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ABSTRACT

An interval-valued intuitionistic fuzzy sets (IVIFSs) theory, which is an effective tool for 
dealing with uncertainty, has attracted the attention of researchers and has been applied 
to many fields. One of the significant topics in intuitionistic fuzzy sets is the measure of 
distance. Many distance measures have been developed for IVIFSs in the literature over the 
last fifteen years. However, not all of these measures can satisfy the axioms of distance. In this 
study, a Jaccard distance measure and its proofs are extended under the IVIF environment. 
The proposed Jaccard distance measure is compared with the existing distance measures. 
The result of the analysis indicates that the proposed Jaccard distance measure overcomes 
the disadvantages of the current distance measures. Moreover, the extension of the TOPSIS 
(Technique for  Order Performance by Similarity to Ideal Solution) method based on the 
proposed Jaccard distance is presented to solve MCDM (Multi Criteria Decision Making) 
problems in the IVIF environment. Finally, a personnel selection problem is solved to illustrate 
the proposed MCDM method.
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INTRODUCTION

In real-life problems, crisp numbers can be insufficient 
to define vagueness and uncertainty properly. Hence, Zadeh 
[1] developed the Fuzzy Sets theory (FSs) to overcome
vagueness and uncertainty. According to the FSs theory, the 
membership of an element to a fuzzy set is demonstrated
by only a single value between zero and one. Nevertheless,
in reality, the degree of non-membership of an element in
a fuzzy set is not equal to 1 minus the membership degree
[2,3]. In other words, there may be some hesitation about

the membership of the element to the set. Therefore, 
Atanassov [4] extended the FSs theory to the IFSs theory, 
which is a generalization of the concept of FSs. The IFSs 
theory is characterized by membership degree, hesita-
tion degree and non-membership degree. Atanassov and 
Gargov [5] then suggested the IVIFSs theory as a further 
generalization of the IFSs theory. Thereby, those degrees are 
represented by interval-valued values rather than crisp val-
ues in this theory. The IVIFSs theory provides the effective 
capability to cope with vague information [6].
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Due to their performance to model uncertainty in the 
absense of information and to handle vagueness in real-
life problems, IVIFS theory has been applied in several 
application areas such as medical diagnosis [7,8], image 
segmentation [9], edge detection [10,11], decision making 
[12-15], pattern recognition [16], etc. One of the most 
interesting topics in IVIFSs theory is the some measures 
that compare the information carried by two IVIFSs. Many 
different types of measurements have been developed in 
the literature such as distance [6, 17-24], similarity [20, 
25-29], entropy [6, 24, 25, 30-33], cross-entropy [34, 35], 
correlation [15, 36, 37], and divergence indices [38, 39]. 
Especially, distance measures between IFSs have received 
great attention in the last decade as they are valuable 
tools in several fields including decision-making, medical 
diagnosis, pattern recognition, and data mining.

MCDM is an approach designed for the evaluation of 
problems that require an efficient distance measure to make 
an approximate decision in an IVIF environment. Although 
several distance measures have been developed in the 
literature, not all these distance measures are effective in 
dealing with every MCDM problem. That is why different 
distance measures are needed depending on the nature of the 
decision-making problems. As far as the authors know, the 
distance measure for IVIFSs was first proposed by Xu [17]. 
Xu [17] defined the Euclidean distance, Hamming distance, 
and their versions combined with the Hausdorff metric. 
Then, these measures were applied to pattern recognition. 
Park, et al. [18] modified the distance measures defined by 
Xu [17] considering the amplitude margin. Xu and Yager 
[20] introduced a distance measure based on the Hamming 
distance containing the indeterminacy degree for IVIFSs. 
Zhao et al. [40] extended the Euclidean distance measure 
with the indeterminacy degree. Zhou et al. [41] developed 
a distance measure based on the convex combination of 
the difference between membership and non-membership 
degrees. Düğenci [19] developed a generalized distance 
measure used to calculate the separation measures in the 
IVIF extension of the TOPSIS method. Baccour and Alimi 
[21] and Fares, et al. [22] introduced new distance measures 
which were illustrated from the pattern recognition point of 
view. The hesitant degree was not taken into account in the 
above-mentioned distance measures. However, the hesitant 
degree plays an important role when the membership and 
non-membership degrees are not very different for the 
two IVIFSs. Thus, some authors considered the hesitant 
degree when developing the distance degree. Tiwari and 
Gupta [24] extended distance measures by considering 
the hesitant degree for IVIFSs. Anusha and Sireesha [23] 
offered Jaccard distance for IVIF sets. Here mod defined the 
Euclidean distance from the set to the origin. Ohlan [42], 
presented a distance measure under an IVIF environment 
using an exponential function. Gohain et al. [43] developed 
a distance measure that accounts for the optimistic 
viewpoint of the information contained in the IVIFSs and 

the cross-time information via the difference between the 
maximum and minimum cross-information factors.

The aforementioned articles have focused on popular 
distance measurements such as Euclidean, Manhattan, 
and Hamming. The Jaccard index is one of the most useful 
similarity measure. However, the investigation of the Jaccard 
distance similarity measurement of IVIF sets is limited. As 
far as it is known, the only study that developed the Jaccard 
distance for the IVIF set was done by Anusha and Sireesha 
[23]. But, it is seen that this measure produces unreasonable 
distance values for some IVIFSs. Motivated by the rising 
importance of decision-making methods under the IVIF 
environment, to fill in this gap in the literature, this study 
develops the Jaccard distance measures of IVIFSs by using 
membership and non-membership intervals of IVIFS. 
Then, this measure is compared to well-known distance 
measures for IVIFSs. The results obtained show that the 
proposed distance measure produces reasonable results.

PRELIMINARIES

In this section, the basic concepts of IVIFSs are 
introduced. Additionally, the properties of the distance and 
similarity measures are listed.

Definition 2.1 (IVIFSs [5]) Let X be a universe set 
and E = {x1, x2 ,..., xn} be a subset of its elements, then an 
IVIFS A having the form as below with the conditions 

  (1)

Definition 2.2 (Hesitancy degree [5]) For each xi ∈ E, 
the hesitancy degree of any IVIFS A is described as:

  (2)

Definition 2.3 (Set operations and relations on IVIFSs 
[44]) For any two IVIFSs A and B:

  
(3)

  
(4)

  
(5)
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(6)

 

Definition 2.4 (Score function [45]) Let 

 be an IVIFN, then the 

score function of  where  is

  (7) 

 Definition 2.5 (Distance measure [17]) A real function 
d : IVIF(X) × IXIF(X) → [0,1] is named as the distance mea-
sure of IVIF sets on universe X, if it satisfies the following 
axioms for A,B,C ∈ IVIF(X):

Definition 2.6 (Similarity measure [17]) A real func-
tion s : IVIF(X) × IXIF(X) → [0,1] is named as the similarity 
measure of IVIF sets on universe X, if it satisfies the follow-
ing axioms for A,B,C ∈ IVIF(X):

A Novel Jaccard Distance Measure Between IVIF Sets
In this section, a new distance measure of IVIFSs is con-

structed based on the Jaccard index. This index, which is 
also known as the Jaccard similarity coefficient, is used to 
compare the similarity of sets. Assuming that A and B are 
two sample sets, the Jaccard index J(A, B) is described as the 
size of the intersection between A and B divided by the size 
of the union between A and B [46, 47]. The Jaccard distance 
measure is complementary to the Jaccard coefficient and 
it measures dissimilarity between sample sets. The Jaccard 
distance measure [47] dJ(A, B) is presented in Equation 8 
[48]:

  (8)

Let  and 

 be two IVIFSs. The 
novel Jaccard distance measure extended for IVIFSs is 
introduced in Equation 9. The hesitant degree is also taken 
into account in this distance measure:

  

(9)

Theorem 1. dMKJD(A, B) is the Jaccard distance between 
two IVIFSs A and B in X. 

Proof (A1). Let A and B be two IVIFSs. 
Since   

  
  

  and 
 the following inequalities are 

obtained:

Finally, the following inequality is achieved. Thus, 0 ≤ 
dMKJD(A, B) ≤ 1.

Proof (A2). Let A and B two IVIFSs, if A = B then
    and . 

For this reason, the Jaccard distance dMKJD(A, B) is equal 
to zero:
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(10)

Proof (A3). Let A and B be two IVIFSs, The following 
equations can be written as: 

  (11)

  (12)

  (13)

  (14)

  (15)

  (16)

Moreover, because of the commutative property of the 
multiplication operation (e.g.  or 

 dMKJD(A, B) = dMKJD(B, A).

Proof (A4). Let A, B and C be three IVIFSs. The Jaccard 
distance between A and B, and A and C are the following:

  

(17)

If A ⊆ B ⊆ C, then , 
, , 

and . Thus, the following 
inequalities are obtained. It is easy to see that d(A,C) ≥ 
d(A,B) and d(A,C) ≥ d(B,C);

Theorem 2. If dMKJD(A, B) is a Jaccard distance mea-
sure between two IVIFSs A and B in X, then sMKJD(A, B) = 
1 – dMKJD(A, B) is a Jaccard similarity measure between two 
IVIFSs A and B in X.

  

(18)

Comparative Analysis of Distance Measures for IVIF Sets
To show the performance of the proposed Jaccard 

distance measure, a comparison is made between the 
proposed Jaccard distance measure and the existing distance 
measures of IVIFSs. The well-known distance measures 
are defined in Table 1. Table 2 provides a comprehensive 
comparison of the distance measures for IVIFSs with 
counter-intuitive examples. It can be clearly seen that the 
first axiom of distance measure (A1) is not provided by 
dXHHD(A, B), dXHED(A, B), dPHED(A, B), dZXLT GD(A, B), 
dTGHD(A, B), dTGED(A, B), dTGAFD(A, B), and dTGGD(A, 
B) when A=([1, 1], [0, 0]) which is the max IVIF value 
and B=([0, 0], [1, 1]) which is min IVIF value. Another 
counter-intuitive case emerges when A = [(1, 1), (0, 0)], 
B = [(0, 0), (0, 0)], and C = [(0.5, 0.5), (0.5, 0.5)]. In this case, 
dASJD(A, B) and  dASJD(C, B) are equal to 1. 

Some distance measures are not capable of distinguishing 
positive differences from negative differences. For example, 
if A=[(0.3, 0.3), (0.3,0.3)], B=[(0.4, 0.4), (0.4, 0.4)], C=[(0.3, 
0.3), (0.4, 0.4)], and D =[(0.4, 0.4), (0.3, 0.3)], then 
dXHD(A, B) = dXHD(C, D) = 0.1, dXHHD(A, B) = dXHHD(C, D) = 0.05, 
dXED(A, B) = dXED(C, D) = 0.1, dXHED(A, B) = dXHED(C, B)D= 0.07, 
dPHD(A, B) = dPHD(C, D) = 0.1, dPED(A, B) = dPED(C, D) = 0.1, 
dPHHD(A, B) = dPHHD(C, D) = 0.1, dPHED(A, B) = dPHED(C, D) = 0.07, 
dZXLTFD(A, B) = dZXLTFD(C, D) = 0.1, dFBAD(A, B) = dFBAD(C, D) = 0.01, 
dBAD1(A, B) = dBAD1(C, D) = 0.01, dBAD2(A, B) = dBAD2(C, D) = 0.1, 
dZXLTGD(A, B) = dZXLTGD(C, D) = 0.07. 

An interesting counter-intuitive case arises when A=([0.1, 
0.1], [0.6, 0.6]), B=([0.2, 0.2], [0.5, 0.5]), and C=([0.1, 0.1], 
[0.4, 0.4]). In this case, since these IVIF values are ranked as 
C>B>A according to the score function given in Definition 
2.4, the degree of distance between A and C is expected to 
be greater than the degree of distance between A and B. 
However, the distance value between A and B is greater than 
the distance value between A and C when dBAD1, dBAD2, and 
dFBAD, are used. Also, the distance value between A and B is 
equal to the distance value between A and C when dXHD, dPHD, 
and dXHHD, are used, which does not seem to be reasonable. 
Otherwise, dMKJD(A, B) = 0.147 and dMKJD(A, C) = 0.167. 

Another interesting counter-intuitive case emerges 
when A=([0.35, 0.4], [0.25, 0.35]), B=([0.5, 0.55], [0.3, 
0.35]), and C=([0.5, 0.55], [0.25, 0.35]). In this case, since 
these IVIF values are ranked as C>B>A according to the 
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Table 1. Existing distance measures

Authors Distance measure
Xu [17]

Park, et al. [18]

Xu and Yager [20]

Zhang, et al. [6]

Düğenci [19]
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Table 1. Existing distance measures (continue)

Authors Distance measure
Tiwari and Gupta [24]

Baccour and Alimi [21]

Fares, et al. [22]

Anusha and Sireesha [23]
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score function given in Definition 2.4, the degree of distance 
between A and C is expected to be greater than the degree of 
distance between A and B. But, the distance value between 
A and B is equal to the distance value between A and C 
when dXHHD, dXHED, dZXLTGD and dFBAD is used. Furthermore, 
the distance value between A and B is greater than the 
distance value between A and C when dDGD are preferred. 
Otherwise, dMKJD(A, B) = 0.113 and  dMKJD(A, C) = 0.136. 
Thus, the proposed Jaccard distance measure is compatible 
with the score function in Equation (7). The comparison of 
distance measures is presented in Table 2. Counter-intuitive 
cases are marked as bold type. It is seen from Table 2 that 
the proposed Jaccard distance measure has no counterin-
tuitive cases.

The MCDM Method Usıng the Jaccard Distance Measure
This section presents the extension of the TOPSIS method 

to an IVIF environment for solving multi-criteria group 
decision-making problems. In this method, the proposed 
Jaccard distance measure is used to obtain separation 
measures. Let  be a set of alternatives, 

 be a set of criteria,  be a 
set of weights of criteria, and  be a set of 
weights of experts the steps of the IVIF-TOPSIS method 
are given as follows:

Step 1. Construct the IVIF decision matrices  based on 
the evaluations of alternatives obtained by experts. The IVIF 
decision matrices  can be defined as in Equation (19):

  

(19)

Step 2. Determine the IVIF positive ideal solution (PIS) 
and IVIF negative ideal solution (NIS) for kth expert by 
using Equations (20) and (21). Here  
and  represent maximum and 
minimum IVIF values, respectively, among the values of 
alternatives for ith criterion:

  (20)

  (21)

Step 3. Calculate the positive separation measures 
 and negative separation measures  between the 

alternatives and IVIFPIS and IVIFNIS for each expert using 
Equations (22) and (23), respectively: 

  
(22)

  

(23)

Step 4. Aggregate the separation measures for the 
experts using Equation (24) and Equation (25) where  is 
the weight of expert k. Then, obtain the closeness coeffi-
cient of each alternative by using Equation (26):

  
(24)

  
(25)

  
(26)

Step 5. Rank the alternatives in descending order of rel-
ative closeness and select the alternative.

NUMERICAL EXAMPLE

A personnel selection problem is considered to 
illustrate the proposed extended TOPSIS method for group 
decision-making with IVIF numbers. Then, the proposed 
IVIF-TOPSIS method is compared to the IVIF-TOPSIS 
methods introduced by Ye [3], Izadikhah [49], and Bai [50].

Personnel Evaluation Problem
A retail company plans to employ a process analyst. 

Some of the candidates applying for the job positions are 
evaluated as part of the preliminary consideration and 
some candidates are eliminated. Five candidates are listed 
for consideration by the expert committee. This committee 
consists of three human resources experts. In the evaluation 
process, five criteria are determined: technical skills (C1), 
communication skills (C2), self-confidence (C3), past 
experience (C4), and foreign language (C5). The experts 
should balance these five criteria simultaneously and select 
the best candidate for the job. With the assumption that 

 is the weight vector of criteria 
and  = {0.3, 0.5, 0.2} is the weight vector of experts, the 
evaluations corresponding to five candidates provided by 
experts are presented in Table 3. 

By using Equations (20) and (21), the IVIFPIS and 
IVIFNIS are determined for each expert, and these values 
are given in Table 3. Then, using Equation (22), the posi-
tive separation measure ( ) between each candidate and 
the Public Interest Score (PIS) for each expert is calculated, 
and the positive separation measure is given in Table 4. 
Similarly, the negative separation measure ( ) between 
each candidate and the network and Information Security 
(NIS) for each expert is obtained by using Equation (23) 
and also given in Table 4.
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Finally, the separation measures are aggregated using 
Equations (24) and (25). Furthermore, the closeness 
coefficients of all alternatives are obtained using Equation 
(26) and shown in Table 6. The candidates are ranked as 
A1 > A4 > A3 > A2 > A5 according to descending order of 
closeness coefficients of candidates where the symbol ‘‘>” 
means superior to. Thus, A1 is the best candidate for a 
process analyst for the company.

Comparison with Other Methods
The proposed IVIF-TOPSIS method is compared with 

several other IVIF-TOPSIS methods. While the IVIF-
TOPSIS method proposed by Ye [3] uses the Euclidean 
distance in the calculation phase of the separation measure, 
the IVIF-TOPSIS method proposed by Izadikhah [49] uses 
the Hamming distance. On the other hand, the separation 
measures of each alternative from the positive and negative 
ideal solutions are calculated using the score function in 
the IVIF-TOPSIS method introduced by Bai [50]. The 
calculated results are shown in Table 7, which present 
the overall priorities of the alternatives. The ranking 
order obtained using our proposed methodology is as 
A1 > A4 > A3 > A2 > A5. This order indicates that A1 is 
the appropriate alternative for selection in line with the 
results of Bai [50]. In other words, IVIF-TOPSIS methods 

proposed by Bai [50] and developed in this study give 
the same ranking, although they use different closeness 
coefficients. The method proposed by Ye [3] and Izadikhah 
[49] also showed A1 as the most suitable alternative. Hence, 
the method based on the novel Jaccard distance is a suitable 
solution for MCDM problems owing to its ability to deal 
with the imprecise information.

CONCLUSION

This study introduces the Jaccard distance measure as 
a new distance measure for IVIFSs. This measure is then 
compared with well-known distance measures for IVIFSs 
using a few counter-intuitive cases. As the result of the 
comparative analysis the proposed Jaccard distance mea-
sure does not have counterintuitive cases. Moreover, this 
study presents the extension of TOPSIS to the IVIF envi-
ronment to solve multi-criteria group decision-making 
problems. The proposed Jaccard distance measure is used 
to obtain separation measures in the IVIF-TOPSIS method. 
In the evaluation process, the ratings of each alternative are 
represented as IVIFVs ın IVIF-TOPSIS method. After cal-
culating IVIF-PIS and IVIF-NIS, separation measures are 
obtained based on the proposed Jaccard distance measure. 

Table 7. Comparison of the alternative priorities

References A1 A2 A3 A4 A5 Rank Best Alternative
Ye [3] 0.585 0.499 0.551 0.539 0.475 A1 > A3 > A4 > A2 > A5 A1

Izadikhah [49] 0.734 0.477 0.395 0.475 0.313 A1 > A2 > A4 > A3 > A5 A1

Bai [50] 0.755 0.721 0.724 0.730 0.682 A1 > A4 > A3 > A2 > A5 A1

This study 0.709 0.490 0.604 0.613 0.487 A1 > A4 > A3 > A2 > A5 A1

Table 6. The aggregated separation measures and closeness coefficients 

A1 A2 A3 A4 A5

0.009 0.008 0.009 0.008 0.007

0.004 0.008 0.006 0.005 0.007

0.709 0.490 0.604 0.613 0.487

Table 5. Separation measures for each expert

Alternative Expert #1 Expert #2 Expert #3
A1

A2

A3

A4

A5
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Then, the closeness coefficients of each alternative are 
determined and ranked. The personnel selection problem is 
illustrated to show the application of the proposed Jaccard 
distance measure to the IVIF-TOPSIS method. This illus-
trative example is also used to demonstrate the differences 
between the proposed IVIF-TOPSIS method and several 
IVIF-TOPSIS methods. A comparison of the alternative 
priorities shows that the most suitable alternative produced 
by the new IVIF-TOPSIS is the same as the most suitable 
alternative obtained by other IVIF-TOPSIS methods.

For further research, many extensions of fuzzy sets, such 
as hesitant fuzzy sets, spherical fuzzy sets, or Neutrosophic 
fuzzy sets are suggested for solving the same problem.

LIST OF ABBREVIATIONS

FSs Fuzzy Sets
IFSs Intuitionistic Fuzzy Sets
IVIFS Interval-Valued Intuitionistic Fuzzy Set
MCDM Multi-Criteria Decision-Making
TOPSIS Technique for Order Preference by Similarity to 

Ideal Solutions
HD Hamming Distance
ED Euclidean Distance
HED Hausdorff Euclidean Distance 
HHD Hausdorff Hamming Distance
FD Fifth Distance
GD Generalized Distance
JD Jaccard Distance
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