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ABSTRACT

Second harmonic generation due to the effect of two different spin states of electron on the 
propagation of a circularly polarized laser pulse in homogenous high density, quantum plasma 
is studied using the quantum hydrodynamic (QHD) model. The effects associated with the 
Fermi pressure, the Bohm-potential and the electron spin-up and spin-down have been taken 
in to account. The efficiency of the Second harmonic radiation is derived and the effect of spin 
polarization on the conversion efficiency has been analyzed.
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INTRODUCTION

Numerous theoretical and experimental research groups 
have expressed keen interest in investigating the physics 
of laser-plasma interaction, driven by its direct relevance 
to a range of practical applications. These applications 
encompass areas such as laser-driven fusion, plasma-based 
accelerators and the generation of higher harmonics [1–5]. 
When a strong laser interacts with plasma, it can cause a 
number of nonlinear phenomena, including self-focusing, 
scattering instabilities and harmonic production [6–11]. 
To find out more regarding the complex characteristics of 
intense laser interaction with plasma, researchers are study-
ing these instabilities through theory as well as experiment 
[12–15]. Harmonic production is the most important field 
of study in the process of laser-plasma interaction. The 

most probable medium for producing harmonics actually 
consists of plasma. As a result, several harmonics are gener-
ated from the fundamental frequency of the laser beam. In 
the plasma medium, harmonic generation has an important 
effect on the transition the laser beams. A variety of plasma 
characteristics, such as electrical conductivity, opacity and 
local electron density, can be evaluated with the help of 
harmonic generation [16, 17]. Second harmonic generation 
(SHG) provides a simple approach to observe a beam’s tran-
sit through a plasma medium. It was Sodha and Kaw [18] 
which made earlier work on SHG. Harmonic radiations 
were extremely significant in spectroscopy [19-22]. Several 
mechanisms, including plasma wave excitation electron 
plasma wave (EPW), plasma instabilities and resonant 
absorption, may generate harmonics [8, 23–27]. A study by 
Nitikant and Sharma [28, 29], the wiggler magnetic field 
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must be present for phase matching and has a kinematical 
function in generating the transverse harmonic current. 

 Quantum effects become essential for studying in 
high-density plasma, when the de-Broglie wavelength of 
particles is of the order of greater than the inter-particle dis-
tance. Particle degeneracy joins the picture when the tem-
perature of the plasma is less than the Fermi temperature. 
Considering its important applications in nanoscale and 
nanoelectronic devices [30-31], superdense astrophysical 
objects [32-34] (such as white dwarfs, neutron stars, mag-
netostars, and supernova), quantum plasma echoes [35], 
quantum X-ray free electron laser [36] and intense laser-
solid density plasma experiments [37–38], studying quan-
tum plasma has been focused throughout the last decade. 
The most earlier research on SHG has employed a laser 
beam with uniform irradiance or the classical regime. But 
the irradiance from a Gaussian beam is not uniform. Due to 
the focusing and defocusing characteristics of these beams, 
the second harmonic amplitude is significantly impacted.

 The analysis of the role of electron spin in quantum 
plasma is crucial with potential persistence even in the 
presence of macroscopic variations on scales exceeding the 
de Broglie wavelength. Particularly in high-temperature 
plasmas, the quantum characteristics stemming from the 
intrinsic magnetic moment of electrons become promi-
nent, resulting in distinct spin effects [39-41] that diverge 
from those observed in non-spin quantum plasma phe-
nomena [42-44]. Over the past decade, numerous schol-
arly articles have explored the influence of electron spin on 
plasma dynamics [45-46]. Unlike the conventional view of 
plasma electrons as a single fluid, a paradigm shift proposes 
the treatment of spin-up and spin-down electrons as seper-
ate plasma species as the magnetic fields application results 
a concentration between the electron species resulting in 
spin polarization. The separation of spins remains well-de-
fined, assuming that the force associated with spin flip [47-
48] can be reasonably neglected. 

 The current study focuses on the propagation of cir-
cularly polarized electromagnetic wave through quantum 
plasma under the influence of an external magnetic field 
featuring two distinct spin states of electrons. This inves-
tigation takes into consideration various quantum effects 
like Fermi pressure, Bohm potential and discrepancies in 
spin-up and spin-down electron concentrations arising 
from an external magnetic field. The first order velocities, 
electron density and spin angular momentum for the two 
electron spin states have been evaluated in Sec-II. Section 
III is devoted to the analysis of the second harmonic gener-
ation and its corresponding conversion efficiency. Finally, 
Section IV presents the concluding remarks.

LASER-PLASMA INTERACTION

We consider a circularly polarized wave propagating 
along the z- direction through uniform cold plasma. An 

axially directed magnetic field  is applied to the sys-
tem with the fields of the incident e. m. wave given as 

	 	 (1) 

	 	 (2)

where c is the vacuum speed of light, k is the propa-
gating wave vector, wave frequency ω, and E0 is the slowly 
changing amplitude of the circularly polarized wave inside 
the plasma. The current density at 2ω develops and acts as a 
source for the second harmonic when the pulse progresses 
through magnetized plasma. The electromagnetic field and 
plasma’s interaction is governed by the QHD equations, 
which are [49-51],

	 	

(3)

	 	
(4)

and the equation of continuity,

	 	
(5)

where,  and  is the electron species’ particle den-
sity and velocity, and α indicates the electrons’ up ( ) and 
down ( ) spin. The equation of motion now includes the 
spin moment effect [49–50]. Equation (3)’s first component 
on the RHS is the Lorentz force, while the second compo-
nent signifies the force caused by Fermi electron pressure 
( ).The quantum Bohm potential is the third 
component and the force resulting from the spin mag-
netic moment of plasma electrons under the influence of 
a magnetic field, where  the Bohr magneton 
is located is the last term; therefore, it is excluded from the 
study that uses the QHD model [50–54]. Within the slightly 
relativistic limit, equation (3) is true. Higher perturbation 
orders have been found to significantly increase the rela-
tivistic effect [55]. In the limit, the classical equations are 
obtained [53]. For the source current, the wave equation is

	 	
(6)

Where,  with  being the conventional 
current and  being the magnetization current density. 
The electron quiver velocities are obtained by simultane-
ously solving equations (3) - (5)

	 	  (7a)
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	 	 (7b)

	 	 (7c)

where,

 and cyclotron frequency 

Similarly, the first order electron densities can be 
obtained by substituting the quiver velocities in continuity 
equation,

	 	 (8a)

	 	 (8b)

where,

 

Oscillating current is produced by electron spin motion 
and density perturbations brought on by oscillatory veloci-
ties. The spin current ( ) resulting from magnetization and 
the conventional source current added together make up 
the current density, which can be expressed as [56] 

	 	 (9)

Where  and the magnetization due to spin can 
be written as . The electron current densities 
are calculated with the help of equations (7a), (7b) and (7c)

	 	 (10a)

	 	 (10b)

	 	 (10c)

where,

 is spin polarization and 
 is the difference of spin-up and spin-down 

concentration of electrons caused by external magnetic 
field.

An essential feature of quantum degenerate plasma is 
spin. It is important because it introduces the plasma to 
the external magnetic field, and its effect may be measured 
using spin angular momentum to determine the perturbed 
spin magnetic moment for the plasma electron. Under the 
influence of the applied magnetic field, the electrons gain 
a spin angular moment whose effect can be estimated by 
calculating the spin magnetic moments,

	 	 (11a)

	 	 (11b)

Where,

The second order perturbed electron velocities and 
densities can be obtained from QHD equations in the pro-
cedure similar to that adopted for first order which come 
out to be,

	 	 (12a)

	 	 (12b)

	 	 (12c)

	 	 (13a)

	 	 (13b)
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	 	 (13c)

where,

The second order velocities oscillate at the second har-
monic of the fundamental frequency of the polarized wave. 
The second order spin magnetic moment for two spin states 
(spin-up and spin-down) comes out to be,

	 	 (14a)

	 	 (14b)

	 	 (14c)

where,

In non-degenerate plasmas where , the con-
centration difference 
but in the case of degenerate plasmas ( ), 

 with TF being the Fermi tempera-
ture. The Second order magnetization current density,

	 	 (15a)

	 	 (15b)

where,

The first order velocities, particle density and spin 
angular momentum teat together to produce second order 
nonlinear current at second harmonic radiation generation 
at (2ω, 2k) as,

	 	 (16)

where,

and

 Further, there is a self-consistent second harmonic field 
 that gives effect to the linear current 

density as given by .

	 	
(17)

Second Harmonic Efficiency
We now proceed to obtain the normalized amplitude 

for the phase mismatched case, which is obtained by sub-
stitution of the first and second order currents in the wave 
equation. The normalized amplitude denoted as η comes 
out to be 

	 	

(18)

where, , and  represents the 

phase difference between the generated second harmonic 
and the fundamental frequency.
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Figure. 1. Maximum conversion efficiency of second-harmonic generation η(%) as a function of normalized electron 
density ωp/ω at a0 = 3 and 5 (dashed and solid lines) and spin polarization 0.98.

Figure 2. Maximum conversion efficiency of second-harmonic generation η(%) as a function of laser intensity a0 at 
ωp/ω = 0.3 and spin polarization 0.98.

Figure 3. Variation of conversion efficiency of second harmonic with normalized laser intensity a0 at ωc/ω = 0.3 and 
ωc/ω = 0.5 (dashed and solid lines).

 
Figure. 4. Variation of conversion efficiency η(%) as a function of ωp/ω, (i) solid line in the presence of spin effects and (ii) 
dashed line in absence of spin effects.
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The conversion efficiency η(%) variation with normal-
ized plasma electron density for a different values of laser 
field strengths (a0 = 3) for dotted line and a0 = 5 for solid 
line) is shown in Figure 1. The figure shows how harmonic 
radiation increases until saturation considering a constant 
laser beam and an increase in plasma density. The satura-
tion value of plasma density depends on the applied laser 
field and is more for the weaker laser field.

The second harmonic conversion efficiency variation 
for a normalized plasma density has been shown with laser 
pulse strength in Figure 2. The efficiency increases for lower 
values of intensity, however conversion efficiency saturates 
at large value of the intensity of laser pulse. 

Figure 3, the harmonic conversion efficiency varies with 
laser intensity for different magnetic field strength values 
(ωc/ω = 0.3 for solid line and ωc/ω = 0.5 for dashed line). 
The graph shows that when the laser intensity and magnetic 
field grow, correspondingly increases the conversion effi-
ciency of formation of second harmonic radiation. Strong 
nonlinear current generation is the cause of the second har-
monic conversion efficiency increasing with fundamental 
laser intensity. For high values of, the efficiency begins to 
saturate.

 Figure 4 has been showed for parameters ωc/ω = 0.3, 
a0 = 0.2 and n0 = 1030 m-3 in order to compare the conver-
sion efficiency of second harmonic due to presence as well 
as absence of spin in quantum plasma. The dashed line 
shows a situation where spin effects are not present and the 
upper solid line shows an increase in conversion efficiency 
if spin effects are present. The fact that spin effects play an 
important part in modifying the efficiency of the second 
harmonic of a circular pulse, it is seen from the figure that 
the presence of spin effects in magentoplasma represents 
for the about 3% increase in second harmonic conversion 
efficiency.

COCNLUSION

A study of SHG in homogenous high-density magne-
tized quantum plasma resulting from circularly polarized 
wave propagation is presented. The longitudinal direction 
is in which the static magnetic field is applied for magne-
tization. The recently established QHD model has been 
employed to develop the interaction mechanism. The 
quantum Bohm potential, the influence of spin density pro-
jection’s evolution and the Fermi statistical pressure have 
all been investigated. The perturbative expansion of QHD 
equations resulted in the quiver and second order veloci-
ties, electron densities and spin angular momenta. The sum 
of the conventional current and the current derived from 
the spin magnetic moment is the nonlinear current den-
sity. The self-consistent field generates the linear current. 
The variations in particle concentrations can be observed 
through the spin density projection along the z-axis. The 
direction of the spin density projection on the external 
magnetic field is not an independent variable. It appears 

as a difference between the concentrations of two different 
electron spin states. For the phase mismatched situation, 
the SHG efficiency has been established. It is found that the 
SHG increases with plasma density and magnetic field up 
to the appropriate saturation values. Harmonic develop-
ment disappears when saturation is obtained. Saturation of 
the plasma density occurs rapidly with stronger magnetic 
fields. The interesting finding is that high-density degen-
erate plasma shows enhanced SHG at lower levels of the 
external magnetic field intensity. The current research of 
second harmonic will be helpful in producing microelec-
tronic devices, processing high-quality plasma and gener-
ating dc current for toroidal fusion devices. 
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