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ABSTRACT

Two-parameter Lindley (TPL) distribution is becoming increasingly popular for modeling 
lifetime and survival times data, while maximum likelihood estimators (MLEs) are biased for 
small and moderate sample sizes. This problem has been a motivation to obtain nearly unbi-
ased estimators for the parameters of the model. For this purpose, for the first time, two dif-
ferent techniques, the Cox-Snell methodology, and Efron’s bootstrap method, have been used 
to improve modified nearly unbiased estimators for MLEs of the unknown parameters of the 
TPL distribution. A Monte Carlo simulation study has been performed to compare the per-
formance of these proposed techniques with different sample sizes and parameter values. In 
the simulation study, bias and mean square error (MSE) criteria were taken into consideration 
as evaluation criteria. In addition, a real example is given to demonstrate the applicability of 
the techniques. The numerical results show that the bias-corrected estimators outperform the 
other estimators in terms of biases and mean square errors.

Cite this article as: GÜL HH. Improved maximum likelihood estimators for the parameters of 
the two-parameter lindley distribution. Sigma J Eng Nat Sci 2025;43(1):290−300.

Research Article

Improved maximum likelihood estimators for the parameters of the two-
parameter lindley distribution 

Hasan Hüseyin GÜL1,*
1Department of Statistics, Giresun University, Giresun, 28100, Türkiye

ARTICLE INFO

Article history
Received: 08 December 2023
Revised: 15 January 2024
Accepted: 14 February 2024

Keywords:
Bootstrap Bias-Correction; Cox-
Snell Bias-Correction; Maximum 
Likelihood Estimators; Monte-
Carlo Simulation; Two-
Parameter Lindley Distribution

*Corresponding author.
*E-mail address: hasan.huseyin@giresun.edu.tr
This paper was recommended for publication in revised form by
Editor-in-Chief Ahmet Selim Dalkilic

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION 

The Lindley distribution with one parameter was pro-
posed by Lindley [1] as an alternative to the exponential 
distribution in the context of fiducial distributions and the 
Bayes theorem. It is also known that the one-parameter 
Lindley distribution is a mixture of exponential (θ) and 
gamma (2, θ) distributions. Its probability density func-
tion (pdf) and cumulative distribution function (CDF) are 
given by 

(1)

(2)

The Lindley distribution, which was overshadowed 
by the exponential distribution for many years, has been 
studied by many authors as a lifetime model in recent 
years. Ghitany et al. [2] discussed various statistical prop-
erties such as moments, failure rate function, entropies, 
stochastic ordering, maximum likelihood (ML), and 
method of moments (MoM) estimations. Using a real data 
set, they also showed that the Lindley distribution can be a 
better model than the exponential distribution. Mazucheli 
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and Achcar [3] used the Lindley distribution within the 
simple competing risks distribution as a possible alterna-
tive to the exponential or Weibull distributions. Krishna 
and Kumar [4] derived and studied model properties and 
reliability measures of Lindley distribution. They used 
progressively Type-II censored sample data in the estima-
tion process. Al-Mutairi et al. [5] studied the estimation of 
stress-strength parameter R = P(Y < X) when X and Y are 
independent Lindley random variables. Some researchers 
have studied parameter estimation of Lindley distribution 
hybrid censored data. See, for example, Gupta and Singh 
[6], Al-Zahrani and Ali [7], and Jia and Song [8]. 

The pdf and cdf of the two-parameter Lindley (TPL) 
distribution proposed by Shanker et al. [9] are given by

  (3)

  (4)

At α = 1, the TPL distribution is the one-parameter 
Lindley distribution, and at α = 0, the TPL distribution is 
the exponential distribution.

This article deals with deriving modified maximum 
likelihood estimators (MLEs) that are analytic second-or-
der biases for the parameters of TPL distribution. The 
choice of estimation method for estimating the parameters 
of any probability distribution is a very important issue. 
Among the estimation methods, the MLE is the most 
widely used method due to its important appealing. For 
instance, they are asymptotically unbiased and normally 
distributed, efficient, consistent, etc. However, it is to be 
noted that most of these properties depend on the large 
sample size condition. Therefore, especially the unbiased-
ness property may not be applicable for small and moder-
ate sample sizes. For this reason, it is important to develop 
nearly unbiased estimators for TPL distribution. 

In this article, two different methods are used to 
reduce the bias of the MLE from order 𝒪(n-1) to order 
𝒪(n-2) for the TPL distribution. The first is the analyti-
cal methodology proposed by Cox and Snell [10] which is 
called the “corrective” approach to derive “bias-corrected” 
MLEs of second order. This analytical method means that 
bias correction is done by subtracting the bias (estimated 
at the MLE of the parameter) from the original MLE. The 
second is Efron’s [11] bootstrap resampling method which 
is called “parametric bootstrap”. This method, unlike 
the “bias-correction” method introduced by [10], is per-
formed numerically without deriving an analytical expres-
sion for the bias function. In the literature, several authors 
have studied to develop nearly unbiased estimators for the 
parameters of several distributions. Readers may refer to 
Corderio et al. [12], Cribari-Neto and Vasconcellos [13], 
Saha and Paul [14], Lemonte et al. [15], Lemonte [16], 
Giles [17], Giles et al. [18], Ling and Giles [19], Giles et 

al. [20], Schwartz and Giles [21], Wang and Wang [22], 
Reath et al. [23], Mazucheli and Dey [24], Mazuheli et al. 
[25], Mazucheli et al. [26], Menezes and Mazucheli [27], 
Menezes et al. [28], Tsai et al. [29], Dey and Wang [30].

The main objective of this study is to obtain almost 
unbiased estimators for the parameters of the TPL dis-
tribution. In the literature, bias-corrected estimators for 
the TPL distribution have not yet been investigated and 
no comprehensive study has been conducted. This paper 
addresses this issue using both analytical and simula-
tion-based methods. For this purpose, two different meth-
ods are considered, one analytical method suggested by 
[10] and the other bootstrap-based bias-corrected. Then, 
a Monte-Carlo simulation study is performed to compare 
the performance of the proposed estimators with respect 
to the bias and mean square error (MSE) criteria. In addi-
tion, a real data application is presented to demonstrate 
the applicability of the methods.

In the next sections 2 and 3, point estimation by 
the maximum likelihood method and its two different 
bias-corrected versions for the TPL distribution is dis-
cussed. Section 4 reports a Monte-Carlo simulation exper-
iment that evaluates the performance among the improved 
modified Cox-Snell bias-corrected estimator (BCE) and 
bootstrap-based bias-corrected estimator (PBE). For illus-
trative purposes, a real data set is presented in Section 5. 
Finally, some remarks in Section 6 closes the paper.

Maximum Likelihood Estimation
Suppose that y = (y1,…,yn) be a random sample of size 

n from the TPL distribution with pdf (1). The log-likeli-
hood function is:

  (5)

where Θ = (θ, α). The MLEs of θ ̂ and α ̂ of the unknown 
parameters θ and α are obtained by solving the non-linear 
equations:

  
(6)

  
(7)

The expected Fisher information matrix is given in the 
Appendix. Equations (6) and (7) do not seem to be solved 
directly. Therefore, a suitable numerical algorithm must 
be used. The Nelder-Mead optimization method (Nelder 
and Mead, [31]) in MATLAB software is used to obtain 
the estimated parameters. 
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BIAS-CORRECTED MLES

Cox-Snell Method
For a p-dimensional parameter vector Θ, [10] demon-

strated that when the sample data are independent, but 
not necessarily identically distributed, the bias of the s-th 
element of the MLE Θ, Θ̂, is calculated as

  (8)

where s = 1,…, p, K = [-κij] is the (i,j)-th element of the 
inverse of the expected Fisher information, 

and

 

Eq. (8) can be rewritten in the following form:

  
(9)

 

Now, let , for  and 
define the following matrices,

They also showed that the 𝒪(n-1) the bias of the MLE of 
Θ in Eq. (9) can be re-expressed as:

 

where vec (.) is an operator that creates a column vec-
tor from a matrix by stacking the column vectors below 
one another. Then, a “bias-corrected” MLE for Θ can be 
obtained as:

  (11)

where  and , and it can be shown that 
the bias of  will be 𝒪(n-2). 

For the TPL distribution, after extensive algebraic 
manipulation, see the Appendix, the following equations 
are obtained:

The analytic expressions are given in the Appendix. The 
elements of A(1) are obtained as follows:

The elements of A(2) are:

 

Using Corderio and Klein’s [32] modification of [10]’s 
method, the bias of Θ̂  can be written as follows:

  (12)
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where  and .

Parametric Bootstrap Method
An alternative approach considered to obtain modi-

fied nearly unbiased estimators for the TPL distribution 
is based on the parametric bootstrap resampling method 
([11], Efron and Tibshirani [33], Davison and Hinkley 
[34]). In this method bias correction is performed numer-
ically without deriving an analytical expression for the bias 
function. It uses the empirical distribution of the sample 
as an approximation of the population distribution. The 
estimated bias of Θ̂ s for a parameter vector Θ is given by

  (13)

where Θ̂j is the MLE of Θ obtained from the j-th 
Bootstrap sample. Thus, the bootstrap bias-corrected esti-
mator (PBE) is

  (14)

Although it does not involve any analytical derivatives, 
it provides a second-order unbiased estimator, which is a 
very important and remarkable feature. For more details, 
see [33].

NUMERICAL EVALUATIONS

In this section, a Monte Carlo simulation study is car-
ried out to compare the performance of the finite-sam-
ple behavior of the MLEs, BCEs, and PBEs of the TPL 

distribution. The Monte Carlo experiments are evaluated 
by selecting sample sizes n=10, 30, and 50, θ=1.0, 1.5, 2.0, 
3.0, and 5.0, α=0.5, 1.0, 1.5, and 3.0. The pseudo-random 
samples are simulated using the inverse transform method 
from TPL distribution, that is x = (x1,…, xn) is generated 
from:

where ui are random numbers from a uniform distri-
bution and W(.) is the Lambert W function.

The Monte-Carlo and Bootstrap replication numbers 
are taken as M=10,000 and B=1000, respectively. The sim-
ulation results are reported in Tables 1-4.

It is observed from Table 1 that, the biases of αMLE, 
αBCE and αPBE is smaller than the biases of θMLE, θBCE and 
θPBE. In most cases, the biases and MSEs of all estimators 
of θ and α approach zero as n increases. This shows that 
all estimators are consistent. The bias-corrected estima-
tors αBCE and θBCE clearly outperform the other estima-
tors according to both the bias and MSE criteria. Similar 
results are observed in Tables 2-4. These Monte-Carlo 
simulation results reveal that the bias-corrected estima-
tors perform favorably in bringing the estimates closer to 
their true values.

In the case of α = 0.5, the plots for the θ and α param-
eters are given in Figures 1-4 for the estimated bias and 
MSE.

Table 1. Estimated bias (mean square errors) for θ and α, (α = 0.5)

Estimator of θ Estimator of α

θ n MLE BCE PBE MLE BCE PBE
1.0 10 0.266(0.181) 0.007(0.009) 0.096(0.047) 0.191(0.147) 0.002(0.003) 0.040(0.023)

30 0.087(0.053) 0.005(0.008) 0.047(0.023) 0.061(0.047) 0.001(0.002) 0.029(0.018)
50 0.048(0.046) 0.001(0.003) 0.022(0.019) 0.024(0.048) 0.002(0.003) 0.015(0.013)

1.5 10 0.325(0.195) 0.003(0.007) 0.044(0.034) 0.246(0.175) 0.003(0.004) 0.021(0.021)
30 0.133(0.064) 0.003(0.005) 0.032(0.022) 0.089(0.053) 0.003(0.003) 0.014(0.014)
50 0.071(0.051) 0.001(0.005) 0.020(0.017) 0.052(0.045) 0.001(0.001) 0.013(0.015)

2.0 10 0.358(0.212) 0.004(0.003) 0.052(0.038) 0.257(0.169) 0.000(0.002) 0.026(0.019)
30 0.163(0.077) 0.003(0.006) 0.031(0.021) 0.103(0.056) 0.001(0.002) 0.011(0.014)
50 0.088(0.059) 0.004(0.004) 0.019(0.019) 0.065(0.048) 0.000(0.001) 0.014(0.014)

3.0 10 0.390(0.244) 0.003(0.001) 0.073(0.041) 0.314(0.214) 0.002(0.004) 0.037(0.022)
30 0.197(0.102) 0.001(0.003) 0.037(0.027) 0.132(0.071) 0.001(0.001) 0.021(0.019)
50 0.116(0.063) 0.000(0.002) 0.024(0.020) 0.078(0.052) 0.001(0.002) 0.016(0.016)

5.0 10 0.466(0.301) 0.010(0.006) 0.117(0.075) 0.343(0.219) 0.007(0.007) 0.059(0.037)
30 0.234(0.115) 0.008(0.006) 0.083(0.049) 0.157(0.083) 0.002(0.004) 0.038(0.029)
50 0.132(0.076) 0.006(0.003) 0.045(0.038) 0.088(0.067) 0.003(0.006) 0.023(0.025)
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Illustrative Example
In this section, to demonstrate the applicability of the 

improved bias-corrected estimators for the TPL distribu-
tion, two different data sets are used. 

Data Set 1: The following data set represents the failure 
times (in minutes) for a sample of 15 electronic compo-
nents in an accelerated life test by Lawless [35]. The data 
are given in Table 5.

Descriptive statistics of the failure times of electronic 
components data are given in Table 6.

Data Set 2: The following data set represents the num-
ber of cycles to failure for 25 100-cm specimens of yarn, 
tested at a particular strain level, by [35]. Both data sets 
were recently used as an illustrative example for the TPL 
distribution by [9].

Table 2. Estimated bias (mean square errors) for θ and α, (α = 1.0)

Estimator of θ Estimator of α

θ n MLE BCE PBE MLE BCE PBE
1.0 10 0.184(0.138) 0.003(0.006) 0.072(0.055) 0.166(0.122) 0.001(0.003) 0.038(0.028)

30 0.076(0.049) 0.002(0.003) 0.044(0.037) 0.058(0.043) 0.001(0.001) 0.022(0.019)
50 0.038(0.043) 0.000(0.001) 0.021(0.018) 0.024(0.044) 0.000(0.000) 0.017(0.012)

1.5 10 0.292(0.193) 0.006(0.007) 0.108(0.080) 0.194(0.156) 0.004(0.003) 0.061(0.043)
30 0.194(0.097) 0.002(0.002) 0.082(0.061) 0.063(0.049) 0.000(0.001) 0.033(0.029)
50 0.128(0.079) 0.001(0.002) 0.037(0.039) 0.039(0.044) 0.001(0.000) 0.019(0.014)

2.0 10 0.424(0.270) 0.007(0.006) 0.146(0.103) 0.247(0.178) 0.007(0.006) 0.094(0.066)
30 0.263(0.121) 0.005(0.004) 0.106(0.077) 0.116(0.063) 0.005(0.005) 0.048(0.041)
50 0.161(0.079) 0.001(0.002) 0.064(0.042) 0.054(0.049) 0.001(0.002) 0.025(0.024)

3.0 10 0.479(0.326) 0.012(0.006) 0.165(0.126) 0.290(0.195) 0.009(0.006) 0.123(0.094)
30 0.317(0.170) 0.009(0.007) 0.109(0.092) 0.131(0.067) 0.004(0.005) 0.076(0.065)
50 0.215(0.097) 0.003(0.003) 0.075(0.065) 0.065(0.052) 0.001(0.001) 0.039(0.038)

5.0 10 0.540(0.385) 0.011(0.009) 0.199(0.148) 0.362(0.228) 0.008(0.007) 0.151(0.117)
30 0.359(0.192) 0.008(0.005) 0.121(0.095) 0.173(0.081) 0.009(0.004) 0.088(0.073)
50 0.258(0.116) 0.005(0.003) 0.080(0.056) 0.095(0.059) 0.003(0.005) 0.057(0.056)

Table 3. Estimated bias (mean square errors) for θ and α, (α = 1.5)

Estimator of θ Estimator of α

θ n MLE BCE PBE MLE BCE PBE
1.0 10 0.175(0.129) 0.005(0.007) 0.094(0.066) 0.159(0.117) 0.006(0.006) 0.079(0.055)

30 0.043(0.024) 0.001(0.002) 0.039(0.024) 0.036(0.024) 0.001(0.002) 0.045(0.031)
50 0.030(0.022) 0.002(0.002) 0.016(0.011) 0.022(0.025) 0.001(0.002) 0.020(0.019)

1.5 10 0.220(0.149) 0.007(0.006) 0.125(0.087) 0.198(0.140) 0.007(0.005) 0.101(0.073)
30 0.092(0.038) 0.006(0.004) 0.063(0.044) 0.063(0.032) 0.002(0.003) 0.046(0.034)
50 0.039(0.028) 0.001(0.001) 0.030(0.021) 0.022(0.024) 0.002(0.001) 0.014(0.016)

2.0 10 0.294(0.169) 0.009(0.007) 0.159(0.109) 0.255(0.158) 0.009(0.006) 0.146(0.096)
30 0.148(0.052) 0.008(0.005) 0.081(0.063) 0.116(0.045) 0.002(0.005) 0.077(0.053)
50 0.065(0.038) 0.003(0.003) 0.031(0.028) 0.057(0.029) 0.004(0.003) 0.041(0.030)

3.0 10 0.378(0.217) 0.011(0.009) 0.192(0.137) 0.376(0.208) 0.012(0.007) 0.185(0.121)
30 0.201(0.072) 0.006(0.005) 0.104(0.062) 0.188(0.066) 0.007(0.002) 0.109(0.077)
50 0.124(0.049) 0.007(0.005) 0.066(0.046) 0.091(0.041) 0.003(0.003) 0.052(0.042)

5.0 10 0.471(0.303) 0.013(0.009) 0.248(0.165) 0.459(0.257) 0.011(0.009) 0.263(0.158)
30 0.286(0.136) 0.004(0.006) 0.155(0.098) 0.224(0.090) 0.002(0.004) 0.146(0.088)
50 0.212(0.089) 0.006(0.003) 0.094(0.056) 0.118(0.049) 0.005(0.005) 0.072(0.043)
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Table 4. Estimated bias (mean square errors) for θ and α, (α = 3)

Estimator of θ Estimator of α

θ n MLE BCE PBE MLE BCE PBE
1.0 10 0.287(0.242) 0.007(0.006) 0.124(0.082) 0.262(0.235) 0.005(0.006) 0.088(0.074)

30 0.054(0.033) 0.002(0.001) 0.049(0.033) 0.035(0.028) 0.001(0.001) 0.037(0.039)
50 0.038(0.027) 0.001(0.002) 0.022(0.018) 0.020(0.026) 0.001(0.000) 0.021(0.016)

1.5 10 0.211(0.158) 0.009(0.005) 0.143(0.097) 0.196(0.141) 0.007(0.007) 0.111(0.095)
30 0.082(0.039) 0.001(0.003) 0.067(0.056) 0.059(0.030) 0.002(0.003) 0.057(0.047)
50 0.056(0.031) 0.003(0.001) 0.031(0.024) 0.033(0.026) 0.003(0.001) 0.034(0.028)

2.0 10 0.254(0.176) 0.009(0.007) 0.165(0.112) 0.227(0.159) 0.009(0.007) 0.143(0.108)
30 0.110(0.054) 0.005(0.004) 0.092(0.068) 0.074(0.037) 0.006(0.006) 0.077(0.067)
50 0.051(0.042) 0.004(0.002) 0.044(0.035) 0.036(0.029) 0.002(0.002) 0.032(0.030)

3.0 10 0.325(0.197) 0.013(0.007) 0.183(0.119) 0.262(0.168) 0.009(0.011) 0.159(0.119)
30 0.156(0.072) 0.008(0.003) 0.105(0.086) 0.108(0.045) 0.007(0.004) 0.075(0.082)
50 0.094(0.045) 0.003(0.001) 0.056(0.042) 0.061(0.031) 0.003(0.003) 0.042(0.038)

5.0 10 0.423(0.268) 0.017(0.009) 0.202(0.142) 0.352(0.208) 0.011(0.009) 0.188(0.135)
30 0.248(0.109) 0.007(0.005) 0.127(0.088) 0.163(0.069) 0.009(0.007) 0.103(0.086)
50 0.140(0.071) 0.005(0.004) 0.074(0.051) 0.089(0.037) 0.004(0.003) 0.049(0.041)

Figure 1. Estimated bias for θ for α=0.5.

Figure 2. Estimated bias for α for α=0.5.

Figure 3. Estimated MSE for θ for α=0.5.
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The point estimates of θ and α along with standard 
errors with MLEs, BCEs, and PBEs of the TPL distribution 
for both data sets are presented in Table 9. 

In comparing the three considered estimation methods 
for the TPL distribution, the smallest standard error is taken 

as a criterion. It is observed that bias-corrected estimates 
have smaller standard errors for both parameters θ and α 
for both data sets. Moreover, the BCEs and PBEs gave sim-
ilar bootstrap standard errors. In addition, Table 9 shows 
that the MLEs overestimates θ and α for both data sets. 

Table 5. Failure times of electronic components

1.4 5.1 6.3 10.8 12.1 18.5 19.7 22.2 23.0
30.6 37.3 46.3 53.9 59.8 66.2

Table 6. Summary of the descriptive statistics for the failure times of electronic components data

Mean Min Max SD Range
27.5467 1.4 66.2 20.7634 64.8

Table 7. Number of cycles to failure for 25 100-cm specimens of yarn

15 20 38 42 61 76 86 98 121
146 149 157 175 176 180 180 198 220
224 251 264 282 321 325 653

Table 8. Summary of the descriptive statistics for the Number of cycles to failure for 25 100-cm specimens of yarn data.

Mean Min Max SD Range
178.32 15 653 133.8008 638

Table 9. MLEs, BCEs, and PBEs (Bootstrap standard errors)

Data Set 1 Data Set 2

Estimators θ α θ α
MLE 0.1559(0.6482) 0.0622(0.0327) 0.0109(0.0851) 0.1288(0.2336)
BCE 0.1547(0.6344) 0.0809(0.0264) 0.0098(0.0779) 0.1255(0.2283)
PBE 0.1553(0.6365) 0.0798(0.0277) 0.0095(0.0842) 0.1247(0.2326)

Figure 4. Estimated MSE for α for α=0.5.
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CONCLUSION

In the literature, there are no studies on the bias reduc-
tion of MLE estimates of the parameters of the two-pa-
rameter Lindley distribution. This gap in the literature is 
very important for improving the parameter estimation of 
this distribution. In this paper, a “corrective” approach to 
derive analytical expressions for bias-corrected maximum 
likelihood estimator suggested by [10] for the parame-
ters of the two-parameter Lindley distribution has been 
adopted. Besides, Efron’s bootstrap resampling technique, 
which is not an analytical method, is considered an alter-
native bias-correction technique. In addition, to demon-
strate the applicability of the above-mentioned techniques, 
a real data application is performed. The results show that 
the proposed bias-corrected estimators are preferred in 
terms of bias and mean square error for the two-parame-
ter Lindley distribution over the maximum likelihood and 
bootstrap bias-corrected estimators. 
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APPENDIX

Analytic bias correction for the TPL distribution with parameters θ and α. 

The log-likelihood function for the TPL distribution is given by

The derivatives of the log-likelihood function up to the third order are given:

The expected Fisher information matrix is given:

. 

The following equations are obtained:
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The elements of A(1) are obtained as follows:

The elements of A(2) are:

Finally, using Corderio and Klein (1994) modification of Coxx and Snell’s (1968) method, the bias of  can be written as 
follows:


