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ABSTRACT

In this research article concept of antipodal resolving sets have been introduced and the con-
cepts have been analysed on some algebraic graphs like identity graphs and order prime graphs 
of finite groups. Also its dimensions have been found and compared with various antipodal 
sets like antipodal independent, pendant, cototal, equitable resolving sets. Finally those di-
mensions comparison have been elucidated as a theorem.
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INTRODUCTION 

Resolving sets concept have been first introduced by 
Slater [1] and then joined work by Harary and Melter [2]. 
It is used to locate objects in graphs. Here, a restriction is 
made on the number of objects and cannot be more than 
the number of vertices of the graphs. Many resolving sets 
like independent, degree equitable, rational resolving sets 
have been introduced and studied by many mathemati-
cians for various graphs [3-8]. Resolving sets have many 
real life applications in network discovery and verification, 
in chemistry and also in robot navigation etc [9]. The con-
cept of antipodal graphs was introduced by Singleton [10] 
and developed by Mathematician like R.Aravamudhan, 
B.Rajendran [11,12] and E.Prisner [13]. In graph theory

antipodal concepts has been used in many research areas 
like domination, steiner antipodal number etc. Inspiring 
all these antipodal concepts have been used for algebraic 
graphs and analyzed how the results work and found the 
dimensions between algebraic graphs like identity graphs 
[14], order prime graphs [15] of finite groups.

PRELIMINARIES

Definition: Resolving sets: A set of vertices 𝑆 in a graph 
𝐺 is called a resolving set for 𝐺 if, for any two vertices 𝑢, 𝑣 
there exists 𝑥 ∈ 𝑆 such that the distances 𝑑(𝑢, 𝑥) ≠ 𝑑(𝑣, 𝑥). 
The minimum cardinality of a resolving set of 𝐺 is called 
the dimension of 𝐺 and is denoted 𝑑𝑖𝑚(𝐺).
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Definition: 1.2 Identity graphs: Let ℊ be a group. The 
identity graph 𝐺 = (𝑉, 𝐸) with vertices as the elements of 
group and two elements 𝑥, 𝑦 ∈ ℊ are adjacent or can be 
joined by an edge if 𝑥. 𝑦 = 𝑒, where 𝑒 is the identity element 
of ℊ and identity element is adjacent to every other vertices 
in 𝐺.

Definition: 1.3 Order Prime graphs: Let Γ be a finite 
group. The order prime graph (Γ) of a group Γ is a graph 
with V ((Γ)) = Γ and two vertices are adjacent in (Γ) if and 
only if their orders are relatively prime in Γ.

ANTIPODAL RESOLVING SETS 

In this section we have analyzed antipodal resolving set 
works on identity graphs of finite group and a comparison 
between various antipodal resolving sets have been worked 
out. Throughout this chapter set 𝑇 is taken as a subset of 
𝑉(𝐺).

Definition: 3.1Antipodal resolving sets : Let 𝐺 = (𝑉, 
𝐸) be a graph. Let 𝑇 ⊆ 𝑉. For every 𝑡𝑖 ,  𝑡𝑗 ∈ 𝑉 associated 
with a subset 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑘} of 𝑉 by 𝛤(𝑡𝑖/𝑇)={d(𝑡𝑖, 𝑡1), 
d(𝑡𝑖, 𝑡2),…,d(𝑡𝑖, 𝑡𝑘)} where 𝑑(𝑡𝑖, 𝑡𝑗) is defined as distance 
between the vertex 𝑡𝑖 and 𝑡𝑗. Then the subset T is said to be 
antipodal resolving sets if 𝑑(𝑡𝑖/𝑇)≠𝑑(𝑡𝑗/T) and the subset 
T should be antipodal set i.e if there exist vertices 𝑡𝑖, 𝑡𝑗 ∈ 𝑇 
such that 𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺). The minimum cardinality of 
𝑇 is called as antipodal dimension and it is denoted by 𝜁𝑎𝑑.

Definition: 3.2 Antipodal Independent resolving sets: 
Let 𝐺 = (𝑉, 𝐸) be a graph. Let 𝑇 ⊆ 𝑉. Then the subset 𝑇 = 
{𝑡1, 𝑡2, … , 𝑡𝑘} of 𝑉 is called antipodal independent resolving 
set if subset T is antipodal resolving set and independent 
set i.e no two vertices in the set are adjacent. The minimum 
cardinality of 𝑇 is called as antipodal independent dimen-
sion and it is denoted by 𝜁𝑎𝑖𝑑.

Definition: 3.2 Antipodal Pendant resolving sets: Let 
𝐺 = (𝑉, 𝐸) be a graph. Let 𝑇 ⊆ 𝑉. Then the subset 𝑇 = 
{𝑡1, 𝑡2, … , 𝑡𝑘} of 𝑉 is called antipodal pendant resolving set 
if subset T is antipodal resolving set and pendant set i.e if 
the induced subgraph < 𝑇 > contains atleast one pendant 
vertex. The minimum cardinality of 𝑇 is called as antipodal 
pendant dimension and it is denoted by 𝜁𝑎𝑝𝑑.

Definition: 3.3 Antipodal cototal resolving sets: Let 
𝐺 = (𝑉, 𝐸) be a graph. Let 𝑇 ⊆ 𝑉. Then the subset 𝑇 = 
{𝑡1, 𝑡2, … , 𝑡𝑘} of 𝑉 is called antipodal cototal resolving set 
if subset T is antipodal resolving set and cototal set i.e if 
the induced subgraph < 𝑉 − 𝑇 > is not an isolated vertex. 
The minimum cardinality of 𝑇 is called as antipodal cototal 
dimension and it is denoted by 𝜁𝑎𝑐𝑡𝑑.

Definition: 3.4 Antipodal equitable resolving sets: Let 
𝐺 = (𝑉, 𝐸) be a graph. Let 𝑇 ⊆ 𝑉. Then the subset 𝑇 = {𝑡1, 
𝑡2, … , 𝑡𝑘} of 𝑉 is called antipodal equitable resolving set if 
subset T is antipodal resolving set and equitable set i.e for 
any vertex 𝑡𝑖 ∈ 𝑉 − 𝑇 there exist a vertex 𝑡𝑗 ∈ 𝑇 such that 𝑡𝑖𝑡𝑗 
∈ 𝐸(𝐺) |deg(𝑡𝑖) − deg (𝑡𝑗)| ≤ 1. The minimum cardinal-
ity of 𝑇 is called as antipodal equitable dimension and it is 
denoted by 𝜁𝑎𝑒𝑞𝑑.

Theorem: 3.1 For any connected identity graphs of 𝑍𝑛, 
𝑛 > 3 where n is odd has

 

Proof: Let graph 𝐺 = (𝑉, 𝐸). The vertex set of 𝐺 is

The edge set of 𝐺 is 
  

a) Let 𝑇 ⊆ 𝑉. For the set 𝑇, the set of odd vertices like 
{𝑡1, 𝑡3, 𝑡5, … } or set of even vertices like {𝑡2, 𝑡4, 𝑡6, … } of 
degree 2 has been chosen. Using these vertices we can 
clearly see that each vertices receives distinct codes i.e dis-
tance between the vertex 𝑡𝑖to the set of vertices in the set T 
is distinct. Therefore set T is a resolving set. Here diameter 
of the graph is 2 for any 𝑍𝑛. Also distance between any two 
vertices in the set T is also 2. Using the same subset of T we 
can clearly see that condition for the antipodal set has been 
satisfied i.e there exist vertices 𝑡𝑖𝑡𝑗 ∈ 𝑇 such that 𝑑(𝑡𝑖, 𝑡𝑗) = 
𝑑𝑖𝑎𝑚(𝐺) = 2. Therefore set T with minimum cardinality is 
an antipodal resolving set and its antipodal dimension ie. 

b) Using the same set of vertices of T condition of inde-
pendent set i.e no two vertices in the set T is adjacent has 
been satisfied. Therefore set T is a antipodal independent 
resolving set and its antipodal independent dimension is 

 With the same set of vertices of T 
cototal resolving set condition is satisfied i.e every vertex in 
the set T-S contains only set of odd vertices or even vertices 
accordingly as set T is chosen and the vertex 𝑡0. Therefore 
for every vertex 𝑡𝑖 ∈ 𝑇 − 𝑆 has no isolated vertex in the 
induced subgraph of < 𝑇 − 𝑆 >. Therefore set T is a antipo-
dal cototal resolving set and its antipodal cototal dimension 
is  Comparing all the above dimen-
sions it is conclude that 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛). 

c) The subset 𝑇1 has been consider in such a way that 
set of odd vertices {𝑡1, 𝑡3, 𝑡5, … } or set of even vertices {𝑡2, 
𝑡4, 𝑡6, … } of degree 2 and the vertex 𝑡0. Clearly set 𝑇1 is a 
resolving set (each vertices receives distinct codes) i.e dis-
tance between every vertex 𝑡𝑖 ∈ 𝑉(𝐺) to the set of verti-
ces in the set 𝑇1 is distinct also the subset 𝑇1 satisifies the 
condition of antipodal set. 𝑇1 also satisfies the condition of 
total set i.e for every vertex 𝑡𝑖 ∈ 𝑉 is adjacent to some vertex 
in the set 𝑇1. Therefore set 𝑇1 is an antipodal total resolv-
ing set and its dimension is  With this 
same set 𝑇1pendant set condition also satisfies i.e induced 
graph 𝑇1 contains atleast one pendant vertex. Therefore it 
is a antipodal pendant resolving sets and its dimension is 

 Equitable set condition is satisified i.e 
for every vertex of the subset 𝑇1 − 𝑆 (contains either set of 
odd vertices or set of even vertices accordingly set 𝑇1 has 
been chosen) there exist a vertex in the subset 𝑇1 such that 
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|deg(𝑡𝑖) − deg (𝑡𝑗)| ≤ 1 Therefore set 𝑇1 is antipodal equita-
ble resolving set and its dimension is  
Comparing all these dimension with the same set 𝑇1 we can 
conclude that 𝜁𝑎𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑝𝑑(𝑍𝑛) = 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛). 

d) By above dimensions comparison it have been con-
clude that 𝜁𝑎𝑑(𝑍𝑛) < 𝜁𝑎𝑡𝑑(𝑍𝑛).

Example: 3.2

Here the subset T= {𝑡1, 𝑡3, 𝑡5}. Diameter of the graph 
is two. Therefore 𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺). Hence 𝜁𝑎𝑑(𝑍𝑛) = 
𝜁𝑎𝑖𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛)=3. Now choose T as {𝑡1, 𝑡3, 𝑡5, 𝑡0} 
which satisifies the condition of antipodal resolving set. 
Therefore 𝜁𝑎𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑝𝑑(𝑍𝑛) = 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) = 4. Hence 
𝜁𝑎𝑑(𝑍𝑛) < 𝜁𝑎𝑡𝑑(𝑍𝑛)

Theorem: 3.3 For any connected identity graphs of 𝑍𝑛, 
𝑛 > 4 where 𝑛 is even has

Proof: Let 𝐺 = (𝑍𝑛, ⨁𝑛) be a graph for 𝑛 > 4 even 
number. 

a) Let 𝑇 ⊆ 𝑉(𝐺). For the subset 𝑇, set of odd vertices like 
{𝑡1, 𝑡3, 𝑡5, … , 𝑡𝑛−2} or set of even vertices like {𝑡2, 𝑡4, 𝑡6, … } 
of degree 2 has been chosen. Using these vertices we can 
clearly see that each vertices receives distinct codes i.e dis-
tance between the vertex 𝑡𝑖to the set of vertices in the set 
T is distinct. Therefore set T is a resolving set. Now check-
ing the condition for antipodal resolving set. Here diame-
ter of the graph is 2 for any 𝑍𝑛. Also distance between any 
two vertices in the set T is also 2. Using the same subset 
of T we can clearly see that condition for the antipodal set 
has been satisfied i.e there exist vertices 𝑡𝑖𝑡𝑗 ∈ 𝑇 such that 
𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺). Therefore set T with minimum 

cardinality is antipodal resolving set and its antipodal 
dimension ie. . With the same set 
of vertices of T it satisfies the condition of independent 
set i.e no two vertices in the set T is adjacent and antip-
odal set. Therefore set T is a antipodal independent 
resolving set and its antipodal independent dimension is 

 Also condition for the cototal resolv-
ing set is satisfied i.e every vertex 𝑡𝑖 ∈ 𝑇 − 𝑆 has no isolated 
vertex in the induced subgraph of < 𝑇 − 𝑆 >. Therefore 
for Therefore set T is a antipodal cototal resolving set and 
its antipodal cototal dimension is . 
From the above dimensions it is concluded that 𝜁𝑎𝑑(𝑍𝑛) = 
𝜁𝑎𝑖𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛).

b) Let 𝑇1 ⊆ 𝑉(𝐺). The subset 𝑇1 contains set of odd ver-
tices {𝑡1, 𝑡3, 𝑡5, … , 𝑡𝑛−2} or set of even vertices {𝑡2, 𝑡4, 𝑡6, … 
} of degree 2 and the vertex 𝑡0. Clearly set 𝑇1 is an antipo-
dal resolving The same set 𝑇1 satisfies the condition of total 
set i.e for every vertex 𝑡𝑖 ∈ 𝑉 there is some vertex adjacent 
to the set 𝑇1. Therefore set 𝑇1 is an antipodal total resolv-
ing set and its dimension is  With this 
same set 𝑇1 pendant set condition also satisfies i.e induced 
graph 𝑇1 contains atleast one pendant vertex. Therefore it 
is a antipodal pendant resolving sets and its dimension is 

 
c) Now for the antipodal equitable resolving set subset T 

has chosen in such a way that set of odd vertices {𝑡1 , 𝑡3, 𝑡5, 
… , 𝑡𝑛−1} or set of even vertices {𝑡2, 𝑡4, 𝑡6 , … }  of degree 
2 and the vertex 𝑡0. Equitable set condition has been satisi-
fies i.e for every vertex of the subset 𝑇 − 𝑆 (contains either 
set of odd vertices till 𝑛 − 1 or set of even vertices accord-
ingly set T has been chosen) there exist a vertex in the sub-
set T such that |deg(𝑡𝑖) − deg (𝑡𝑗)| ≤ 1. Therefore set T 
is antipodal equitable resolving set and its dimension is 

 Thus  
and . Comparing the dimensions of 
antipodal total resolving set and equitable resolving sets 
𝜁𝑎𝑡𝑑(𝑍𝑛) < 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛).

d) By all the above dimension comparison it is con-
cluded that 𝜁𝑎𝑑(𝑍𝑛) < 𝜁𝑎𝑡𝑑(𝑍𝑛) < 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛).

Example: 3.4

Figure 2. Identity graph of 𝑍6.

Figure 1. Identity graph of 𝑍7.
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Here the subset T= {𝑡1, 𝑡4}. Diameter of graph is two. 
Here 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 2. Now choose T as 
{𝑡1, 𝑡3, 𝑡0}. Therefore 𝜁𝑎𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑝𝑑(𝑍𝑛) = 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) = 3.

For 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) choose T as {𝑡1, 𝑡3, 𝑡5, 𝑡0}. Therefore 
𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) = 4. So 𝜁𝑎𝑑(𝑍𝑛) < 𝜁𝑎𝑡𝑑(𝑍𝑛) < 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛).

Theorem: 3.3 For any identity graph of klein-4 group 
has 𝜁𝑎𝑑(𝐾4) =3 also 𝜁𝑎𝑑(𝐾4) = 𝜁𝑎𝑖𝑑(𝐾4) = 𝜁𝑎𝑝𝑑(𝐾4) = 
𝜁𝑎𝑡𝑑(𝐾4) = 𝜁𝑎𝑒𝑞𝑑(𝐾4).

Proof: Let graph 𝐺 = 𝐼(𝐾4). 𝑉(𝐺) = {𝑡0, 𝑡1, 𝑡2, 𝑡3} = {𝑒, 
𝑎, 𝑏, 𝑎𝑏}. 𝐸(𝐺) = {𝑡0𝑡𝑖/1 ≤ 𝑖 ≤  3}. Let 𝑇 ⊆ 𝑉 .The subset 
T has been chosen in such a way that {𝑡1, 𝑡2, 𝑡3} each ver-
tices are of degree one. Using these vertices we can clearly 
see that each vertices receives distinct codes i.e distance 
between each vertex in set V(G) to the set T is distinct. 
Therefore set T is a resolving set. Here diameter of the graph 
is 2. Also distance between any two vertices in the set T is 
also 2. For the subset of T there exist vertices 𝑡𝑖𝑡𝑗 ∈ 𝑇 such 
that 𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺) the condition for the antipodal 
set has been satisfied which is of minimum cardinality of 
antipodal resolving set and its antipodal dimension is three 
ie.𝜁𝑎𝑑(𝐾4) = 3. Also using same set of vertices independent 
set condition is satisfied i.e no two vertices in the set T is 
adjacent. Therefore set T is also a antipodal independent 
resolving set Now for the antipodal pendant resolving set 
subset 𝑇1 has chosen in such a way that {𝑡0, 𝑡1, 𝑡2}. Clearly 
the consider set T is a antipodal set because there exist ver-
tices 𝑡1𝑡2 ∈ 𝑇 such that 𝑑(𝑡1, 𝑡2) = 𝑑𝑖𝑎𝑚(𝐺) = 2. Using this 
subset 𝑇1, the induced subgraph <𝑇1 > contains atleast one 
pendant vertex. And with the same subset 𝑇1 total antip-
odal resolving set condition is satisfied i.e every vertex in 
the set 𝑉(𝐺) is adjacent to some vertex in the subset 𝑇1. 
Therefore antipodal total resolving set is 3. Also equitable 
set condition is satisifies i.e for every vertex of the subset 
𝑇1 − 𝑆 (contains either set of odd vertices till 𝑛 − 1 or set 
of even vertices accordingly set 𝑇1 has been chosen) there 
exist a vertex in the subset 𝑇1 such that |deg(𝑡𝑖) − deg (𝑡𝑗)| 
≤ 1. Therefore set 𝑇1 is antipodal equitable resolving set 
and antipodal pendant resolving set. Therefore 𝜁𝑎𝑑(𝐾4) = 
𝜁𝑎𝑖𝑑(𝐾4) = 𝜁𝑎𝑡𝑑(𝐾4) = 𝜁𝑎𝑝𝑑(𝐾4) = 𝜁𝑎𝑒𝑞𝑑 (𝐾4) = 3.

Remark: For the identity graphs of Klein-4 group antip-
odal cototal resolving set is not possible because we need 

minimum three vertices for the resolving set. Obviously 
subset T-S contains only one vertex however the subset 
is chosen which fails the condition for the cototal set i.e 
the induced graphs of <T-S> should not contains isolated 
vertex.

Example: 3.4 
Choose T as {𝑡1, 𝑡2, 𝑡3}. Diameter of the grah is two. 

With this set of vertices condition of antipodal resolving set 
has been satisified. Hence 𝜁𝑎𝑑(𝐾4) = 𝜁𝑎𝑖𝑑(𝐾4) = 𝜁𝑎𝑡𝑑(𝐾4) = 
𝜁𝑎𝑝𝑑(𝐾4) = 𝜁𝑎𝑒𝑞𝑑(𝐾4) = 3.

Theorem: 3.4 For the identity graph of Quaternion 
group 𝑄8,
a)	 𝜁𝑎𝑑(𝑄8) = 3,
b)	 𝜁𝑎𝑑(𝑄8) = 𝜁𝑎𝑖𝑑(𝑄8) = 𝜁𝑎𝑐𝑡𝑑(𝑄8)
c)	 𝜁𝑎𝑡𝑑(𝑄8) = 𝜁𝑎𝑝𝑑(𝑄8) = 4 and 𝜁𝑎𝑒𝑞𝑑(𝑄8) = 5
d)	 𝜁𝑎𝑡𝑑(𝑄8) < 𝜁𝑎𝑒𝑞𝑑(𝑄8)
e)	 𝜁𝑎𝑑(𝑄8) < 𝜁𝑎𝑡𝑑(𝑄8) < 𝜁𝑎𝑒𝑞𝑑(𝑄8)

Proof: Let graph 𝐺 =identity graph of 𝑄8. 𝑉(𝐺) = {𝑡0, 
𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7}. 𝐸(𝐺) = {𝑡0𝑡𝑖, 𝑡2𝑡3, 𝑡4𝑡5, 𝑡6𝑡7 ∶ 1 ≤ 
𝑖 ≤  7}. This graph 𝐺 ≅ 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑍8. From the 
Theorem: 3.2 by substituting n=8 we have obtained 𝜁𝑎𝑑(𝑄8) 
= 3, ii) 𝜁𝑎𝑑(𝑄8) = 𝜁𝑎𝑖𝑑(𝑄8) = 𝜁𝑎𝑐𝑡𝑑(𝑄8), iii) 𝜁𝑎𝑡𝑑(𝑄8) = 
𝜁𝑎𝑝𝑑(𝑄8) = 4 and 𝜁𝑎𝑒𝑞𝑑(𝑄8) = 5, iv) 𝜁𝑎𝑡𝑑(𝑄8) < 𝜁𝑎𝑒𝑞𝑑(𝑄8), 
v)𝜁𝑎𝑑(𝑄8) < 𝜁𝑎𝑡𝑑(𝑄8) < 𝜁𝑎𝑒𝑞𝑑(𝑄8).

ANTIPODAL RESOLVING SETS ON ORDER 
PRIME GRAPHS OF FINITE GROUP 

In this section results have been observed for the vari-
ous antipodal resolving sets on order prime graphs of finite 
group. 

Theorem: 4.1 For the order prime graphs of 𝑍𝑛,𝑛 = 2𝑝 
where p is prime satisfies
a)	 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) = 2𝑝 − 3, 𝑝 ≥ 3
b)	 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) = 𝜁𝑎𝑝𝑑(𝑍𝑛) = 2𝑝 − 2, 𝑝 ≥ 3
c)	 𝜁𝑎𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) and 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑝𝑑(𝑍𝑛)

Proof: Let 𝐺=𝑂𝑃(Γ(𝑍𝑛)) be a graph and 𝑛 = 2𝑝, 𝑝 > 3 
and 𝑝 is a prime number.

𝑉(𝐺) = {0,1,2, … , 𝑛 − 1} = {𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑛−1}. 

|𝑉(𝐺)| =  𝑛 and |𝐸(𝐺)| =  𝑛 + 1.
a) Let 𝑇 ⊆ 𝑉(𝐺). For the subset T vertices has been 

chosen in such a way that 2𝑝 − 5 vertices are of degree 
one and the vertices . Using these vertices we can 
clearly see that each vertices receives distinct codes i.e dis-
tance between each vertex in set V(G) to the set T is dis-
tinct. Therefore set T is a resolving set. Here diameter of 
the graph is 2. Also the distance between two vertices in 
the subset T is also 2. Using the subset of T we can clearly 
see that condition for the antipodal set has been satis-
fied i.e there exist vertices 𝑡𝑖 𝑡𝑗 ∈ 𝑇 such that 𝑑(𝑡𝑖, 𝑡𝑗) = 
𝑑𝑖𝑎𝑚(𝐺). Therefore subset T is of minimum cardinality 
satisfying antipodal resolving set and its antipodal dimen-
sion ie. 𝜁𝑎𝑑(𝑍𝑛) = 2𝑝 − 3. Also using same set of vertices Figure 3. Identity graph of Klein-4 group.
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cototal set condition is satisfied i.e the subset T-S contains 
only  Therefore for every vertex 𝑡𝑖 ∈ 𝑇 − 𝑆 
has no isolated vertex in the induced subgraph of < 𝑇 − 𝑆 
>. Therefore set T is a antipodal cototal resolving set and 
its antipodal cototal dimension is 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 2𝑝 − 3, 𝑛 ≥ 
3. Now for the antipodal independent resolving set subset 
T has been chosen in such a way that 2p-5 vertices are of 
degree one and the vertices  Using these ver-
tices we can clearly see that each vertices receives distinct 
codes i.e distance between each vertex in set V(G) to the set 
T is distinct. Therefore set T is a resolving set. Here diame-
ter of the graph is 2. Also the distance between two vertices 
in the subset T is also 2. Using the subset of T we can clearly 
see that condition for the antipodal set has been satisfied i.e 
there exist vertices 𝑡𝑖𝑡𝑗 ∈ 𝑇 such that 𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺). 
Therefore set T with minimum cardinality is antipodal 
resolving set and its antipodal dimension ie.𝜁𝑎𝑑(𝑍𝑛) = 2𝑝 
− 3. Also every vertex in the set T is not adjacent therefore 
antipodal independent resolving set and its dimension is 
𝜁𝑎𝑖𝑑(𝑍𝑛) = 2𝑝 − 3. Therefore we can conclude that 𝜁𝑎𝑑(𝑍𝑛) 
= 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) = 2𝑝 − 3, 𝑝 ≥ 3. 

b) Let 𝑇 ⊆ 𝑉(𝐺). For the set T vertices has been chosen 
in such a way that 2p-5 vertices are of degree one and the 
vertices  Each vertices receives distinct codes 
i.e distance between each vertex in set V(G) to the set T is 
distinct. Therefore set T is a resolving set.Here diameter of 
the graph is 2. Also distance between two vertices in the set 
T is also 2. Using the subset of T we can clearly see that con-
dition for the antipodal set has been satisfied i.e there exist 
vertices 𝑡𝑖𝑡𝑗 ∈ 𝑇 such that 𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺). Therefore 
set T with minimum cardinality is antipodal resolving set 
and its antipodal dimension ie.𝜁𝑎𝑑(𝑍𝑛) = 2𝑝 − 2. Also 
equitable set condition is satisifies i.e for every vertex of the 
subset 𝑇 − 𝑆 there exist a vertex in the subset T such that 
|deg(𝑡𝑖) − deg (𝑡𝑗)| ≤ 1. Therefore set T is antipodal equi-
table resolving set. Also using subset T pendant set condi-
tion also satisfies i.e induced graph T contains atleast one 
pendant vertex. Therefore it is a antipodal pendant resolv-
ing sets and its dimension is 𝜁𝑎𝑝𝑑(𝑍𝑛) = 2𝑝 − 2, 𝑝 ≥ 3.

c) Comparing the dimensions from part a) and b) we 
can conclude that 𝜁𝑎𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) and 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) ≤ 
𝜁𝑎𝑝𝑑(𝑍𝑛).

Example: 
Choose T as {𝑡1, 𝑡2, 𝑡3}. Diameter of the graph is two. 

This set of vertices satisfies 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) 
= 3. Now choose T as {𝑡1, 𝑡2, 𝑡3, 𝑡0} which satisfies𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) 
= 𝜁𝑎𝑝𝑑(𝑍𝑛) = 4. Therefore 𝜁𝑎𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) and 
𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑝𝑑(𝑍𝑛).

Theorem:4.2 For the order prime graphs of 𝑍𝑛,𝑛 = 3𝑝 
where p is prime and p>3 satisfies
a)	 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) = 3𝑝 − 4, 𝑝 >  3
b)	 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) = 𝜁𝑎𝑝𝑑(𝑍𝑛) = 3𝑝 − 3, 𝑝 >  3
c)	 𝜁𝑎𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) and 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑝𝑑(𝑍𝑛)

Proof: Let 𝐺=𝑂𝑃(Γ(𝑍𝑛)) and 𝑛 = 3𝑝, 𝑝 > 3 and is a 
prime number. 

  
|𝑉(𝐺)| =  𝑛 and |𝐸(𝐺)| =  𝑛 + 1.

a) Let 𝑇 ⊆ 𝑉(𝐺). For the subset T vertices has been cho-
sen in such a way that 3𝑝 − 6 vertices of degree one, and 
{𝑡𝑝, 𝑡2𝑝 } vertex. Using these vertices we can clearly see that 
each vertices receives distinct codes i.e distance between 
each vertex in set V(G) to the set T is distinct. Therefore 
set T is a resolving set. Here diameter of the graph is 2. 
Also distance between two vertices in the set T is also 2. 
Using the subset of T we can clearly see that condition for 
the antipodal set has been satisfied i.e there exist vertices 
𝑡𝑖𝑡𝑗 ∈ 𝑇 such that 𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺). Therefore subset T 
is of minimum cardinality satisfyings antipodal resolving 
set and its antipodal dimension ie. 𝜁𝑎𝑑(𝑍𝑛) = 3𝑝 − 4. Also 
using same set of vertices cototal set condition is satisified. 
In the set T-S contains only {𝑡0, 𝑡𝑗, 𝑡𝑘} accordingly as set 
T has been chosen. Therefore for every vertex 𝑡𝑖 ∈ 𝑇 − 𝑆 
has no isolated vertex in the induced subgraph of < 𝑇 − 𝑆 
>. Therefore set T is a antipodal cototal resolving set and 
its antipodal cototal dimension is 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 3𝑝 − 4, 𝑝 >  
3. Using these vertices it is observed that every vertex in 
the subset T are not adjacent therefore antipodal indepen-
dent resolving set and its dimension is 𝜁𝑎𝑖𝑑(𝑍𝑛) = 3𝑝 − 4. 
Therefore, 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) = 3𝑝 − 4, 𝑝 >  3.

b) Let 𝑇 ⊆ 𝑉(𝐺). For the set T vertices has been chosen 
in such a way that 3𝑝 − 6 vertices of degree one, and the 
vertices {𝑡0, 𝑡𝑝, 𝑡2𝑝}. Each vertices receives distinct codes i.e 
distance between each vertex in set V(G) to the set T is dis-
tinct. Therefore set T is a resolving set. Here diameter of the 
graph is 2. Also there exist distance between two vertices 
in the set T is also 2. Using the subset of T the condition 
for the antipodal set has been satisfied i.e there exist verti-
ces 𝑡𝑖𝑡𝑗 ∈ 𝑇 such that 𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺). Therefore set T 
with minimum cardinality is antipodal resolving set and its 
antipodal dimension ie.𝜁𝑎𝑑(𝑍𝑛) = 3𝑝 − 3. Also equitable 
set condition is satisifies i.e for every vertex of the subset 𝑇 
− 𝑆 there exist a vertex in the subset T such that |deg(𝑡𝑖) − 
deg (𝑡𝑗)| ≤ 1. Therefore set T is antipodal equitable resolv-
ing set. Also using subset T pendant set condition also 
satisfies i.e induced graph T contains atleast one pendant Figure 4. Order prime graph of 𝑍6.
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vertex. Therefore it is a antipodal pendant resolving sets 
and its dimension is 𝜁𝑎𝑝𝑑(𝑍𝑛) = 3𝑝 − 3, 𝑝 >  3.

c) Comparing the dimensions from part a) and b) we 
can conclude that 𝜁𝑎𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) and 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) ≤ 
𝜁𝑎𝑝𝑑(𝑍𝑛).

Example:
Choose T as {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡10, 𝑡11, 𝑡12, 𝑡13}. 

Diameter of the graph is two. The condition for the antip-
odal resolving set has been satisfied. Hence 𝜁𝑎𝑑(𝑍𝑛) = 
𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) = 11. Now to check other conditions 
of antipodal resolving set choose T as {𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 
𝑡7, 𝑡8, 𝑡10, 𝑡11, 𝑡12, 𝑡13} which satisifies 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) = 𝜁𝑎𝑝𝑑(𝑍𝑛) 
= 12. Hence 𝜁𝑎𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑒𝑞𝑑(𝑍𝑛) and 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) ≤ 𝜁𝑎𝑝𝑑(𝑍𝑛).

Theorem: 4.3 The 𝑂𝑃(Γ(𝑍𝑛)), 𝑛 ≠ 2𝑝 and 𝑛 ≠ 3𝑝 𝑛 ≥ 
4 under addition modulo 𝑛 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) 
= 𝜁𝑎𝑝𝑑(𝑍𝑛) = 𝑛 − 2, 𝑛 ≥  4.

Proof: Let graph 𝐺=𝑂𝑃(Γ(𝑍𝑛)) and 𝑛 ≠ 2𝑝 and 𝑛 ≠ 3𝑝 
𝑛 > 4 where 𝑝 is a prime number 𝑉(𝐺) = {0,1,2, … , 𝑛 − 1} 
= {𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑛−1}. 𝐸(𝐺) = {𝑡0𝑡𝑖 /1 ≤ 𝑖 ≤ 𝑛 −    1}. |𝑉(𝐺)| 
= 𝑛 and |𝐸(𝐺)| =  𝑛 − 1. Let 𝑇 ⊆ 𝑉(𝐺). The vertices in the 
set T has been chosen in such a way that 𝑛 − 2 vertices of 
degree one. Clearly each vertices receives distinct codes i.e 
distance between each vertex in set V(G) to the set T is dis-
tinct. Therefore set T is a resolving set. Here diameter of the 
graph is 2. Also there exist distance between two vertices 
in the set T is also 2. The subset of T satisfies the condition 
for the antipodal set i.e there exist vertices 𝑡𝑖𝑡𝑗 ∈ 𝑇 such that 
𝑑(𝑡𝑖, 𝑡𝑗) = 𝑑𝑖𝑎𝑚(𝐺). Therefore set T with minimum cardi-
nality is antipodal resolving set and its antipodal dimension 
ie. 𝜁𝑎𝑑(𝑍𝑛) = 𝑛 − 2. Also using same set of vertices cototal 
set condition is satisified. In the set T-S contains only {𝑡0, 
𝑡𝑛−1} . Therefore for every vertex 𝑡𝑖 ∈ 𝑇 − 𝑆 has no isolated 
vertex in the induced subgraph of < 𝑇 − 𝑆 >. Therefore 
set T is a antipodal cototal resolving set and its antipodal 
cototal dimension is 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝑛 − 2, 𝑛 ≥ 4. Every vertex 
in the set T are not adjacent therefore antipodal indepen-
dent resolving set and its dimension is 𝜁𝑎𝑖𝑑(𝑍𝑛) = 𝑛 − 2. 
Also using subset T pendant set condition also satisfies 
i.e induced graph T contains atleast one pendant vertex. 
Therefore it is a antipodal pendant resolving sets and its 
dimension is 𝜁𝑎𝑝𝑑(𝑍𝑛) = 𝑛 − 2. Therefore we can conclude 
that 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) = 𝑛 − 2, 𝑛 ≥ 4.

Example:

Here Choose T as {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}. Diameter of the 
graph is two which satisifies 𝜁𝑎𝑑(𝑍𝑛) = 𝜁𝑎𝑐𝑡𝑑(𝑍𝑛) = 𝜁𝑎𝑖𝑑(𝑍𝑛) 
= 𝜁𝑎𝑝𝑑(𝑍𝑛) = 5.

Theorem: 4.4 For the 𝑂𝑃(Γ(𝐾4)), 𝜁𝑎𝑑(𝐾4) = 𝜁𝑎𝑐𝑡𝑑(𝐾4) 
= 𝜁𝑎𝑖𝑑(𝐾4) = 𝜁𝑎𝑝𝑑(𝐾4) = 2.

Proof: Let graph 𝐺 = 𝑂𝑟𝑑𝑒𝑟 𝑝𝑟𝑖𝑚𝑒 𝑔𝑟𝑎𝑝ℎ of Klein-4 
group. 𝑉(𝐺) = {𝑡0, 𝑡1, 𝑡2, 𝑡3} = {𝑒, 𝑎, 𝑏, 𝑎𝑏}. 𝐸(𝐺) = {𝑡0𝑡𝑖/1 
≤ 𝑖 ≤  3}. This graph 𝐺 ≅ 𝑜𝑟𝑑𝑒𝑟 𝑝𝑟𝑖𝑚𝑒 𝑜𝑓 𝑍4. Using the 
Theorem: 4.3 we can conclude that 𝜁𝑎𝑑(𝐾4) = 𝜁𝑎𝑐𝑡𝑑(𝐾4) = 
𝜁𝑎𝑖𝑑(𝐾4) = 𝜁𝑎𝑝𝑑(𝐾4) = 2.

Theorem:4.5 The 𝑂𝑃(Γ(𝑄8)), under composition has 
𝜁𝑎𝑑(𝑄8) = 𝜁𝑎𝑐𝑡𝑑(𝑄8) = 𝜁𝑎𝑖𝑑(𝑄8) = 𝜁𝑎𝑝𝑑(𝑄8) = 6.

Proof: Let graph 𝐺 = 𝑂𝑃(Γ(𝑄8)) under composition. 
𝑉(𝐺) = {−1,1, 𝑖, −𝑖, 𝑗, −𝑗, 𝑘, −𝑘} = {𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 
𝑡7}. 𝐸(𝐺) = {𝑡0𝑡𝑖: 1 ≤ 𝑖 ≤  8}. |𝑉(𝐺)|  = 8 and |𝐸(𝐺)| =  7. 
This graph 𝐺 ≅ 𝑂𝑃(Γ(𝑍8)). Using the Theorem: 4.3 substi-
tute 𝑛 = 8 we obtain the dimensions as 𝜁𝑎𝑑(𝑄8) = 𝜁𝑎𝑐𝑡𝑑(𝑄8) 
= 𝜁𝑎𝑖𝑑(𝑄8) = 𝜁𝑎𝑝𝑑(𝑄8) = 6.

CONCLUSION 

In this article concept of antipodal resolving have been 
observed for the algebraic graphs of finite group and also 
its dimension have been compared with various antipodal 
resolving sets. In future this work will be carried out for the 
network graphs and result will be compared with algebraic 
graphs. 
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