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ABSTRACT

Fetal health monitoring is essential as it leads to increased mortality rates in fetuses. Cardio-
tocography is a medical technique used by obstetricians to monitor fetal health during labor, 
particularly in cases involving complications. Though various works have been carried out in 
the classification of CTG data there seems to be a need for improvement in achieving signifi-
cant accuracy levels. In this work, first, we implemented the Smote Tomek sampling technique 
to create a balanced dataset. Then, the balanced data is employed for classification in the Ran-
dom Forest ensemble with a bagging classifier. Our technique’s performance is assessed using 
metrics including accuracy, precision, recall, and F1-score. Experimental findings reveal our 
method achieves an accuracy of 98.5%, outperforming not only other classifiers examined in 
the study but also surpassing deep learning algorithms. Hence, the findings of our study high-
light the effectiveness of our approach in classifying Cardiotocography data, suggesting the 
potential for enhancing fetal health monitoring during labor and for improved obstetric care.
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INTRODUCTION

In recent years, perinatal mortality rates have notably 
declined, attributed to heightened awareness of perina-
tal physiology and pathology, the expansion of regional 
centers, and the implementation of intrapartum elec-
tronic monitoring for in-utero surveillance. The intra-
partum electronic fetal monitoring grows progressively 
and it helps in reducing morbidity and mortality rates, 

especially in high-risk pregnancies [1]. Fetal Heart Rate 
tracking would address two issues. In the beginning, it 
would act as a screening procedure for severe asphyxia. 
Second, FHR monitoring would enable the early detec-
tion of asphyxia, enabling prompt obstetric intervention 
to prevent asphyxia-induced brain damage or the death 
of the newborn [2]. CTG involves continuous monitor-
ing of the fetal heart rate via an ultrasound transducer 
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positioned on the mother’s abdomen. Primarily employed 
throughout pregnancy, it serves to evaluate fetal well-be-
ing, particularly in cases of significant complications [3]. 
An essential component of antepartum and postpartum 
care is the routine recording of Fetal Heart Rate (FHR) 
using CTG monitoring. However, it became clear from 
several randomized trials that using CTG antenatally to 
improve fetal outcomes has only modest effectiveness. 
A comprehensive meta-analysis of studies examining 
intrapartum cardiotocography found a 50% decrease in 
perinatal mortality but a 2.5-fold rise in surgical inter-
ventions [4]. A cardiotocograph, generating a paper 
trace, electronically records both the newborn’s heart 
rate and the mother’s uterine contractions. This involves 
two transducers—one linked to a recording device and 
the other to a Doppler ultrasound transducer. 

External CTG monitoring is commonly continuous 
during labor, although intermittent usage is also practiced 
[5]. On CTG, four crucial features require analysis: the 
baseline rate, variability, accelerations, and decelerations. 
The normal range of the baseline rate is 110-160bpm and 
it is analyzed between 5 to 10mins. Variability is the band-
width variation of the baseline after eliminating the decel-
erations and accelerations. The Acceleration is a short time 
improvement in the baseline of >15 bpm, enduring for 15 s 
or more and restoring to the normal baseline. Decelerations 
are defined as a temporary decrease in the fetal heart rate 
of more than 15 beats per minute, lasting for over 15 sec-
onds [6]. Machine learning algorithms primarily classify 
CTG recordings as either normal or pathological based on 
the attributes of fetal heart rate and uterine contractions, 
aiding clinicians in decision-making. [7]. Different algo-
rithms including the Naïve Bayes classifier, Decision tree 
(DT), Radial basis function, and Multilayer perceptron 
networks are utilized for classifying the CTG dataset [8]. 
Due to the imbalance in our CTG dataset, various sam-
pling techniques like the Synthetic Minority Oversampling 
Technique (SMOTE) are employed to improve the classifi-
cation performance of CTG data [9]. 

The paper is structured as follows: Section 2 reviews 
related works on CTG data classification. Section 3 outlines 
the methodology, while Section 4 details our proposed 
method. Experimental results are presented in Section 5, 
followed by a discussion of the findings in Section 6, and 
concluding remarks in Section 7. The key innovation of 
our method lies in integrating the Smote Tomek sampling 
technique with a Random Forest ensemble and bagging 
classifier for CTG data classification. This hybrid approach, 
utilizing ensemble learning with Random Forest as the base 
classifier and employing the bagging technique, enhances 
model performance by reducing variance, improving gen-
eralization, and offering insights into feature importance. 
It effectively tackles the challenge of imbalanced datasets 
often encountered in medical data analysis, particularly in 
fetal health monitoring during labor.

Related Works 
A hybrid model is implemented by integrating the Least 

square support vector machine with binary decision tree 
and the particle swarm optimization and it achieved an 
accuracy of 91.62% [10]. A new approach is proposed by 
using the genetic algorithm and Support Vector Machine 
(SVM) in evaluating fetal well-being and has a very good 
evaluating performance [11]. The bagging approach is 
used with decision tree algorithms such as random forest, 
REPTree, and J48 for the categorization of CTG data and 
achieves an accuracy of more than 90% by all classifiers 
[12]. The decision tree, discriminant analysis, and artificial 
neural networks are used in predicting fetal distress in CTG 
data and achieved 86.36%, 82.1%, and 97.78% accuracy 
respectively [13]. A sub-adaptive neuro-fuzzy inference 
system, deep-adaptive Neuro-Fuzzy Inference Systems 
(ANFIS) models, and Deep Stacked Sparse AutoEncoders 
(DSSAE) implemented in a CTG dataset and it is found that 
DSSAE performs very well with greater sensitivity, speci-
ficity, and accuracy in the CTG dataset [14]. A simulation 
of the rough neural networks is introduced in the classifi-
cation of the CTG dataset and it also achieves a very good 
accuracy of 92.95% [15]. The technique which uses a firefly 
algorithm helps in feature selection with the naïve Bayesian 
classifier and achieves an accuracy of 86.54%. In this tech-
nique, the firefly algorithm helps in selecting the best sub-
set features for the dataset [16]. A new shallow architecture 
of 1D Convolutional Neural Network (CNN) is proposed 
and it consists of only one convolutional layer which helps 
in reducing the complexity of computation. It is very help-
ful to evaluate the fetal state assessment and this performs 
very well than the traditional CNN in the classification and 
achieves a higher accuracy [17]. 

The boost ensemble methods along with the various 
classifiers such as the Random Forest, AdaBoost, k-Nearest 
Neighbors, Support Vector Machine, and Decision Trees, 
are introduced and it was found that the performance of 
classifiers is improved in the classification of CTG data 
[18]. The ensemble methods such as bagging and boost-
ing are implemented in the various classifiers such as naïve 
Bayes, Decision tree, random forest, and k-nearest neigh-
bors and achieved the best accuracy of 96.175 with the help 
of the random forest classifier [19]. The R programming 
is utilized for classifying fetal data which employs a ran-
dom forest classifier and achieves 99.94% training accuracy 
and 93.57% testing accuracy [20]. This study introduces a 
novel ensemble approach, combining sampling techniques 
like SMOTE and ENN with Random Forest classifica-
tion, achieving 93% accuracy in CTG data classification. 
Addressing data imbalance through oversampling and 
undersampling, enhances classification performance effec-
tively [21]. A novel ensemble classifier merging XGBoost 
and Random Forest to predict fetal state from CTG data 
maintains 96% accuracy [22].
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MATERIALS AND METHODS

Dataset Description
The CTG dataset, extracted from the University of 

California Irvine Machine Learning (ML) repository, 
consists of 2126 instances featuring 23 distinct attributes. 
Expert clinicians have classified the dataset, contain-
ing measurements of uterine contractions and fetal heart 
rates obtained through CTG, into three classes: Suspect, 
Pathology, and Normal, with 1655, 295, and 176 instances 
respectively. This publicly accessible dataset is partitioned 
into training and testing sets in a 70:30 ratio for classifica-
tion purposes [23].

Resolving Data Imbalance Using Sampling Techniques
 The complication in considering the clinical data-

set for experimentation is the imbalance in the dataset. 
The imbalance occurs when the dataset comprises more 
classes in the majority and very few classes in the minority 
[24]. These imbalances in data decrease the performance 
of the algorithms leading to incorrect classification per-
formance [25]. This is because the classifiers have a bias 
toward the majority data while the minority class is consid-
ered noise and is avoided. It leads to greater misclassifica-
tion in minority datasets. To overcome all these problems 

sampling techniques are introduced [26]. The CTG dataset 
obtained from the ML repository consists of 2126 instances 
with 23 features. The dataset includes 1655 instances classi-
fied as normal, 295 as suspect, and 176 as pathology classes, 
indicating an evident imbalance in the dataset. Hence, we 
applied the following techniques to get balanced data for 
our classification [27]. The main motive of the sampling 
technique is to balance the dataset where there is an imbal-
ance. Two sampling techniques, namely oversampling and 
under-sampling, were employed. Given the data imbalance 
observed in our CTG dataset, we applied the following 
methodologies.

Oversampling Techniques
Oversampling techniques are employed to address the 

issue of dataset imbalance by producing a greater count of 
training samples for the minority classes. These techniques 
encompass Random Oversampling, Synthetic Minority 
Oversampling Technique (SMOTE), Borderline SMOTE, 
ADASYN, and Safe-level SMOTE, among others. In this 
study, we applied three oversampling techniques: Random 
Oversampling, SMOTE, and Borderline SMOTE. [28].

Random Oversampling
In this Random oversampling technique, the randomly 

selected samples from the minority class are duplicated to 
balance the dataset. The benefit of this technique is that 
there is no loss of details but may cause overfitting since it 
makes a similar copy of minority class samples [29]. 

Synthetic minority oversampling technique (SMOTE)
SMOTE is an Oversampling technique that increases 

the minority class by generating synthetic samples. These 
additional data points are created based on existing real 
data, with synthetic samples inserted along lines connecting 
the nearest neighbors of the minority class. Neighbors are 
selected randomly as needed [30]. While SMOTE’s primary 
advantage lies in its ability to generate diverse synthetic 
instances of the minority class, differing from substitution 
methods in other techniques, its main drawback is its dis-
regard for neighboring class examples and vulnerability to 
data intricacy [31].

Borderline-smote
Contrary to SMOTE, this technique generates minority 

samples besides the borderline and its k-nearest neighbors 
[29,32]. It is also classified as borderline-SMOTE1 and bor-
derline-SMOTE2. It is also classified as borderline-SMOTE1 
and borderline-SMOTE2. It has the advantage of sampling 
only the minority class’s boundary instances, which helps 
minimize operation time, but it lacks customized policies 
for dealing with other types of border instances [31] 

Under-sampling technique
Under-sampling techniques aim to reduce the number 

of samples in the majority class. By decreasing the size of 
the majority class set A, these techniques help alleviate the 

Table 1. Description of dataset features

S.NO Attributes Details
1. B Initiate instant
2. E Terminate instant
3. LB Baseline Value
4. AC Acceleration Count
5. FM Fetal Movement
6. UC Uterine contractions
7. DL Mild decelerations
8. DS Severe decelerations
9. DP Prolongued decelerations
10. ASTV Abnormal short-term variation percentage
11. MSTV Short-term variation Mean
12. ALTV Abnormal long-term variation percentage
13. MLTV Long-term variation Mean
14. Width Histogram Width
15. Min Low frequency
16. Max High frequency
17. Nmax Histogram peak count
18. Nzeros Histogram Zero Count
19. Mode Histogram mode
20. Mean Histogram mean
21. Median Histogram median
22. Variance Histogram variance
23. Tendency Histogram Tendency
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skewed distribution between A and the minority class set I. 
In this study, we applied three under-sampling techniques: 
Random Under-sampling, Tomek Links Under-sampling, 
and Edited Nearest Neighbors (ENN) Rule.

Random under-sampling
It is the simplest technique where the randomly selected 

samples are eliminated from the majority class which may 
lead to information loss [34]. It has the advantage of avoid-
ing excess majority samples and shortening the prediction 
model’s training time, but the main limitation of this tech-
nique is that it removes the useful data that is needed for the 
induction process [35].

Tomek links under-sampling
It is a method of under-sampling developed by Tomek 

which is an improvement of the Nearest-Neighbor Rule. 
Let u be an instance of class P and v an instance of class 
Q. Let d (u, v) be the distance between u and v. (u, v) is a 
T-Link if for any instance t, d (u, v) < d (u, t) or d (u, v) < 
d (v, t). If any two examples are T-Link then one will be 
noise and the other will be the examples that are located on 
the boundary of the classes [36]. It also improves the data 

balance by eliminating large samples that form “Tomek link 
pairs” with each other in the dataset, but it ignores small 
samples and abnormal points in the data, and the sample 
distribution balancing is also limited [37].

Edited Nearest Neighbors Rule (ENN)
If the minority class has three nearest neighbors 

(k=3) belonging to the majority class, these neighbors are 
excluded, along with the majority class samples found in 
the boundary [38]. Despite removing more instances com-
pared to Tomek links, ENN is efficient in eliminating mis-
classified cases from all classes based on the consensus of 
the three nearest neighbors. However, undersampling with 
ENN may sometimes discard potentially valuable instances 
from clinical datasets [39].

Figure 1 and Figure 2 represent the illustration of over-
sampling and undersampling techniques on a given data-
set. The first box represents the distribution of the original 
dataset where each color represents the data in each class. 
Blue represents the normal, white represents the suspect 
and the red represents the pathology. The next three boxes 
represent the significant change in the number of samples 

Figure 1. Visualizing over-sampling techniques for dataset representation.

Figure 2. Visualizing under-sampling techniques for dataset representation.
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in each class after applying the oversampling and under-
sampling techniques.

Proposed Technique
Our proposed approach integrates sampling techniques 

by combining SMOTE from Oversampling with TOMEK 
LINKS from Undersampling. This combination is imple-
mented within the Bagging framework using the Random 
Forest classifier for classification.

Some of the key assumptions include Class Imbalance, 
Feature Importance, and Model Generalization.

To effectively apply the proposed method for CTG data 
classification:
1.	 Applying Smote Tomek sampling for class imbalance.
2.	 Training a Random Forest ensemble with a bagging clas-

sifier, tuning hyperparameters for optimal performance.
3.	 Evaluating the model using metrics like accuracy and 

interpreting feature importance to enhance fetal health 
monitoring outcomes. Fig 3 represents the overall flow-
chart of our method.

SMOTETomek for Data Imbalance
From our sampling techniques, we have combined Smote 

from oversampling and Tomek Links from the undersam-
pling technique into SMOTETomek for our data imbalance 
[40]. We found that SMOTETomek performs very well than 
other techniques. We have implemented this technique in 
the Bagging with Random Forest classifier for classification. 

Random Forest Classifier
A classifier containing the multitude of tree structure 

classifiers used in the process of regression and classifica-
tion is the Random Forest. The multitude of tree structures 
is represented as {g (x, ϕt), t=1….} where {ϕt} are unique 
random vectors that are distributed independently. Each 
tree votes for the desired class at input x. The selection 
is done by the forest for the classification based on the 
increased votes over all the trees in the forest. Every tree 
grows in the following procedure: 

Figure 3. Illustration of our technique
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1.	 If M is the number of cases in the training set and if it 
samples randomly M cases with replacement from orig-
inal data then it is the training data for the tree.

2.	 If we give N input variables, the value of n<<N will be 
represented at the individual node, and random selec-
tion of m variables out of M is done and the best split 
helps in splitting the node. The value of m is the con-
stant during the growth.

3.	 Without any pruning, the tree grows to the maximum 
extent [41].
RF introduces modifications to the way classification or 

regression trees are built and incorporates additional ran-
domness through the use of diverse bootstrap samples from 
the dataset for each tree’s construction. In the context of our 
CTG dataset, which is used for classifying data into ‘nor-
mal,’ ‘suspect,’ or ‘pathology’ categories, the Random Forest 
method is described as follows:
1.	 Multiple bootstrap samples are drawn from the actual 

dataset, creating a collection of ntree bootstrapped 
datasets.

2.	 For each of these bootstrap samples, an unpruned tree 
is developed for classification or regression, with a key 
difference:

3.	 In each tree-building node, instead of selecting the best 
split among all available predictors, a random subset 
of predictors is sampled, and the split is chosen from 
this subset. When the number of predictors sampled 
(mtry) equals the total number of predictors (p), it 
resembles the conventional bagging approach with no 
randomness.

4.	 To make predictions on new data, the results from the 
trees are combined. For classification, majority votes are 
used, while for regression, the mean is employed [42]. 

Bagging Ensemble with Random Forest Classifier
In our study, we employed a bagging classifier wherein 

the random forest serves as the base classifier. This ensem-
ble learning technique combines bagging and the random 
forest algorithm to create a more resilient and precise 
model. It generates and consolidates multiple models from 
bootstrapped samples of the training set, with each model 
using a Random Forest Classifier as the base estimator. This 
classifier constructs numerous decision trees using random 
subsets of the training data and their respective features. 
The predictions from these trees are then amalgamated 
to produce the final prediction, enhancing accuracy while 
mitigating overfitting. The “fit()” function of the bag mod-
els is utilized to train the Bagging classifier on the training 
data. The “max_samples” parameter specifies the number 
of samples to be drawn from the training set. In a Bagged 
Random Forest (BRF), a distinct random subset of features 
is selected for each split within every tree, introducing an 
additional layer of diversity beyond bootstrap sampling. 
The overall summary of the proposed method is as follows:
1.	 Install the necessary libraries.

2.	 Resample the training data using the SMOTE and 
TomekLinks sampling strategy to produce two distinct 
datasets.

3.	 Construct a pipeline that includes oversampling, under-
sampling, and a random forest classifier with 1000 
estimators.

4.	 Create a repeated stratified k-fold cross-validation 
approach comprising 10 splits and 3 repetitions to 
evaluate pipeline performance using f1 micro-scoring. 
Form the pipeline to the training data and compute the 
average f1 score.

5.	 Create a bagging classifier with 1000 estimators, a sam-
ple size of 0.8, and a True Out-of-Bag score.

6.	 Apply the bagging classifier to the training data and 
compute the Out-of-Bag score.
Random Forest, as a standalone algorithm, already 

combines the predictions of multiple decision trees within 
the Random Forest model. In contrast, a bagging classi-
fier with Random Forest as the base estimator combines 
the predictions of multiple base classifiers, with Random 
Forest. This approach leverages the diversity and strengths 
of various base classifiers to enhance overall performance 
and robustness.

RESULTS AND DISCUSSION

Metrıcs for Assessment

Accuracy (ACC) 
Accuracy is the measure of the ratio of precise predic-

tions over the total number of samples evaluated. 

	 Acc = TN + TP / TP + FN + FP+ TN	 (1)

Precision (P)
Precision represents the accuracy of positive predictions 

among all positive samples predicted within a positive class. 

	 P = TP / FP+ TP	 (2)

Recall (R)
The recall is used to calculate the proportion of cor-

rectly classified positive samples.

	 R = TP/TP+TN	 (3)

F1-score 
This F1-score is the measure of the harmonic mean 

between the values of recall and precision

	 F1-score = 2PR/P+R	 (4)
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where TP and TN represent the True Positives and Negatives 
and FP and FN represent the False Positives and Negatives

Performance Evaluation
The fetal CTG dataset is utilized for experimentation, 

and the method is implemented using Python on a system 
featuring an 11th Gen Intel(R) Core (TM) i5 processor 
running a 64-bit operating system, Windows 11. Google 
Colab with GPU backend is employed for executing the 
experimentation.

The experimental results for basic Random Forest are 
given in Table 2. The overall accuracy of the Basic random 
forest is 93.57%. It is found that good results are produced 
in the classification of normal images with 95% of preci-
sion, 100% of recall, and 97% of F1-score.

The evaluation performance of the under-sampling and 
over-sampling techniques implemented in the unbalanced 
data to enhance the classification process is given in Table 
3 and Table 4. In the oversampling techniques, it is found 
that SMOTE with Random Forest produces a greater accu-
racy of 95% than the Random oversampling and Borderline 
SMOTE techniques. In the under-sampling technique, the 
Tomek links produce a very good accuracy of 93% than the 
Random under-sampling and edited nearest neighbor tech-
nique. The Under-sampling techniques other than Tomek 
Links produce a very low accuracy in comparison with 
basic RF. It is also seen that the oversampling techniques 
perform very well compared to the undersampling tech-
niques in this dataset. The method in which we combine 
the oversampling and under-sampling techniques improves 
the performance of classification by removing the errors 

 Table 2. Performance of basic random forest

Technique Class Accuracy (%) Precision Recall F1-score
Basic RF Normal 93.57% 0.95 1.00 0.97

Suspect 0.88 0.70 0.78
Pathology 0.91 0.83 0.87

Table 4. Performance of undersampling techniques with RF

Technique Class Precision Recall F1-score Accuracy
RF with Random Undersampling N

S
P

0.99
0.68
0.67

0.89
0.90
0.90

0.94
0.77
0.77

0.89

RF with Tomeklinks N
S
P

0.94
0.90
0.92

1.00
0.68
0.85

0.97
0.77
0.88

0.93

RF with ENN N
S
P

0.84
0.72
1.00

1.00
0.38
0.17

0.91
0.49
0.30

0.83

Table 3. Performance of oversampling techniques with RF

Technique Class Precision Recall F1-score Accuracy (%)
RF with random oversampling N

S
P

0.97
0.80
0.96

0.97
0.80
0.93

0.97
0.80
0.95

94%

RF with SMOTE N
S
P

0.97
0.88
0.88

0.98
0.88
0.88

0.98
0.84
0.91

95%

RF with borderline SMOTE N
S
P

0.98
0.78
0.94

0.97
0.86
0.88

0.97
0.82
0.91

93%
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in both samplings. This method yields better results and 
improves accuracy greatly. Here, in our results, we found 
that the random forest with SMOTE performs well in com-
parison to other techniques, and in under-sampling, it is 
found that the Random Forest in Tomek Links performs 
well and achieves the best results.

Hence, we combine these two techniques as SMOTE 
from oversampling and Tomeklinks from Undersampling 
as SmoteTomek. Table 5 gives the results of SmoteTomek 
implemented in the RF classifier and also the results of the 
combined sampling technique (SmoteTomek) in the bag-
ging ensemble method with the random forest classifier. 
The proposed technique is the combination of sampling 
techniques for balancing data and its implementation in 
the Bagging classifier in which random forest acts as the 
base classifier. The proposed approach attains a very high 
accuracy of 98.5%. It also achieves 100% of Precision and 
Recall in normal and pathology classes.

Table 6 gives the accuracy of our dataset when imple-
mented with other classifiers such as SVM, DT, and 
K-Nearest Neighbor (KNN). Among the compared deep 
learning classifiers in Table 7, the proposed model gets the 
best accuracy (98.5%), suggesting its superior performance. 
Deep Forest, Deep Neural Network, MKNet, and MKRNN 
had lesser accuracies ranging from 88.02% to 95.07%, 
indicating varied degrees of competence in classifying the 
dataset.

Key Findings
The CTG data classification of FHR signals using the 

Bagging technique with a Random Forest classifier yielded 
an impressive accuracy of 96.8%. Further enhancements, 
including the implementation of over-sampling (SMOTE) 

and under-sampling (Tomek links) techniques, resulted in 
a remarkable 98.5% accuracy in classification. This com-
bined approach effectively addressed class imbalance, 
demonstrating the technical significance of the method. 
From a theoretical viewpoint, this method creatively com-
bines resampling techniques and ensemble learning to 
handle imbalanced CTG datasets. It balances class distribu-
tion using Smote Tomek sampling and boosts model per-
formance with a Random Forest ensemble using bagging. 
From an experimental viewpoint, this method notably 
enhances classification accuracy, achieving an impressive 
98.5% accuracy in CTG data classification. It surpasses tra-
ditional classifiers and deep learning models, showcasing 
its effectiveness in precisely categorizing fetal states based 
on CTG signals.

Strengths and Limitations
The technical significance of our method lies in its abil-

ity to achieve a high level of accuracy and effectively man-
age class imbalance using the hybrid resampling technique 
of SMOTE and Tomek links. This approach leverages the 
Bagging Classifier with a Random Forest base estimator, 
which not only reduces variance and overfitting but also 
enhances model generalization, provides valuable insights 
into feature importance, and benefits from parallel pro-
cessing capabilities. However, a potential limitation of 
the Bagging ensemble with Random Forest is that it may 
increase computational complexity and resource require-
ments. The limitation of our method is the computational 
complexity compared to conventional Random Forest. This 
is because, in a Bagged Random Forest, a distinct random 
subset of features is chosen for each split within each tree, 

Table 7. Comparison with other deep learning classifier

Deep learning classifiers Accuracy (%)
Proposed model 98.5%
Deep Forest algorithm [43] 95.07 %
Deep Neural network architecture [44] 88.02%
MKNet [45] 94.70%
MKRNN [45] 90.30%

Table 6. Performance of evaluation with competent classi-
fiers

Classifier Accuracy (%)
SVM 92%
Decision tree 93%
KNN 81%

Table 5. Performance of combined Techniques with RF

Technique Class Precision Recall F1-score Accuracy
SMOTETomek
With RF

N
S
P

0.98
0.79
0.94

0.97
0.89
0.86

0.98
0.84
0.90

96.8%

SMOTETomek in Bagging with 
RF (Proposed method)

N
S
P

1.00
0.93
0.94

0.98
0.99
1.00

0.99
0.96
0.97

98.5%
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adding an extra level of variation alongside the bootstrap 
sampling process.

Comparison with Similar Approaches
Our proposed method was compared to other classifi-

ers, and it outperformed them, achieving greater accuracy. 
A bar chart in Figure 6 provides a visual representation of 
the comparison of accuracies among different classifiers. 
Moreover, the performance details from relevant tables, 
including Table 2, which demonstrates that the basic 
Random Forest (RF) did not meet the expected accuracy 
for the data, prompted us to implement over-sampling 
and under-sampling techniques. The results in Table 3 and 
Table 4 indicated that SMOTE for oversampling and Tomek 
links for undersampling outperformed other techniques. 
Consequently, we decided to oversample our data with 
SMOTE and undersample with Tomek links, using a basic 
RF classifier resulting in the enhanced accuracy of 96.8% as 
demonstrated in Table 5. Tables 6 and 7 give the compar-
ative performance with other ML and DL classifiers. The 
confusion matrix for our proposed Rf is illustrated in Fig:5.

CONCLUSION 

The assessment of fetal state using the CTG is essential 
due to its critical importance, as it has the potential to result 
in fatal outcomes if not managed appropriately. The clas-
sification of fetal state from CTG using Machine Learning 
algorithms is presented. Though there are various machine 
learning classifiers implemented in this classification of 
CTG data it is found that there is an obvious need for the 
upgrade of accuracy. In this, we use the combined sampling 
technique in a Random Forest classifier with Bagging. We 
first implemented the oversampling techniques as smote, 
Random oversampling, and borderline smote. Then we 
implemented the under-sampling techniques such as 
Random under-sampling, Tomek Links, and Edited near-
est neighbors. Based on the results, we combined the Smote 
from oversampling and Tomek Links from under-sampling 
as they performed well among the other techniques. Then 
we used the ensemble method of bagging with random for-
est as the base classifier. Our method achieves astonishing 
results of 98.5 % accuracy in the classification of this CTG 
data. Future works can be done by applying class weight 
after bootstrapping and improvement in feature selection 
can also be done.
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