix inversion algorithms, such as the tridiago-
nal matrix algorithm, cannot be employed. It is surmised 
that these considerations make the present algorithm more 
competitive.

Finally, it is believed that the algorithm can be extended 
to three-dimensional as well as unsteady problems with-
out any fundamental difficulties. So, for example, for an 
unsteady, incompressible flow, equations (13) & (19) do 
not change. However, a time-derivative term will have to 
be included on the LHS in equations (17) based on the 
term ρ ∂V⁄∂t that is included on the LHS of equation (14). 
Similarly, the term ρcp ∂T⁄∂t is to be included on the LHS 
of equation (20) and based on it, an appropriate term is to 
be included in equation (22). For three-dimensional prob-
lems we note that equations (12), (16), (18) & (21) are actu-
ally not restricted to two-dimensions but are valid in an N 
dimensional space. Specifically, they can be written for a 
three-dimensional space.

NOMENCLATURE AND ABBREVIATIONS

A Total area of the skew cavity (m2)
cp Heat capacity (J/kg/K)
ê(1)  Physical basis vector (unit vector) in the 

ξ-direction
ê(2)  Physical basis vector (unit vector) in the 

η-direction
E1, E2 Covariant bases vectors

 Metric tensor
 Conjugate metric tensor

 Connection coefficients
î  unit vector in the x-direction
Ĵ  unit vector in the y-direction
k Thermal conductivity (W/m/K)
Nξ  number of divisions along the ξ-axis
Nh  number of divisions along the η-axis
p Pressure (Pa)
Pr Prandtl number
r Position vector
Ra Rayleigh number
Re Reynolds number
T Temperature (K)
U Lid speed (m/s)
V Velocity vector of a fluid particle (m/s)
(V1,V2) Covariant components of the velocity vector
(V1,V2) Contravariant components of the velocity vector
u, Vx x-component of the velocity vector (m/s)
v, Vy y-component of the velocity vector (m/s)
V(1) ξ-component of the velocity vector (m/s)
V(2) η-component of the velocity vector (m/s)
x Cartesian coordinate (m)
y Cartesian coordinate (m)
α Skew angle 
ξ Curvilinear coordinate
η Curvilinear coordinate
ρ Fluid density (kg/m3)
µ Absolute viscosity (Pa.s)
ω Under-relaxation factor
Θ Normalized temperature

FVM Finite-volume method
NSE Navier-Stokes Equations
PDE Partial Differential Equation
PPE Pressure Poisson Equation
SIMPLE Semi-Implicit Pressure Linked Equations
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