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ABSTRACT

This study investigates the stability of a mixed convective flow of a nanofluid through a hor-
izontal porous layer using an unsteady Jeffrey-Darcy model. Linear stability theory is em-
ployed to assess the stability of a system, where the base fluid is modeled as a Jeffrey fluid with 
dispersed nanoparticles in a state of thermal equilibrium. The stability equations are derived 
as an eigenvalue problem using Fourier decomposition, solved using the higher order Weight-
ed Residual Galerkin Method (WRGM), and validated analytically. The results are presented 
in terms of critical values of the Darcy-Rayleigh number, wave number, and wave speed over 
nondimensional parameters. Further, the impact of nondimensional numbers like horizon-
tal pressure gradient, thermal diffusivity ratio, and nanoparticle volume fraction has stabi-
lizing effects, whereas the Jeffrey parameter and the Vadasz number have the opposite effect. 
Moreover, it has been observed that the increase in the Jeffrey parameter reduces the stability 
region. The variation Jeffrey parameter causes a change in the flow and thereby discards the 
analytical proof of stability even under the limit of an infinite Vadasz number. The inquiry into 
the stability or instability of the fundamental flow is addressed by solving the eigenvalue prob-
lem numerically over a finite range of the Jeffrey parameter and horizontal pressure gradient. 
These results indicate that the oscillatory convection mode is advantageous for estimating the 
required volume fraction of nanoparticles in the base fluid to improve the thermal efficiency 
of Jeffrey nanofluids. Numerical and graphical analyses explore the impacts of dimensionless 
parameters on physical systems, providing insights into the system’s stability properties under 
varying conditions.
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INTRODUCTION

Mixed convective flows of non-Newtonian fluids rep-
resent a complex and fascinating area of study in fluid 

dynamics. These fluids, which include various types 
such as polymer solutions, slurries, and biological fluids, 
exhibit behaviors that deviate from the classic Newtonian 
fluid model. In mixed convective flows, the fluid motion 
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is influenced by both buoyancy forces due to temperature 
gradients and external forces or pressures. Understanding 
the behavior of mixed convective non-Newtonian fluids is 
crucial in many industrial processes, such as polymer pro-
cessing, food processing, and oil recovery. Researchers and 
engineers often employ advanced numerical simulations 
and experimental techniques to unravel the intricate dynam-
ics of these fluids and optimize processes for efficiency and 
performance. Understanding mixed convection in porous 
media is essential for geothermal reservoirs, underground 
energy storage, nuclear reactors, and solar collector appli-
cations. Prasad et al. [1] investigated mixed convection in 
horizontal porous layers heated from below, shedding light 
on heat transfer mechanisms in such systems. Sphaier and 
Barletta [2] explored unstable mixed convection in a heated 
horizontal porous channel, highlighting the importance of 
understanding flow instabilities in porous media systems. 
Ozgen and Varol [3] conducted a numerical study of mixed 
convection in a channel filled with a porous medium, pro-
viding valuable insights into heat transfer phenomena in 
porous media through computational simulations. These 
studies collectively enhance our understanding of mixed 
convection in porous media and its implications for various 
engineering and environmental applications. Vafai [4] pro-
vided a comprehensive reference for researchers, covering 
various aspects of porous media and its applications. Kim 
and Vafai [5] studied the use of nanofluids to enhance buoy-
ancy-driven heat transfer in porous enclosures, demon-
strating the potential of nanofluids to enhance heat transfer 
in porous media. Abu-Nada and Chamkha [6] provided 
insights into the effect of solid boundaries on mixed con-
vection in a lid-driven cavity filled with a fluid-saturated 
porous medium. Nield and Bejan [7] provided a compre-
hensive overview of convection in porous media, empha-
sizing its importance in various engineering applications. 
Ingham and Pop [8] further advanced the understanding 
of transport phenomena in porous media, focusing on the-
oretical and experimental aspects. Nield [9] contributed to 
the development of boundary conditions for porous media 
simulations with a porous medium model with the Navier 
slip boundary condition. A study by Postelnicu [10] exam-
ined mixed convective instability due to the effect of a hori-
zontal pressure gradient and temperature difference for the 
Newtonian fluids on the onset of Darcy-Bénard convection 
in thermal non-equilibrium conditions, revealing insights 
into the interplay between pressure gradients and thermal 
non-equilibrium, thus elucidating the mechanisms govern-
ing convective flow in porous media.

On the other hand, the significance of nanofluids has 
gained recognition alongside the research conducted, as 
evidenced by the following studies. Buongiorno [11] stud-
ied convective transport in nanofluids. The study by Choi 
et al. [12] investigates the unusual increase in thermal con-
ductivity observed in nanotube suspensions, a phenome-
non with significant implications for various technological 
applications. An investigation conducted by Mostafizur 

et al. [13] aimed to quantify the thermal conductivity of 
methanol-based nanofluids (MBNF) and demonstrated 
that nanoparticle clustering is the primary factor contrib-
uting to enhanced thermal conductivity. Tzou [14] inves-
tigated the thermal instability of nanofluids in natural 
convection. Nield and Kuznetsov [15] analyzed thermal 
instability in a porous medium layer saturated by a nano-
fluid. Kuznetsov and Nield [16] discussed the effect of local 
thermal non-equilibrium on the onset of convection in a 
porous medium layer saturated by a nanofluid. Bhaduria 
and Agarwal [17] studied convective transport in a nano-
fluid-saturated porous layer with a thermal non-equilib-
rium model. Chand and Rana [18] discussed the oscillating 
convection of nanofluid in a porous medium. Yadav et al. 
[19] analyzed the onset of convection in a binary nano-
fluid-saturated porous layer. Yadav et al. [20] discussed 
thermal convection in a Kuvshiniski viscoelastic nanoflu-
id-saturated porous layer. Sheu [21] analyzed the linear 
stability of convection in a viscoelastic nanofluid layer. 
Chand et al. [22] discussed the thermal instability analysis 
of an elastic-viscous nanofluid layer. Recent studies have 
advanced nanofluid behavior comprehension and thermal 
performance improvement across diverse applications, 
while additional research has focused on refining analyti-
cal and numerical techniques in thermal transport [23-32] 
and these studies offer insights into thermal performance 
improvement in engineering.

Many studies have explored the behavior of Jeffrey fluid 
in porous media, some of which are summarized below. 
Nadeem and Akbar [33] analyzed the peristaltic flow of a 
Jeffrey fluid with variable viscosity in an asymmetric chan-
nel. Nallapu et al. [34] investigated the flow of a Jeffrey fluid 
through a porous medium in narrow tubes. Yadav [35] 
examines the influence of anisotropy on Jeffrey fluid con-
vection in horizontal rotary porous layers, enhancing our 
understanding of convective heat transfer in anisotropic 
porous media. Naganthran [36] studied the effects of heat 
generation/absorption in Jeffrey fluids flowing past perme-
able stretching/shrinking discs, providing valuable insights 
into viscoelastic fluid behavior in thermal gradients. 

Numerous studies have been conducted to investigate 
free convection in Jeffrey nanofluids through porous media. 
The study of Jeffrey nanofluid convection in porous media 
has enhanced heat transfer efficiency and energy conserva-
tion in diverse applications. By leveraging the unique prop-
erties of Jeffrey fluids and the heat transfer characteristics 
of nanoparticles, these fluids exhibit superior heat transfer 
performance compared to conventional fluids. They are 
particularly beneficial in applications where efficient heat 
transfer is crucial, such as cooling systems, thermal man-
agement, and heat exchangers. Moreover, Jeffrey nanoflu-
ids can improve energy efficiency, reduce environmental 
impact, and enhance stability in high-temperature environ-
ments. These attributes underscore the promising nature of 
research in Jeffrey nanofluid convection in porous media, 
with significant potential for practical applications across 
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various fields. For instance, Zhang et al. [37] explored the 
thermal behavior of Jeffrey nanofluid flow in a porous 
medium with a convective boundary condition. This study 
Siddiqui et al. [38] investigates the influence of Darcy and 
Prandtl numbers on the unsteady heat transfer characteris-
tics of Jeffrey nanofluid flowing through a porous medium. 
Sharma et al. [39] investigated thermal convective instabil-
ity in a Jeffrey nanofluid saturating a porous medium under 
rigid-rigid and rigid-free boundary conditions. Recent 
work by Pushap et al. [40] explored the thermal instability 
of rotating Jeffrey nanofluids in porous media with variable 
gravity, highlighting the importance of understanding their 
stability for optimizing heat transfer processes in engineer-
ing applications. Gautam et al. [41] investigate stationary 
convection in the electrohydrodynamic thermal instability 
of Jeffrey nanofluid layers saturating porous media under 
different boundary conditions, furthering our understand-
ing of nanofluid dynamics. Shehzad et al. [42] studied the 
MHD flow of a Jeffrey nanofluid with convective boundary 
conditions. Shahzad et al. [43] studied the numerical simu-
lation of magnetohydrodynamic Jeffrey nanofluid flow and 
heat transfer over a stretching sheet considering Joule heat-
ing and viscous dissipation. Sreelakshmi et al. [44] analyzed 
the homotopy analysis of a Jeffrey nanofluid’s unsteady flow 
heat transfer over a radially stretching convective surface. 
Devi et al. [45] explores the behavior of electroconvection 
in a rotating Jeffrey nanofluid saturating a porous medium 
under different boundary conditions, with implications for 
applications in fields like microfluidic devices and geophys-
ics. Promila Devi et al. [46] explore the initiation of thermal 
instability within a Darcy–Brinkman porous layer con-
taining a Jeffrey nanofluid under rotation, offering a novel 
perspective on heat transfer processes in non-Newtonian 
fluids with potential applications in improving industrial 
system efficiency. Sharma et al. [47] investigate the impact 
of a magnetic field on thermosolutal convection in a Jeffrey 
nanofluid with a porous medium, employing linear stability 
analysis and the Darcy model. Maatoug et al. [48] explores 
the applications of the thermos-diffusion effect in the con-
text of squeezing flow of Jeffrey nanofluids through a hori-
zontal channel, highlighting the influence of inertial effects, 
Darcy-Forchheimer flow, viscous dissipation, and activation 
energy, with a focus on numerical computations and physi-
cal flow parameters. Sushma et al. [49] discussed the mixed 
convection flow of a Jeffrey nanofluid in a vertical channel.

Current studies have shed light on the intricate dynam-
ics of mixed convective flows in porous media, particularly 
focusing on the interplay between pressure gradients and 
viscoelastic fluid behavior. Additionally, Pallavi et al. [50] 
explore oscillatory Darcy-Bénard-Poiseuille mixed con-
vection by extending the work Postelnicu in an Oldroyd-B 
fluid-saturated porous layer. It investigates flow and ther-
mal behavior through theoretical analysis and numerical 
simulations of pressure gradients. The study contributes 
to understanding complex fluid dynamics in porous media 
for practical applications. In a related study to Postelnicu, 

Hemanthkumar and Shivakumara [51] studied the thermal 
instability of an Oldroyd-B fluid-saturated porous layer, 
incorporating considerations of pressure gradients and 
LTNE temperatures, thus providing insights into the ther-
mal behavior of viscoelastic fluid flows in porous media and 
highlighting the role of pressure gradients and temperature 
differentials in driving mixed convective instabilities.

Despite extensive research on the onset of instability 
in natural, forced, or mixed convection within a horizon-
tal porous layer involving Newtonian or non-Newtonian 
fluids or nanofluids, there is a significant gap in the litera-
ture regarding the contribution of similar works, including 
horizontal pressure gradient effects, to the study of mixed 
convection in a porous layer saturated with a Jeffrey nano-
fluid. This gap has led to novel investigations exploring the 
effects of horizontal pressure gradient and buoyancy due 
to temperature differences on mixed convection in such a 
porous layer. Our study aims to investigate the influence of 
the Jeffrey parameter and other factors on the instability 
of stationary and oscillatory convection in a porous layer, 
focusing on the thermal applications of Jeffrey nanofluids. 
By examining the linear stability in mixed convection of 
Jeffrey’s nanoporous fluid, we aim to deepen our under-
standing of how porosity and nanoparticle characteristics 
impact the onset of convection. This research is particularly 
relevant in industries such as food processing and electron-
ics cooling, providing insights into low-volume fraction 
and low-permeable porous channels, which are crucial for 
managing and enhancing convection. Using linear stabil-
ity theory, we identify key factors influencing convective 
motion, as detailed in the following sections.

MATHEMATICAL FORMULATION

The two-dimensional rectangular coordinate system 
(x, z) is chosen, where the x-axis is taken along the plates 
of the horizontal channel and the z-axis is perpendicu-
larly upwards in which gravity ( ) is acting downwards. 
The plates at z = d and z = 0 are maintained at dissimilar 
constant temperatures Tc and Th respectively, with Th > Tc a 
porous matrix in between the plates. It is filled with -nano-
fluid which is heated from below and cooled from above 
as illustrated in Figure 1. The free and forced convection 
flow is due to the buoyant force with temperature difference 
(ΔT = Th − Tc ) and constant horizontal pressure gradient 
respectively leads to mixed convection flow.

Figure 1. Physical configuration.
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The following assumptions are made:
· A fully developed and non-quiescent base flow is 

assumed with an applied horizontal pressure gradient.
· Due to the low permeability of the porous channel, the 

unsteady Darcy model is adopted.
· The Boussinesq approximation ρ = ρ0 (1− β (T − Tc )) is 

used such that the density varies only with temperature.
· The nanoparticle volume fraction is considered to be 

low and constant [52].
· The study is restricted to linear stability along with nor-

mal mode analysis.
· The local thermal equilibrium between the fluid and 

solid phases holds in a porous medium.
Based on the aforementioned assumptions, the govern-

ing equations are formulated following the approach out-
lined by Yadav [35].

  (1)

  
(2)

  
(3)

The corresponding boundary conditions are given by

  = 0 at z = 0 and z = d, (4)

  (5)

Thermo-physical Properties of Nanofluids
The thermophysical properties of water-based nano-

fluid are used in the present study. The effective viscosity 
of the nanofluid, μnf is computed using the base fluid vis-
cosity μbf and a diluted suspension of tiny sphere-shaped 
nanoparticles, 

  
(6)

The validation has been confirmed by [53] through 
experimental investigation utilizing oil-water nanofluids at 
temperatures ranging from 20 to 50 degrees Celsius. The 
subsequent experimental findings are in the [54] and dis-
covered that it is completely consistent. The approximate 
thermal conductivity for the nanofluid is calculated using 
the [55] model. The model tells us, with the help of sus-
pended nanoparticles how the thermal conductivity of 
nanofluid increases and is given by, 

  
(7)

At the reference temperature, the nanofluids effective 
density and heat capacitance are computed as [56] and [57] 
respectively as follows,

  
(8)

Following are the formulas for nanofluids volumetric 
expansion coefficient and thermal diffusivity for nanoflu-
ids respectively,

  
(9)

A Jeffrey nano-fluid model with single-phase, which is 
suitable for low-volume quantities of nanoparticles, is used 
to explain the features of nano-fluids. The thermophysical 
properties of the several nanoparticles at ambient tempera-
ture are shown in Table 1 [52].

Non-dimensional Governing Equations
The physical quantities of length, velocity, time, pres-

sure, and temperature of nanofluid in the governing equa-
tions (1)– (5) are made non-dimensionalized using the 

scales   and ΔT respectively and the 

following dimensionless governing equations in the carte-
sian coordinates are obtained by

  (10)

  
(11)

  
(12)

Table 1. Thermo-physical properties of nanoparticles

Physical properties CuO Al2O3 TiO2

Cp (J/KgK) 531.80 765.00 686.20
ρ (Kg/m3) 6320.00 3970.00 4250.00
k (W/mK) 76.50 40.00 8.95
α × 107 (m2/s) 227.60 131.70 307.00
β × 105 (1/K) 1.80 0.85 0.90
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where Λ is the nondimensional Jeffrey parameter, 

 is the Darcy-Rayleigh number, 

 is the nano-particle volume fraction ratio of 

nanofluid to base fluid,  is the ratio of thermal dif-

fusivity of nanofluid to base fluid, and  is the 

Vadasz number.
The corresponding dimensionless boundary conditions 

are given by

  (13)

Linear Stability Analysis
The linear stability analysis of mixed convection 

assumes a non-quiescent basic state of fluid flow, influenced 
by a constant horizontal pressure gradient as described in 
the following form,

  (14)

The corresponding basic state solutions are given by

  
(15)

Further, we superimpose infinitesimally small pertur-
bations on the basic state given in (15) in the form:

  (16)

The stability equations are derived by following a 
sequence of operations first we linearize equations (11) 
and (12) by substituting perturbed quantities given equa-
tion (16) then the pressure is eliminated by operating curl 
on the resultant equation ... and finally substituting stream 
function in the form  and , we get

  
(17)

 

  
(18)

At this moment for a better understanding of the impact 
of all parameters on the wave number and frequency of 
perturbations, the solution of equations (17) and (18) are 
expressed in the form of normal modes given by

  (19)

where a is the wavenumber and ω = ωr + iωi is the com-
plex wave speed. The growth rate ωi marks the differ-
ence between stability (ωi < 0) and instability (ωi > 0) . 
Substituting Eq. (19) in Eqs. (17) and (18), we obtain the 
following equations:

  
(20)

  (21)

The corresponding boundary conditions are given by 

  (22)

Growth Rate Analysis
The classical integral method, as described by Shankar 

and Shivakumara [58], is utilized to analyze the thermal 
instability in the limit as Va approaches infinity. First, we 
operate (D2 − a2 ) on Eq. (21) to eliminate ψ and obtain the 
above equation for Θ in the form,

 

Multiply  the complex conjugate form of Θ and inte-
grate with respect to z over the limit 0 to 1, which yields

 

We apply integration by parts to the above equation, we 
arrive at the following equation,

   

(23)

By evaluating the real part of Eq. (23), we obtain

  

(24)

Thus, one may conclude that 
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(i) İf  

then ωi < 0 indicating the system is stable, and 

(ii) if  

then ωi > 0 the system becomes unstable.

Method of Numerical Solutions
Equations (20) and (21) form a complex eigenvalue 

problem and are solved utilizing WRGM. In this method, 
the test (weighted) functions are the same as the base (trail) 
functions. Accordingly, Ψ(z) and Θ(z) are expanded in a 
finite series of basis functions in the form,

  
(25)

where Ai and Bi are constants while Ψ j (z) and Θ j (z) are 
the basis functions and are generally chosen to satisfy the 
respective boundary conditions, respectively N represents 
the number of terms considered in the Galerkin expansion. 
The basis functions are described by the power series that 
adhere to the pertinent boundary conditions

  (26)

These series are substituted back into Equations (20) 
and (21) and the WRGM procedure of demanding that the 
residues be normal to the basis functions is applied by mul-
tiplying the resulting Eq. (20) by Ψj (z) and Eq. (21) by Θj 
(z) integrating by parts with respect to z between z = 0 and 
z = 1, and the boundary conditions are used to obtain the 
following system of algebraic equations:

  (27)

  (28)

the coefficients of Eji and Jji involve the inner products and 
are given by

  (29)

where the inner product is defined by  equa-

tions (27) and (28) can be written in the matrix form as

  (30)

Where

Equation (30) forms a generalized eigenvalue problem 
in which that A and B are 2N × 2N order complex matri-
ces, X is the eigenvector and ω = ωr + iωi is the complex 
eigenvalue.

The integral occurring in the coefficients of E ji and J ji 
are analytically evaluated to avoid errors during the numer-
ical integration. The main stages of the numerical proce-
dure involved in solving Eq. (30) are as follows
i) Among the 2N eigenvalues, we identify the most grow-

ing or the least decaying mode having the largest imagi-
nary part of the eigenvalue ω and call that mode simply 
the most growing mode. 

ii) The largest value of ωi is now forced to zero by varying 
RD for a fixed value of wave number a and other govern-
ing parameters.
The computational software program MATHEMATICA 

11.3 (Wolfram Research) is used to provide an ideal plat-
form for the execution of Both stages and the following 
built-in functions are used:

Max[Im[Eigenvalues[A,B]]]= EV (say) and
Find Root [EV[RD, a]==0]

RESULTS AND DISCUSSION

The study investigates the mixed convective instabil-
ity of Jeffrey nanofluid flow through a horizontal porous 
layer using a generalized eigenvalue problem both analyt-
ically and numerically. Both one-term and higher-order 
Galerkin methods are adapted and the obtained results are 
presented. By assessing the convergence process by increas-
ing the number of terms N in the Galerkin expansion. The 
process of convergence of WGRM is shown in Table 2-4 for 
various values of governing parameters involved therein. It 
is noted that the convergence of the critical Darcy-Rayleigh 
number, the corresponding critical wave number and the 
critical frequency is accomplished by considering ten terms 
in WGRM. We have thoroughly examined and established 
the convergence and validity of our numerical method. To 
validate the numerical procedure employed, the results are 
computed under the limiting case and observe that they are 
in excellent agreement. 

A glance at Tables 2-4 shows that there is not much devi-
ation in the values of critical stability parameters between 
the second (N = 2) and higher order (N =10) (WGRM). 
Thus it is intuitive to look for the analytical solution for the 
eigenvalue problem with Ψ = Asinπ z and Θ = Bsinπ z as 
basis functions for the solutions of equations (20) and (21). 
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Table 2. Convergence of the WRGM for different values of П with φ = 0.025 for TiO2 nanoparticles

α1 = 10, q1 = 0.97, Λ = 0.5, Va = 2

П = 2 П = 5 П = 10

N RDc ac ωic RDc ac ωic RDc ac ωic

2 220.2016 2.8283 0.0165 221.6212 2.8282 0.0413 226.6909 2.8277 0.0826
3 293.5132 3.2659 0.0124 294.9386 3.2658 0.0310 300.0294 3.2655 0.0621
4 270.3464 3.1342 0.0134 271.7703 3.1341 0.0337 276.8556 3.1337 0.0674
5 271.5368 3.1412 0.0134 272.9608 3.1410 0.0335 278.0465 3.1407 0.0671
6 271.6027 3.1415 0.0134 273.0267 3.1414 0.0335 278.1124 3.1410 0.0671
7 271.6013 3.1415 0.0134 273.0253 3.1414 0.0335 278.1109 3.1410 0.0671
8 271.6005 3.1415 0.0134 273.0245 3.1414 0.0335 278.1102 3.1410 0.0671
9 271.6005 3.1415 0.0134 273.0245 3.1414 0.0335 278.1102 3.1410 0.0671

10 271.6005 3.1415 0.0134 273.0245 3.1414 0.0335 278.1102 3.1410 0.0671
One term 271.6005 3.1415 0.0134 273.0245 3.1414 0.0335 278.1102 3.1410 0.0671

Table 3. Convergence of the WRGM for different values of П with φ = 0.075 for TiO2 nanoparticles

α1 = 9.9075, q1 = 0.9387, Λ = 0.5, Va = 2

П = 2 П = 5 П = 10

N RDc ac ωic RDc ac ωic RDc ac ωic

2 225.4444 2.8284 0.0166 226.9247 2.8282 0.0417 232.2116 2.8276 0.0834
3 300.4997 3.2659 0.0125 301.9862 3.2658 0.0313 307.2953 3.2654 0.0626
4 276.7819 3.1342 0.0136 278.2668 3.1341 0.0340 283.5701 3.1337 0.0680
5 278.0006 3.1412 0.0135 279.4857 3.1410 0.0338 284.7893 3.1406 0.0677
6 278.0681 3.1415 0.0135 279.5531 3.1414 0.0338 284.8568 3.1410 0.0677
7 278.0666 3.1415 0.0135 279.5517 3.1414 0.0338 284.8553 3.1410 0.0677
8 278.0658 3.1415 0.0135 279.5509 3.1414 0.0338 284.8546 3.1410 0.0677
9 278.0659 3.1415 0.0135 279.5509 3.1414 0.0338 284.8546 3.1410 0.0677

10 278.0659 3.1415 0.0135 279.5509 3.1414 0.0338 284.8546 3.1410 0.0677
One term 278.0659 3.1415 0.0135 279.5509 3.1414 0.0338 284.8546 3.1410 0.0677

Table 4. Convergence of the WRGM for different values of П with φ = 0.1 for TiO2 nanoparticles

α1 = 9.8113, q1 = 0.9182, Λ = 0.5, Va = 1

П = 2 П = 5 П = 10

N RDc ac ωic RDc ac ωic RDc ac ωic

2 51.5339 2.8283 0.0073 53.6886 2.8277 0.0215 252.8123 2.8255 0.0531
3 321.0950 3.2659 0.0067 328.3130 3.2655 0.0112 246.6625 3.2640 0.0324
4 277.9293 3.1342 0.0071 280.1310 3.1337 0.0138 285.4222 3.1321 0.0378
5 271.0724 3.1411 0.0069 283.2749 3.1406 0.0137 288.5694 3.1390 0.0375
6 281.2463 3.1416 0.0069 283.4489 3.1410 0.0137 288.7436 3.1394 0.0375
7 281.2426 3.1416 0.0069 283.4451 3.1410 0.0137 288.7398 3.1394 0.0375
8 281.4914 3.1416 0.0069 283.0340 3.1415 0.0171 288.5467 3.1413 0.0343
9 281.4914 3.1416 0.0069 283.0340 3.1415 0.0171 288.5467 3.1413 0.0343

10 281.4914 3.1416 0.0069 283.0340 3.1415 0.0171 288.5467 3.1413 0.0343
One term 281.4914 3.1416 0.0069 283.0340 3.1415 0.0171 288.5467 3.1413 0.0343
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By substituting these into Equations (20) and (21), we can 
express them in the matrix form as follows:

  

(31)

where, .
Equation (31) represents a homogeneous system and 

for a non-trivial solution, we should have

  

(32)

Solving this determinant for RD, we get

  
(33)

After rearranging this expression, it is represented in a 
complex form as follows, 

  (34)

where

  
(35)

  
(36)

Since RD is a physical quantity, we take Δ2 = 0 (ωi ≠ 0) 
in Eq. (34) and this gives a dispersion relation of the form:

  (37)

where,

Equation (37) reveals that for an appropriate combina-
tion of the governing parameters П, q1, α1, Λ, and Va. The 
minimum value of RD and ωi over the wave number a is 
numerically found for several values of controlling param-
eters. The results so obtained are also given in Table 2-4 in 
the last row and the results are in excellent agreement with 
those computed numerically from WGRM. 

The equation (34) suggests that the preferred mode is 
always oscillatory. Thus, for a Newtonian fluid, q1 = 1 and 
α1 = 1 then equation (33) reduces to

  
(38)

The above expression in the equation (38), with П = 0 
and ω = 0, subsequently reducing to

  
(39)

This expression matches with [35] and represents the 
onset of stationary convection limiting the case to LTE. The 
above expression is in the equation (39) with Λ = 0 which 
coincides with Horton and Rogers, Lapwood’s Problem.

  
(40)

Analysis of the Growth Rate
The critical wave number and growth rate ωi are plot-

ted in Figures 2-5 for various values of RD, Λ, П and dif-
ferent nanoparticles. The growth rate helps us comprehend 
the onset of instability in the (a, ωi)plane. The sign of ωi 
determines the stability of the system: if ωi < 0, the system 
is stable, and if ωi > 0, it is unstable. Figure 2 shows a plot 
for TiO2 (α1 = 10, q1 = 0.97) nanoparticles with П = 2, Λ = 
0.3 and Va = 1 for various values of RD. We observe that the 
curve starts from a negative value and remains negative for 
lower values of RD signifying that the base flow is always 
linearly stable, and for higher values of RD the sign of ωi 
changes from negative to positive indicating the possibility 
of the flow becoming unstable. In Figure 3, for RD = 250, ωi 
is positive for Λ = 0.9 and 0.7, indicating the occurrence of 

Figure 2. Growth rate ωic versus wavenumber a for differ-
ent values of RD.
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transition from stability to instability for all considered val-
ues, whereas for  Λ = 0.3 and 0.5, it is stable. In Figure 4, by 
varying П with RD = 316, while keeping other parameters 
fixed as mentioned above, it is observed that the fluid flow 
for П = 2, 4, 6 enters the positive regime of ωi indicating 
the onset of instability, while for П = 8 the curve passes 
through the maximum in the negative region of ωi ensuring 
the stability of the flow. A significant change in the curve’s 
behavior is observed when considering different nanopar-
ticles (Fig. 5). Specifically, TiO2 and Al2O3 particles show 

instability, while CuO particles remain stable for the con-
sidered parametric values.

Neutral Stability Curves
The neutral stability curves presented in Figures 6-9 

depict the relationship between the Darcy-Rayleigh num-
ber (RD) and a wave number (a) in (a, RD)-plane by con-
sidering various physical parameters, including the Jeffrey 
parameter, horizontal pressure gradient, Vadasz number, 
thermal diffusivity ratio, and different nanoparticle ratios. 
These curves exhibit a uni-modal nature similar to those 
observed in classical Darcy–Bénard problems, indicating 
the occurrence of a single mode of convection. Upon closer 
analysis of the graphs, several vital observations emerge. 
Figure 6 shows that an increase in the Jeffrey parameter is 
a decrease in the stability region. Similar behavior could 
be seen with an increasing Vadasz number (Fig. 9). This 
phenomenon can be attributed to the higher fluid viscos-
ity associated with increased Jeffrey parameter and Vadasz 
number, which impedes fluid motion and destabilizes the 
system. Conversely, an increase in the horizontal pres-
sure gradient (Fig. 7) leads to an expansion of the stability 
region. This is due to the increased driving force exerted on 
the fluid, which enhances fluid motion and promotes sta-
bility. Furthermore, Figure 8 reveals that a decrease in the 
Darcy-Rayleigh number due to nanoparticle ratios reduces 
the stability region. This can be attributed to the nanoflu-
id’s altered thermal conductivity and viscosity caused by the 
type of nanoparticles, leading to changes in convective heat 
transfer and fluid flow patterns. Moreover, an increase in 
the Jeffrey parameter and nanoparticle ratios is observed 
to destabilize the system, as indicated by the reduction in 
the stability region. This destabilization can be attributed 
to the nanofluid’s increased viscosity and altered thermal 

Figure 5. Growth rate ωi versus wavenumber a for different 
nanoparticles.Figure 3. Growth rate ωi versus wavenumber a for different 

values of Λ.

Figure 4. Growth rate ωi versus wavenumber a for different 
values of П.
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properties, which disrupt fluid flow and convective heat 
transfer processes.

Additionally, Figure 8 demonstrates the compara-
tive stability of water-CuO, water- Al2O3 and water TiO2 
nanofluids. It suggests that CuO dispersed in water exhib-
its more excellent stability than water- Al2O3 and water 
TiO2 nanofluid, primarily due to the differences in thermal 
conductivity and thermal sensitivity of the nanoparticles. 
Specifically, CuO nanoparticles contribute to enhanced 
heat transfer and stability, whereas water TiO2 and Al2O3 
nanofluids display instability owing to its higher thermal 
sensitivity, which can lead to thermal fluctuations and 
convective instability. In summary, the findings from the 
neutral stability curves provide valuable insights into the 
complex interplay between various parameters and their 
effects on the stability of Jeffrey nanofluid flow through 
porous media. These insights contribute to a deeper under-
standing of the underlying mechanisms governing con-
vective behavior and have implications for designing and 
optimizing thermal management systems in various engi-
neering applications.

Critical Curves
The behavior of RDc, ac, and ωic as functions of П is elu-

cidated in Figures 10-12 for different values of the Jeffrey 
parameter Λ, specifically Λ = 0.3, Λ = 0.5, and Λ = 0.7. 
Figure (10) shows that the critical Darcy-Rayleigh number 
RDc remains invariant for small values of П, indicating a sta-
ble regime. However, beyond П > 2, П starts to influence 
RDc, increasing its increase. Additionally, an increase in the 
Jeffrey parameter П is noted to decrease the critical Darcy-
Rayleigh number RDc, thereby advancing the onset of con-
vection. Figure 11 shows that the critical wave number ac 
decreases with rising values of П, consequently diminishing 
the size of the convection cells. Conversely, in Figure 12, the 
necessary frequency ωic decreases with increasing П values, 
indicating a stabilizing effect, while it increases with rising 
П, suggesting enhanced oscillatory behavior.

Similarly, the behavior of RDc, ac, and ωic as functions 
of П are explored in Figures 13-15 for different values of 
the Vadasz number Va, specifically Va = 1, Va= 10, and Va 
= 20. In Figure 13, it is observed that in the critical Darcy-
Rayleigh number RDc, the effect of small П values are 

Figure 7. Neutral Stability curves for different values of П 
with α1 = 10, q1 = 0.97, Va = 1 and Λ = 0.3.

Figure 6. Neutral Stability curves for different values of Λ 
with α1 = 10, q1 = 0.97, П = 2 and Va = 1.

Figure 9. Neutral Stability curves for different values of Va 
with α1 = 10, q1 = 0.97, П = 2 and Λ = 0.5.

Figure 8. Neutral Stability curves for different nanoparti-
cles with, ϕ = 0.075, П = 5, Va = 1 and Λ = 0.5.
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negligible but start to increase beyond П = 1, signifying 
the influence of П on RDc and subsequent destabilization. 
Moreover, an increase in Va is observed to expand the sta-
bility region, thus delaying the onset of convection. Figure 

14 shows that the critical wave number ac decreases with 
an increase in Va and П values, leading to a reduction in 
the size of convection cells. Finally, in Figure 15, the critical 
frequency ωic is seen to increase with increasing П values, 
while it increases with increasing Va, reflecting the system’s 
response to changes in flow parameters.

Further, the plots of RDc, ac, and ωic as functions of Λ 
are illustrated in Figures 16-18 for different values of Va = 
1, 10, and 20. Figure 16 reveals a linear decrease in the crit-
ical Darcy-Rayleigh number RDc with increasing Λ. Hence, 
it destabilizes the system. Also, a similar trend is observed 
with an increase in Va. In Figure 17, an increase in Λ and Va 
is seen to increase and decrease ac, respectively, leading to 
changes in the size of convection cells. Finally, in Figure 18, 
the values of ωic are observed to increase with increasing Va 
values. In contrast, an opposite effect could be seen with an 
increase in Λ, indicating the system’s response to variations 
in flow parameters.

Analysis of the data presented in Table 5 reveals a con-
sistent trend: as the Jeffrey parameter increases, there is 
a notable decrease in the critical Darcy Rayleigh number 

Figure 10. Critical curves of Darcy-Rayleigh number as a 
function of П for different values of Λ with α1 = 10, q1 = 0.97, 
and Va = 1.

Figure 11. Critical curves of wave number as a function 
of П for different values of Λ with α1 = 10, q1 = 0.97 and 
Va = 10.

Figure 12. Critical curves of wave frequency as a function of 
П for different values of Λ with α1 = 10, q1 = 0.97 and Va = 1.

Figure 13. Critical curves of RDc Vs П for different values of 
Va with α1 = 10, q1 = 0.97 and Λ = 0.3.

Figure 14. Critical curves of ac Vs П for different values of 
Va with α1 = 10, q1 = 0.97 and Λ = 0.3.
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across all three types of nanoparticles under examination. 
This suggests that higher Jeffrey parameters enhance these 
nanofluids convective stability. Specifically, when focusing 
on CuO nanoparticles, it becomes apparent that they exhibit 
a maximal critical Darcy and Rayleigh number compared to 
the other nanoparticle types. This maximal value indicates 
that CuO nanoparticles possess superior thermal stability 

relative to their counterparts. On the other hand, the wave 
frequency demonstrates a contrasting behavior. Across all 
nanoparticle types, there is a discernible decrease in wave 
frequency. Notably, Al2O3 nanoparticles exhibit the highest 
frequency among the studied particles. Drawing insights 
from these observations, it can be inferred that the onset 
of convection varies across the different nanoparticles. For 

Figure 16. Critical curves of RDc Vs Λ for different values of 
Va with α1 = 10, q1 = 0.97 and П = 50.

Figure 17. Critical curves of ac Vs Λ for different values of 
Va with П = 5, Va = 2 and П = 50.

Figure 15. Critical curves of ωic Vs П for different values of 
Va with α1 = 10, q1 = 0.97 and Λ = 0.3.

Figure 18. Critical curves of ωic Vs Λ for different values of 
Va with П = 5, Va = 2 and П = 50.

Table 5. Critical values of RDc, ac and ωic for different combinations of nanoparticles and Jeffrey parameter

CuO (Va = 2, П = 5)
α1 = 73.2993, q1 = 0.9657

φ = 0.075

Al2O3 (Va = 2, П = 5)
α1 = 39.2427, q1 = 0.9371

φ = 0.075

TiO2 (Va = 2, П = 5)
α1 = 9.9075, q1 = 0.9387

φ = 0.075

Λ RDc ac ωic RDc ac ωic RDc ac ωic

0 2996.8773 3.14159 0.00690 1653.90400 3.14158 0.012876 419.30855 3.14139 0.050619
0.3 2305.2904 3.14159 0.00531 1272.23450 3.14159 0.009910 322.55454 3.14143 0.039028
0.5 1997.9184 3.14159 0.00460 1102.60350 3.14159 0.008591 279.55094 3.14145 0.033859
0.7 1762.8692 3.14159 0.00406 972.88558 3.14159 0.007582 246.66508 3.14147 0.029899
0.9 1577.3041 3.14159 0.00363 870.47668 3.14159 0.006785 220.70210 3.14148 0.026769
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Al2O3 nanoparticles, the onset of convection appears to be 
at an intermediate stage. In contrast, for TiO2 nanoparti-
cles, convection onset occurs more rapidly. Interestingly, 
for CuO nanoparticles, the onset of convection unfolds 
much more gradually compared to the other nanoparticle 
types. These nuanced distinctions in convection onset fur-
ther underscore the complex interplay between nanoparti-
cle characteristics and fluid dynamics.

CONCLUSION

In this study, we performed a thorough stability anal-
ysis of mixed convective flow with a volume fraction of 
Jeffrey nanofluid in a porous layer, using both numerical 
and analytical methods. The study utilized the unsteady 
Jeffrey-Darcy model, which includes the Jeffrey parameter 
to address retardation or relaxation effects. This model is 
particularly well-suited for situations involving low-vol-
ume fraction Jeffrey nanoparticles and porous layers with 
low permeability. Specifically, we utilized the Weighted 
Residual Galerkin Method (WRGM) for numerical analysis 
and the one-term Galerkin method for analytical investiga-
tion. It is shown that the results are in good agreement with 
N=8. Also, the growth rate of perturbations is numerically 
computed over a broad spectrum of governing parameters, 
revealing a notable change in the growth rate behavior for 
TiO2 and Al2O3 particles, exhibiting instability, while CuO 
particles remain stable within the considered parametric 
range. Some of the important results of this analysis can be 
outlined as follows:
1. The neutral stability curves exhibit a single minimum, 

and we observe that the instability region diminishes 
with increasing nanoparticle volume fraction in the 
base fluid. This phenomenon suggests that higher vol-
ume fractions result in amplified resistance to flow.

2. Increasing П leads to an expansion of the stability 
region, indicating a stabilizing effect. Conversely, an 
increasing value of the Jeffrey parameter Λ results in a 
contraction of the stability region for all nanoparticles, 
implying a destabilizing influence. 

3. Increasing the Vadasz number is to decrease the 
Darcy-Rayleigh number hence advances the onset of 
convection. 

4. An increase in the Jeffrey parameter Λ tends to decrease 
the critical values of RDc and ωic, accelerating the initia-
tion of convective activity. However, ac exhibits a reverse 
trend, decreasing ac value with an increase of Λ for all 
nanofluids, indicating a stabilizing effect on convective 
cell size.

5. We observe that the Jeffrey parameter Λ can act as 
both a stabilizer and a destabilizer, depending on its 
combination with other parameters, highlighting its 
versatile role in influencing convective stability. These 
conclusions provide valuable insights into the complex 
interplay of parameters affecting the stability of mixed 
convective flow in Jeffrey nanofluids through porous 

media, contributing to a deeper understanding of ther-
mal transport phenomena in such systems.

6. The critical Darcy-Rayleigh number for various 
nanoparticles exhibits an inequality of the form

To develop for further analysis, one challenge is to 
investigate the non-linear instability analysis, while the 
paper will also explore extending the present work by con-
sidering the solute concentration and heat source.

NOMENCLATURE

 Dimensional velocity vector
t Time 
P Pressure
K Permeability of porous medium
d Length of channel
(x, z) Dimensional coordinates
C Specific heat at constant pressure

 Gravitational acceleration
T Temperature
k Thermal conductivity
RD Darcy-Raleigh Number
Va Vadasz Number

 Nanoparticle volume fraction parameter.

Greek symbols
λ Jeffrey parameter
ϕ Nanoparticle volume fraction
ρ0 Reference density of fluid
ρ Density of fluid
β Volumetric expansion coefficient
α Thermal diffusivity

 The ratio of thermal diffusivities.

µ Viscosity of the nanofluid
ε Porosity
σ heat capacity ratio
Λ Non-dimensional Jeffrey parameter
П Constant horizontal pressure gradient

Subscripts
p Nanoparticle
nf Nanofluid
bf Base fluid
c Cold
h Hot
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