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ABSTRACT

In this paper, the exact solutions of the (2+1)-dimensional generalized Hirota–Satsuma–Ito 
equation are acquired via the modified exponential function method. The method facilitates 
the acquisition of diverse solution functions under varying conditions, enabling the investi-
gation of the linear mathematical model’s behavior from multiple perspectives. Consequently, 
after deriving the solution functions that characterize the behavior of the nonlinear mathe-
matical model, the plots of these functions have been plotted using the relevant parameters.
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INTRODUCTION

One of the most important aspects of nonlinear 
research is the development of exact solutions for nonlin-
ear evolution equations (NLEEs). Studies of this part can 
help us understand nonlinear problems like plasmas, Bose–
Einstein condensation, and fluids. There are a number of 
wave models that illustrate these issues. The nonlinear 
Schrodinger and Korteweg–de Vries equations and their 
numerous modifications are used in these wave models. 
The Hirota bilinear approach is widely utilized  for solu-
tion construction as a result of its ease of use and clarity, 
such as solitons and breathers. Also, it has been pointed out 

that certain types of nonlinear waves can change into other 
types of waves in certain situations [1-33]. 

In a similar fashion, many high-dimensional NLEEs 
include nonlinear waves, such as lump solutions and res-
piration waves. There are a lot of studies on breath-wave 
and lump wave solutions. Recently researchers have inves-
tigated skew lumps and interactions of multi-lumps within 
the framework of the Kadomtsev–Petviashvili equation. 
However, relatively few studies have been conducted on 
conversions in high-dimensional NLEEs [34-48].

The Hirota-Satsuma-Ito equation (HSIE), which has 
2+1 dimensional, has recently attracted a lot of interest. The 
Jimbo-Miwa classification includes this equation, which is 
often utilized in the analysis of waves in relatively shallow 
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water. Diverse types solutions for the (2+1)-dimensional 
HSIE have been derived. Furthermore, on the premise of 
the aforementioned research, solutions with more intricate 
forms is discovered. Interaction solutions have been evalu-
ated [48-57].

In this paper, the (2+1)-dimensional generalized HSIE [39]

  (1)

is investigated, where 𝑢 is the physical field, 𝑣 and 𝑧 are the 
potentials of physical field derivatives. The aim of the study 
is to obtain the traveling solutions of HSIE by the modified 
exponential function method (MEFM).

The remainder of the work is organized as follows: 
In Section 2, the main idea of MEFM is presented. The 
application is demonstrated for (2+1)-dimensional gen-
eralized HSIE in Section 3. In Section 4, the conclusion is 
introduced.

MATERIALS AND METHODS

Modified Exponential Function Method
Basic information regarding MEFM are provided in this 

area.
Let implement the method to the following nonlinear 

partial differential equations (NPDEs):

  (2)

where 𝜌 = 𝜌 (𝑥, 𝑦,  𝑡) is unknown function, Λ is a polyno-
mial that functions as 𝜌 (𝑥, 𝑦, 𝑡)  and its partial derivatives 
with respect to 𝑥, 𝑦, and 𝑡.

Step 1: Assume that the traveling wave transform 
(TWT) is as follows:

  (3)

where the constants 𝜒 ≠ 0, 𝜛 ≠  0 and will be calculated 
later. By putting the derivative terms from Eq. (3) into Eq. 
(2), Eq. (2) is converted into a nonlinear ordinary differen-
tial equation, referred to as

  (4)

where Τ is a polynomial which has Υ and its derivatives.
Step 2: Suppose that the traveling wave solution (TWS) 

of Eq. (4) is stated in the form:

  

(5)

where 𝐴𝑁 ≠  0,  𝐵𝑀 ≠  0, 𝐴𝑖 and 𝐵𝑗,  (𝑖 ∈ [0, 𝑁], 𝑗 ∈ [0, 𝑀]) 
are constants that will be calculated. Φ =  Φ(𝜉) supplies the 
Eq. (6):

  (6)

By solving Eq. (6), five families of solutions are derived 
[18]:

Family 1: Let 𝜇 ≠ 0, 𝜆2 − 4𝜇 > 0. Therefore, the TWS 
is acquired as 

  
(7)

Family 2: Let 𝜇 ≠ 0, 𝜆2 − 4𝜇 < 0. Consequently, the 
TWS is obtained as

  
(8)

Family 3: Let 𝜇 = 0, 𝜆 ≠  0 and 𝜆2 − 4𝜇 > 0. Therefore, 
the TWS is acquired as 

  
(9)

Family 4: Let 𝜇 ≠ 0, 𝜆 ≠  0 and 𝜆2 − 4𝜇 = 0. Consequently, 
the TWS is obtained as

  
(10)

Family 5: Let 𝜇 = 0, 𝜆 =  0 and 𝜆2 − 4𝜇 = 0. Therefore, 
the TWS is acquired as 

  (11)

where the constants 𝐴𝑖 (𝑖 ∈ [0, 𝑁]) , 𝐵𝑗 (𝑗 ∈ [0, 𝑀]) , 𝐸, 𝜆,  𝜇 
will be determined. By using the notion of a homogeneous 
balance principle (BP) between the highest nonlinear terms 
and the highest order derivatives of Υ in Eq. (5), an associa-
tion between 𝑁 and 𝑀 is to be established. 

 Step 3: Substituting Eq. (6) and the family solutions 
into Eq. (5) yields a polynomial of exp (Φ(𝜉) ) . The alge-
braic system of equations (ASEs) involving 𝐴𝑖 (𝑖 ∈ [0, 𝑁]) , 
𝐵𝑗 (𝑗 ∈ [0, 𝑀]) , 𝐸, 𝜆,  and 𝜇 is derived by equating to zero 
the coefficients corresponding to identical powers of exp 
(Φ(𝜉) ) . Finally, the acquired values of coefficients substi-
tuting in equation (5), it supplies the TWSs of Eq. (2). 

Application
MEFM are utilized in the part to derive the wave solu-

tions to the (2+1)-dimensional generalized HSIE. Let us 
handle the TWTs:

  
(12)

If the derivatives of these transformations, which should 
be included in Eq. (1) are taken, the following equations are 
found:
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(13)

Substituting the derivative terms from Eq. (13) into Eq. 
(1) yields 

  
(14)

When we rearrange Eq. (14), we obtain

  
(15)

If Eq. (15) is integrated with respect to 𝜉, then we find 

  
(16)

If we rearrange the system (16), then we have

  (17)

Applying the BP to Eq. (17) yields the relationship

By selecting 𝑀 = 1, we then determine 𝑁 = 3. For the 
values of 𝑀 and 𝑁, it is derived as 

  
(18)

The ASEs with 𝑒−Φ(𝜉)  coefficients are derived by reor-
ganizing Eq. (18) in accordance with the requisite term in 
Eq. (16).

The followings are the appropriate coefficients acquired 
by utilizing the Mathematica software tool.

Case-1:

When we substitute above coefficients in Eq. (16), we 
acquire the solutions in the following.

Family 1: Let 𝜇 ≠ 0, 𝜆2 − 4𝜇 > 0. Consequently, the 
TWSs of Eq. (1) are found as

  

(19)

  (20)

  (21)

where, 𝜉 = 𝐸𝐸 + 𝜒 (−𝜛 𝑡 + 𝑥 +  𝑦) ,  Г = √𝜆2 − 4𝜇 .

Figure 1. 2D, 3D, density, contour plots of Eqs. (19)-(21) at 
λ =  2.5,  μ =  1,  𝐵0 =  0.2,  𝜒 = 1.5, 𝛼 =  −1, 𝐵1 =  1.25,  𝐴0 =  
−1.2375,  𝐴1 =  −9.98438,  𝐴2 =  −14.9625,  𝐴3 =  −5.625,  
ϖ =  0.246154,  y =  1.2,  𝑡 = 1, 𝐸𝐸 = 0.75.
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Family 2: Let 𝜇 ≠ 0, 𝜆2 − 4𝜇 < 0. Therefore, the TWSs 
of Eq. (1) are found by 

  
(22)

  (23)

  (24)

where, 𝜉 = 𝐸𝐸 + 𝜒 (−𝜛 𝑡 + 𝑥 +  𝑦) ,  𝛩 = √−𝜆2 +  4𝜇 .

Family 3: Let 𝜇 = 0, λ ≠ 0, 𝜆2 − 4𝜇 < 0. Therefore, the 
TWSs of Eq. (1) are acquired as 

  
(25)

  
(26)

  
(27)

where, 𝜉 = 𝐸𝐸 + 𝜒 (−𝜛 𝑡 + 𝑥 +  𝑦) .

Figure 3. 2D, 3D, density, contour plots of Eqs. (25)-(27) at 
λ =  1,  μ =  0,  𝐵0 =  0.2,  χ =  1.5,  𝛼 = −1, 𝐵1 =  1.25,  𝐴0 =  
−0.15,  𝐴1 =  −1.8375,  𝐴2 =  −6.525,  𝐴3 =  −5.625,  ϖ =  
0.8,  y =  1.2,  𝑡 = 1, 𝐸𝐸 = 0.75.

Figure 2. 2D, 3D, density, contour plots of Eqs. (22)-(24) at 
λ =  1,  μ =  2.5,  𝐵0 =  0.2,  χ =  1.5,  𝛼 = −1, 𝐵1 =  1.25,  𝐴0 
=  −0.9,  𝐴1 =  −6.525,  𝐴2 =  −6.525,  𝐴3 =  −5.625,  ϖ =  
0.0470588,  y =  1.2,  𝑡 = 1, 𝐸𝐸 = 0.75.
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Family 4: Let 𝜇 ≠ 0, λ ≠ 0, 𝜆2 − 4𝜇 = 0. Consequently, 
the TWSs of Eq. (1) are found as

  
(28)

  
(29)

  (30)

where, 𝜉 = EE + 𝜒 (−𝜛 𝑡 + 𝑥 +  𝑦) , 𝜍 = 𝜉𝜆.

Family 5: Let 𝜇 = 0, λ = 0, 𝜆2 − 4𝜇 = 0. Consequently, 
the TWSs of Eq. (1) are obtained as

  (31)

  (32)

  
(33)

where, 𝜉 = EE + 𝜒 (−𝜛 𝑡 + 𝑥 +  𝑦) .

Figure 5. 2D, 3D, density, contour plots of Eqs. (31)-(33) at 
λ =  0,  μ =  0,  𝐵0 =  0.2,  χ =  1.5,  𝛼 = −1, 𝐵1 =  1.25,  𝐴0 =  
0,  𝐴1 =  0,  𝐴2 =  −0.9,  𝐴3 =  −5.625,  ϖ =  −1,  y =  1.2,  t =  
1,  𝐸𝐸 =  0.75.

Figure 4. 2D, 3D, density, contour plots of Eqs. (28)-(30) at 
λ =  2,  μ =  1,  𝐵0 =  0.2,  χ =  1.5,  𝛼 = −1, 𝐵1 =  1.25,  𝐴0 =  
−0.9,  𝐴1 =  −7.425,  𝐴2 =  −12.15,  𝐴3 =  −5.625,  ϖ =  −1,  
y =  1.2,  𝑡 = 1, 𝐸𝐸 = 0.75.
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CONCLUSION

In the paper, the TWSs of (2+1)-dimensional generalized 
HSIE by utilizing the MEFM are acquired. In Mathematica 
software, we obtain the TWSs of (2+1)-dimensional gen-
eralized HSIE. Two dimensional, three dimensional, den-
sity and contour plots of the TWSs by choosing the suitable 
parameters have been plotted in Mathematica software. 
The proposed method is predicted to be an exceedingly 
efficient way for acquiring exact solutions of such NPDEs. 
The derived solutions are anticipated to be beneficial in elu-
cidating the behavior of frequency waves within the realm 
of physics.
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