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Testing the equality of means of several skewed populations, particularly in the presence
of nuisance parameters, is a central challenge in statistics. While various tests have been
proposed for such as log-normal, inverse-normal, and exponential distributions leveraging
methods like generalized p-value, parametric bootstrap, and the fiducial approach, there
remains a notable gap in the literature, the absence of a computational approach meth-
od-based test for the two-parameter exponential distribution. Such a method is essential
for achieving robust results in small sample sizes while considering power and Type I error
probability. In response to this gap, our paper introduces and implements novel compu-
tational approach tests embedded in the doex package in R. Our focus is on assessing the
equality of means for several skewed populations following a two-parameter exponential
distribution. We conduct a comprehensive comparison of our proposed tests against exist-
ing alternatives, evaluating their penalized power and Type I error probability. Notably, our
computational approach tests exhibit superior performance, particularly in cases involving
small samples and balanced designs. Furthermore, to illustrate the practical relevance of
our proposed tests, we present a real-world application using authentic data. This empirical
demonstration serves to underscore the efficacy and applicability of our novel computation-
al approach tests in real-world scenarios.
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INTRODUCTION Behrens-Fisher-type problems. Weerahandi [1] proposed
the Generalized F-test, Krishnamoorthy et al. [2] proposed
a parametric bootstrap test, Li et al. [3] proposed a fiducial
approach test and Gokpinar and Gokpinar [4] proposed a

computational approach test for testing equality of several

Testing equality of means in the presence of nuisance
parameters is a well-known Behrens-Fisher-type problem
in statistics. There are many methods to solve this prob-

lem, such as generalized p-value, the parametric bootstrap,
the fiducial approach, and the computational approach
method. These methods are applied to many different
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means of normal populations under unequal variances.
For comparing several log-normal means, Gokpinar and
Gokpinar [5] and Jafari and Abdollahnezhad [6] proposed
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tests based on the computational approach method. It is
seen that this method has been used frequently in recent
years. The major advantage of the computational approach
over the alternatives is to be able to derive powerful tests in
small samples without the need for knowledge about the
sample distribution. The limitation of this method is dis-
cussed in [7].

The two-parameter exponential distribution is used
in many real-life problems such as modeling extreme
rainfalls, the lifetime of a component, the service time of
an agent, and so on. There are some procedures improved
for the two-parameter exponential distribution. Chen
[8] proposed a range statistic for comparing location
parameters of two-parameter exponential distributions.
Singh [9] derived a likelihood ratio test for testing the
equality of location parameters of two-parameter expo-
nential distributions based on Type II censored samples
under unknown scales. Kambo and Awad [10] proposed
a test statistic based on doubly censored samples to test
the equality of location parameters of k exponential dis-
tributions when the scale parameter is unknown. Hsieh
[11] proposed an exact test for comparing location
parameters simultaneously of several two-parameter
exponential distributions under unequal scale parame-
ters with unknown scale parameters. Vaughan and Tiku
[12] extended the test developed by Tiku and Vaughan
[13] for k - 2 populations for testing the equality of loca-
tion parameters of two-parameter exponential popula-
tions from censored samples. Ananda and Weerahandi
[14] proposed a testing procedure based on generalized
p-values for testing the difference of two exponential
means. Wu [15] proposed a one-stage multiple com-
parison procedure for comparing k - I treatment expo-
nential mean lifetimes with the control based on doubly
censored samples under unequal scales. Malekzadeh
and Jafari [16] proposed some procedures based on
generalized p-values, parametric bootstrap, and fidu-
cial approach by using Cochran type test statistics for
testing the means of several two-parameter exponential
distributions under progressively Type II censoring. In
the testing equality of means of two-parameter expo-
nential distributions, the scale parameter is a nuisance
parameter when it is unknown or unequal. Therefore,
the considered problem turns into a Behrens-Fisher-
type problem. The major contribution of this paper is
proposing the computational approach tests for testing
the equality of two-parameter exponentially distributed
population means under unequal scale parameters.

The following section introduces the alternative tests
and proposed computational approach tests. In Section 2,
the alternative tests are introduced. Our proposed CATs
are introduced in Section 3. The performance of the pro-
posed tests with the alternatives is investigated in terms of
penalized power and Type I error probability in Section 4.
An illustrative example is given in Section 5. The results are
discussed in the last section.

TESTING EQUALITY OF SEVERAL TWO-
PARAMETER EXPONENTIAL MEANS UNDER
UNEQUAL SCALES

In this section, the generalized p-value, parametric
bootstrap, and fiducial approach tests are given for test-
ing the equality of two-parameter exponential distributed
populations’ means. The probability density function of the
two-parameter exponential distribution is as follows:

1 x—b
fx; a,b)=aexp<—T), x>b, a>0 (1)

where a is the scale and b is the location parame-
ter. The interested hypothesis is in the following for test-
ing the equality of means of the exponentially distributed
populations.

Ho:py = ply =...= (2)

where y; is the mean of the i.th population. Johnson and
Kotz [17] obtained the maximum likelihood estimate of the
parameters as in the following equations [18, 19]:

where X jy=min(Xy, X, ..., X,) and S=Y7_,(X;—X1)).
Cochran [20] type test statistics are used for Behrens-
Fisher problems. Here, it is modified for testing the equal-
ity of two-parameter exponential distributed means under
unequal scale parameters.

n:u?
ko2 <Zi€:1§_lgl>
T = n;u; _ i (4)
t= S? vk
i=1 ! i=1g2

where y; is the mean estimate and §; is the scale esti-
mate. The uniformly minimum variance unbiased estima-
torof fI, = a; + b; can be shown as in (5).

. n; — 1. 2
By =Xy + =5 ~ N ai*/ny) 5)
L

. where Xj;) is the first order statistics and
S; = Z?zl(Xij — Xj1)) is the scale estimator of the i.th
population. Under the null hypothesis, T, is approximately
chi-square distributed with k - 1 degrees of freedom. T, is
used for the rejection rule as a critical value of the general-
ized p-value, parametric bootstrap, fiducial approach, and
proposed computational approach tests in the following
sections.

Generalized p-value (GP) Test

Tsui and Weerahandi [21] introduced the concept of
generalized p-value can be used to derive the test statistics
in the presence of nuisance parameters. Many research-
ers used this method to derive test statistics for several
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distributions. In this method, firstly sufficient statistics of
parameters of the related distribution are obtained. Using
the sufficient statistics of the two-parameter exponential
distribution, Malekzadeh and Jafari [16] proposed the GP
test for the testing hypothesis in (2) by following these
steps: (i) R; can be obtained independently from the nui-
sance parameter and, (ii) since the observed A; values are
independent of the nuisance parameter 8, generalized pivot
variable can be estimated.

R; = x;0) + (n; — 1)s;2n; — Vi/n,Uy) (6)

where U, and V;, are independent random samples with
Ui~x 2(2ni— nand V; ~ X’ ¢y For a given observed values of
[Xic1y» Sil as [xi(1y, S the expected value and the variance
of the generalized pivot variable R; are obtained as follows:

(n; — 1)%s;

=X + , Opi=
Hri =% n?—2n; = K n2(n;—2)2

, (i —1)*s? (nil_ 3) -

The generalized p-value test statistic is obtained as in
(8) using the expected value and variance of the generalized
pivot variable R,.

2
ko ( k #Ri)
i=1 .2
T = HRi ORi (8)
Gp= ) T 1
Loy ko L
i=1 i=1 452
Ri

The rejection rule is HO in (2) rejected when Tgp = T,
The p-value of the GP test is computed at least 10,000 for
Monte-Carlo runs psp = P(T;p = T,). The null hypothesis is
rejected when pp < .

Parametric Bootstrap (PB) Test

Krishnamoorthy et al. [2] used the parametric boot-
strap approach for testing the equality of several popu-
lation means under unequal variances. Malekzadeh and
Jafari [16] proposed the PB test for the testing hypothesis
in (2).

2
n. .
Y (Z?=1%>
T. — ilpi _ i (9)
PB 2 Kk M
i 1
i=1 5‘12

i=1

where Vi~)((22) andU;~ X(ZZni—Z) are independent random
samples, y, = (s;/2n;)(V; + U;)and Sg; = 5;U;/(2n; — 2).
The p-value of the PB test is computed with 10,000 Monte-

Carlo runs as in (10).
Prg = P(Tpp 2 T}) (10)

The null hypothesis is rejected when ppp < a.

Fiducial Approach (FA) Test

Li et al. [4] proposed to use of the fiducial approach for
testing equality of several population means under unequal
variances. Malekzadeh and Jafari [16] proposed the PB
test for the testing hypothesis in (2). Let U;~x? Cni=2) and
Vi~ x? () are independent random samples. X;(;), and S,

functions can be rewritten as random samples:

wiU;

=l wiVi
2(n; — 1)

m=5-ta

Zni (11)

Parameter estimations are obtained as follows by using

the observed values of [X; ), S;:

_ (ni—-1)s;v; _ 2(ni—Ds;
a; = xi(l) - Lniuil L; i = ;s ., (12)
The test statistic T}, is obtained as in (13).
1
(k)
T = Z fi _\ == sy (13)
FA = 2.2 K
= linju; i=1 Wi

where f; = (n; — I)(w;v; — 2n;u;). The p-value of the
FA test is computed with 10,000 Monte-Carlo runs as in
(14).

Pra =P(Tpa 2 Tp) (14)

The null hypothesis is rejected when py, < «,.

PROPOSED COMPUTATIONAL APPROACH
TESTS (CATSs)

Pal et al. [22] proposed the computational approach
method which is a type of parametric bootstrap method.
The CAT method based on simulation and numerical com-
putations uses maximum likelihood estimates and does not
require knowledge of any sampling distribution. It can be
used easily, because of the development of calculation tech-
nology. Let ¢ is the nuisance parameter of the parameter
space (= (0, §) and T = T(X; x, {) is considered test statistic
in testing the hypothesis H,: 0 = 0, versus Hy: 0 # 0,. The
p-value of the CAT is calculated by using the Algorithm 1.

To improve the test statistics, the RML estimators are
obtained in the following steps. The likelihood function T

(.) of a two-parameter exponential distribution is as follows:
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Algorithm 1. p-value calculation of the CAT

1: Calculate the observed values of the interested parameter 0, and nuisance parameter §; for k samples.
2: Calculate the observed value of the test statistics T¢47 using the estimator in Step 1.
3: Find the restricted maximum likelihood (RML) estimator of the parameters for k samples under the true H,,.
4: for j « 1to M do
5: for i< 1to n,do
6: for j « 1tokdo
7 Generate random samples from X;;; ~f (B> Srars) for k samples.
8: end for
9: end for
10: Calculate the observed values of the parameters for generated samples.
11: Calculate the observed value of test statistics TC(Z? using the estimators in Step 8.
12:  end for
13:  Calculate the p-value of the CAT: p = 311, I(tgg > téar) /M
L(a,b|xy, %, .., %) = f(xq | a,b) f(x, | @, ) ... f(x,]a,Db) The log-likelihood function of the two-parameter expo-
n nential distribution is as follows:
= Hf(xi | a, b) n
= L(a,u—alxl,xz,...,xn)=nlnf(xiIa,u—a)
ﬁl ( xi—b) (15) i=1
= —exp|—
a a n
i=1 1 ny  na
= ——in +————nlna (17)
n a n a
1 1 b i=1
= €Xp [—EZ(XL-— )] .
i=1 1 nu
= ——in +—-n—-nlina
al n
Here, to obtain RML estimators, under the true H, =
hypothesis, the b parameter can be expressed b = y - a in The maximum likelihood estimator of the parameters
terms of the nuisance parameter. is obtained by the derivative of the log-likelihood function
as follows:
n
1 1 — n L —
L(a,y—alxl,xz,...,xn)=—nexp[——2(xi—,u+a) (16) dnL(a,u—a) _ i=1(x; .U)_E: 0 (18)
a azs d 2
=1 a a a

Algorithm 2. p-value calculation of the proposed CATs

1: Calculate the observed values of y; and g, for k samples.

2: Calculate the observed value of the test statistics T, using the estimator in Step 1.

3: Find the restricted maximum likelihood (RML) estimator of the parameters for k samples under the true H,,.
4: for j « 1to M do

5: for i< 1to n,;do

6: for j « 1to kdo

7: Generate random samples from X;; ~f(@;rmr), Rirmr) — @Qirmr)) for k samples.
8: end for

9: end for

10: Calculate the observed values of the y; and g, for generated samples.

11: Calculate the observed value of test statistics Tt(m) using the estimators in Step 8.

12:  end for

13:

Calculate the p-value of the proposed CAT: p = Y1, I(t,gm) > t,) /M
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The restricted maximum likelihood estimator of the

scale parameter is obtained in (19).
Arm = M — X(1) (19)

The @z, estimator obtained here is used to calculate
the critical values of CATs. The maximum likelihood esti-
mations of the two-parameter exponential distribution are
biased. Zheng [23] obtained the penalized maximum like-
lihood estimators, and the estimations of the parameters
have lower MSEs obtained. In this paper, there are four dif-
ferent CATs are proposed for testing the equality of two-pa-
rameter exponential distributed populations’ means by
using the combinations of the mean estimators. The CAT],
CAT2, CAT3, and CAT4 are introduced in the following
subsections.

Proposed Computational Approach Test 1 (CAT1)

The maximum likelihood estimator of the mean
p,=a;+ b; is used in CATTI. It is also labeled as reference
tests, and the null hypothesis is rejected when pear; < @y,
which is calculated as in Algorithm 2.

Proposed Computational Approach Test 2 (CAT2)

The maximum likelihood estimation of the mean with
the correction of unbiasedness i, = @; + —x(l) as in
[16] is used in CAT2. The null hypothesns is re]ected when

Pcar2 < Qp.

Proposed Computational Approach Test 3 (CAT3)

The likelihood
tion of the mean with the correction of unbiasedness
p,=a;+ bRML as in [16] is used in CAT3. The null
hypothesis i 1s re]ected when pear; < @p.

penalized maximum estima-

Proposed Computational Approach Test 4 (CAT4)

The penalized maximum likelihood estimation of the
mean I, = @; + by is used in CAT4. The null hypothesis
is rejected when pc4ry < @y. The performance of the pro-
posed CATs over the GPD, PB, and FY tests is investigated
by Monte-Carlo simulation studies in the next section.

MONTE-CARLO SIMULATION STUDY

The performance of the proposed CATs is investigated
over the alternatives in terms of penalized power and Type I
error probability when the nominal level of the test is taken
a = 0.05 under different sample sizes and scale parameters
in this section. We provide comprehensive simulation study
results. It is known that Monte-Carlo simulation studies are
used to compare the performance of the tests in terms of
power and Type I error probability. However, any compar-
ison of the powers is invalid when Type I error probabili-
ties are different. Cavus et al. [24] proposed the penalized
power approach to compare the power of the tests when
Type I error probabilities are different.

1-p;
_ﬂ|
o

T 1+| (20)

where f3is the Type II error rate, a; is the Type I error of
the test and «) is the nominal level. Penalized power adjusts
the power function with the square root of the percentile
deviation between Type I error probability and the nominal
level. Thus, penalized power is used to compare the power
of the tests in the simulation studies. The simulations are
performed for balanced and unbalanced designs with doex
package implemented in R [25, 26], and the results are
based on 10,000 Monte-Carlo replications. The results of
the simulations are given in the following subsections.

Type I Error Probability Results

The proposed CATs and the alternatives in the litera-
ture to control Type 1 error probability relative to the nom-
inal level are investigated. In the simulation study, the scale
parameter is a;, the location parameter is b;, the sample size
is n;, and the number of populations is k taken as configura-
tion factors. In addition, balanced and unbalanced designs
are considered, and by increasing the differences between
the sample size in the designs; the effect of design type on
performance is investigated. The nominal level a, = 0.05
and location parameters are fixed as b; = 1,1,1. The Type
I error probability of the tests k = 3 is given in Table 1. In
the following tables, GP refers generalized p-value test, PB
refers parametric bootstrap test, FA refers fiducial approach
test, and CATs refer to computational approach tests.

According to the results in Table 1, CAT1, CAT2, and
CAT4 can control the Type I error probability in small sam-
ples, while the PB test shows similar performance in medium
and large samples. On the other hand, GPV and FA tests can
only control the Type I error probability in large samples.
When the properties of the tests to control Type I error prob-
ability are compared, GP, PB, FA, and CAT?3 tests are conser-
vative, and CAT1, CAT2, and CAT4 are mostly liberal but
conservative in some cases. The results of the Type I error
probability of the tests k = 4 are given in Table 2.

The increasing of k from 3 to 4, decreases the Type I error
probability of the tests except CAT4. In the general frame-
work, GPV, PB, FA, and CAT?3 tests are conservative, while
CAT1 and CAT? tests are liberal in terms of Type I error
probability. CAT4 test has a Type I error probability higher
than the nominal level except for small samples. In medium
samples, the Type I error probability of the GP and FA tests
is far from the nominal level. In large samples, the FA test,
as well as balanced designs, in addition to the GP and PB
test, Type 1 error probability is far from the nominal level.
While an unbalanced design does not negatively affect the
performance of GP, PB, and FA tests, CATs seem to affect
increasing the Type 1 error probability. This causes the
Type 1 error probability of the CATs to exceed the nominal
level. In balanced designs, CATs generally perform better,
in all cases the Type 1 error probability of the CAT4 is very
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Table 1. Type I error probability for k = 3

n; a; b, GP PB FA CAT1  CAT2  CAT3  CAT4

22,2 0.006 0008 0001  0.046 0.042 0.012 0.038
10,10,10

5,5,5 0.006 0010 0001 0055 0.059 0.017 0.041

22,2 0006 0012 0002  0.065 0.072 0.031 0.039
8,10,12

5,5,5 0.008 0013 0002  0.053 0.056 0.039 0.053

2,22 0014 0043 0007  0.053 0.055 0.041 0.054
5,10,15

5,5,5 0012 0043 0007 0055 0.057 0.044 0.043

22,2 0026 0040 0020  0.055 0.057 0.049 0.055
30,30,30

5,5,5 0029 0046 0022 0055 0.054 0.048 0.053

22,2 0030 0045 0023 0056 0.054 0.042 0.045
24,30,36 11,1

5,5,5 0029 0045 0022 0057 0.056 0.019 0.045

22,2 0.033 0048 0024  0.055 0.059 0.017 0.041
15,30,45

5,5,5 0032 0052 0024  0.065 0.050 0.031 0.039

22,2 0036 0047 0031  0.053 0.056 0.039 0.053
50,50,50

5,5,5 0034 0045 0030  0.053 0.055 0.041 0.054

22,2 0035 0049 0031  0.055 0.057 0.044 0.043
40,50,60

5,5,5 0.036 0049 0030  0.055 0.057 0.049 0.055

22,2 0039 0049 0030 0055 0.054 0.048 0.053
25,30,75

5,5,5 0.040 0051 0033  0.051 0.048 0.041 0.041

Table 2. Type I error probability for k = 4

n, a; b, GP PB FA CAT1 CAT2 CAT3 CAT4

2,222 0.008 0.011 0.001 0.071 0.067 0.020 0.058
10,10,10,10

5,5,5,5 0.008 0.011 0.001 0.071 0.067 0.020 0.058
51014 2,2,2,2 0.008 0.018 0.003 0.082 0.079 0.023 0.048
T 5,5,5,5 0.008 0.018 0.003 0.082 0.079 0.023 0.048
S lale 2,222 0.009 0.037 0.005 0.088 0.089 0.026 0.042
T 5,5,5,5 0.009 0.037 0.005 0.088 0.089 0.027 0.042

2,222 0.033 0.044 0.027 0.059 0.056 0.040 0.057
30,30,30,30

5,5,5,5 0.033 0.044 0.027 0.059 0.056 0.040 0.057

2222 0.028 0.039 0.018 0.050 0.052 0.039 0.044
18,24,30,42 L1,1,1

5,5,5,5 0.028 0.039 0.018 0.050 0.052 0.039 0.044

2222 0.031 0.051 0.029 0.054 0.057 0.051 0.049
12,24,36,48

5,5,5,5 0.031 0.051 0.029 0.054 0.057 0.051 0.049

2,222 0.029 0.037 0.026 0.060 0.059 0.051 0.060
50,50,50, 50

5,5,5,5 0.029 0.037 0.026 0.060 0.059 0.051 0.060

2222 0.041 0.055 0.038 0.058 0.057 0.047 0.056
30,40,60,70

5,5,5,5 0.041 0.055 0.038 0.058 0.057 0.047 0.056

2222 0.044 0.050 0.029 0.052 0.048 0.041 0.042
20,40,60,80

5,5,5,5 0.044 0.050 0.029 0.052 0.048 0.041 0.042
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Table 3. Type I error probability for k = 5

n; a; b, GP PB FA CAT1 CAT2 CAT3 CAT4

22,22, 0.005 0008 0002 0063 0061 0016  0.055
10,10,10,10,10

5,5,5,5,5 0.005 0008 0002 0063 0061 0016  0.055

22,222 0.006 0019 0001 0070 0073 0020  0.049
6,8,10,12,14

5,5,5,5,5 0.006 0019 0001 0070 0073 0020  0.049

22,22, 0.017 0044 0010 0093 009 0028  0.040
4,6,10,14,16

5,5,5,5,5 0017 0044 0010 0093 009 0028  0.040

22,222 0022 003 0012 0052 0053 0037  0.052
30,30,30,30,30

5,5,5,5,5 0022 003 0012 0052 0053 0037  0.052

22,222 0038 0055 0025 0057 0058 0044  0.052
18,24,30,36,42 1,1,1,1,1

5,5,5,5,5 0038 0055 0025 0057 0058 0044  0.052

222,22 0.040 0047 0025 0050 0051 0034  0.033
12,18,30,42,48

5,5,5,5,5 0.040  0.047 0025 0050 0051 0034  0.033

22,222 0.030 0043 0024 0046 0047 0038  0.047
50,50,50, 50,50

5,5,5,5,5 0.030 0043 0024 0046 0047 0038  0.047

22,22, 0.043 0066 0040 0053 0050 0039  0.046
30,40,50,60,70

5,5,5,5,5 0.043 0066 0040 0053 0050 0039  0.046

2,2,22,2 0.042 0046 0024 0043 0042 0037  0.036
20,30,50,70,80

5,5,5,5,5 0.042 0046 0024 0043 0042 0037  0.036

close to the nominal level. PB test in unbalanced designs
appears to be less likely than the nominal level of Type I
error probability in the relatively less unbalanced designs
of medium and large samples and unbalanced designs of
large samples. The increasing of the scale parameter $a_i$
does not affect the controlling Type I error probability of
the tests. The results of the Type I error probability of the
tests k = 5 are given in Table 3.

The results given in Table 2 are examined, the increas-
ing of the k decreased the Type 1 error probability of the
tests. Type 1 error probability of CATs increased and it
is more liberal than k = 4. Type 1 error probability of
GP, PB, and FA tests decreases and gets closer to zero.
Similar to the results in Table 3, GP, PB, FA, and CAT3
tests are conservative, while CAT1 and CAT?2 tests are
liberal in terms of Type I error probability. CAT4 and PB
test’s Type I error probability are closer than the others to
the nominal level in small samples. It is observed that the
Type I error probability of CAT1, CAT2, CAT4, and PB
tests are close to the nominal level in medium samples.
Type 1 error probability of PB, CAT1, CAT2, and CAT4
tests are close to the nominal level in large samples. The
unbalancedness of the design does not affect the Type
I error probability of the GP, PB, and FA test, while it

affects CAT1, CAT2, and CAT4 negatively in small sam-
ples. In medium and large samples, the unbalancedness
of the design only affects the ability to control the Type
I error probability of CAT4. The increase of the scale
parameter a; does not affect the ability to control the
Type 1 error probability.

According to the results in Tables 1, 2, and 3, it is
observed that the ability to control the Type I error
probability of the tests is affected by the sample sizes,
number of populations and the design type. While the
CAT1 and CAT2 control Type I error probability bet-
ter k = 3, the situation of increasing in the k inflates
the Type I error probability of these tests. When the
increasing of the k, the Type I error probability of the
CAT4 is closest to the nominal level. The unbalanced-
ness of design does not affect the Type I error probabil-
ity of the GP, PB, and FA test, while it affects the ability
to control the Type I error probability of CATs nega-
tively. It is observed that the Type I error probability of
CATs may be sensitive to the unbalanced designs. Also,
it is observed that the increase in the scale parameter
does not affect the performance of the tests. According
to the results obtained in this section, no test can ide-
ally control Type 1 error probability in every case.
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Table 4. The penalized power for lower scale parameters and k = 3

n a; b, GP PB FA CAT1  CAT2  CAT3  CAT4
22,3 0.0101 00143 00021 00847 00752 00226  0.0691
10,10,10 22,4 0.0254 00334 00055 00991 00919 00234  0.0808
22,5 00429 00581 00097 01145 01012 00317  0.0898
22,3 00245 00342 00039 00839 00773 00256  0.0635
8,10,12 2,24 00622 00779 0009 01077  0.1095  0.0380  0.0939
22,5 0.1181  0.138 00177 01135 01160  0.0334  0.0967
22,3 00559  0.1119 00147 00579 00733 00230  0.0407
5,10,15 2,24 0.1590 02180  0.0265 00693 00875 00213  0.0371
22,5 03010 03475 00413 00658 00808 00179  0.0281
22,3 01610 02420  0.253 03060 02901 02272  0.3021
30,30,30 22,4 04997  0.6363 04303 06721 06567 05812  0.6731
22,5 07297  0.8488  0.6697 09004 08759  0.8103  0.8984
22,3 02444 03225 01755 03040 03175 02734  0.3166
24,30,36 2,24 1,11 0.6301 07455 05232 07469 07418  0.6895  0.7457
2,2,5 0.8083 09180 07411 09276 09153 08773 09228
22,3 03307 04043 02160 03528 03737 03477  0.3381
15,30,45 22,4 07178 08277 05868  0.8019  0.8045 07852  0.7736
2,2,5 0.8447 09643 07630 09296 09179 09232  0.9160
22,3 03808 04686 03422 04672 04617 04604  0.4701
50,50,50 22,4 0.8119 09107 07675 08953 08795 09189  0.8963
22,5 0.8812 09700  0.8447 09477 09310 09842  0.9477
22,3 04722 05521 04015 05091 05283 05276  0.5332
40,50,60 2,24 0.8448 09522 08029 09096 09228 09335 09315
22,5 0.8821 09921 08549 09506 09594 09776  0.9684
22,3 05582 0.6071 04440 05556 05927 05562  0.5654
25,50,75 22,4 0.8840 09662 08103 09052 09257  0.8951 09144
22,5 09063 09937  0.8489 09440 09623 09266  0.9525

Penalized Power Results

In addition to the configuration parameters used in
Type 1 error probability calculations, the a; parameter is
used to control the effect size in this section. For the low
and high levels of the scale parameter, the penalized power
of the test is calculated by fixing the values of the scale
parameters; 3,4,5 and 6,8,10 respectively. In all scenarios,
location parameters are taken as b = I,1,1. The penalized
powers are given for the low value of the scale parameter (g,
= 2) in Table 4, for the high value of the scale parameter (g;
=5) in Table 5 for k = 3. The penalized powers are given for
the low value of the scale parameter (a; = 2) in Table 6, for

the high value of the scale parameter (a; = 5) in Table 7 for k
= 4. The penalized powers are given for the low value of the
scale parameter (a; = 2) in Table 8, for the high value of the
scale parameter (g; = 5) in Table 9 for k = 5.

CATT1 is the most powerful test in balanced and unbal-
anced designs, the PB is the most powerful test in more
unbalanced designs in terms of penalized power according
to the results given in Tables 4 and 5. While the sample size
increasing, the CAT4 is getting more powerful in a balanced
and unbalanced design, the CAT?2 is getting also more pow-
erful than the others in a more unbalanced design. The
increasing of the scale parameter value decreases the power
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Table 5. The penalized power for higher scale parameters and k = 3

n a; b, GP PB FA CAT1  CAT2  CAT3  CAT4
5,5,6 0.0215 00234 00164 00599 0058 00118  0.0524
10,10,10 5,5,8 0.0298 00321 00266 00880  0.0850  0.0299  0.0810
5,5,10 0.0419 00436 00369 00965 00935 00322  0.0858
5,5,6 00356 00367 00349 00620 00644 00210  0.0525
8,10,12 5,5,8 00651 00642 00622 00858 00893  0.0303  0.0672
5,5,10 0.1046  0.051 01023 01077  0.1095  0.0380  0.0939
5,5,6 00221 00631 00094 00623 00770 00247  0.0416
5,10,15 55,8 00726 01325 00171 00614 00910 00170  0.0398
5,5,10 0.1577 02186 00266 00693 01080  0.0187  0.0444
5,5,6 01509  0.1628 01329 00991 00954 00779  0.0991
30,30,30 5,5,8 0.4060 04592 03732 03769 03619 03042  0.3759
5,5,10 05755  0.6553  0.5404  0.6721  0.6567 05812  0.6731
5,5,6 00758 00868 00742 01166  0.1173 01040  0.1212
24,30,36 5,5,8 1,11 02967 03371 02831 04361 04443 04041  0.4436
5,5,10 05172 0585 04921 07615 07656 07088  0.7736
5,5,6 0.0886  0.1306 0058 01154 01236  0.1115  0.1058
15,30,45 5,5,8 04225 04979 02934 04605 04720 04365 04327
5,5,10 07141 08159 05891 08019 08045 07852  0.7736
5,5,6 02984 03276 02862 01211 01199  0.1059  0.1211
50,50,50 5,5,8 06130 06734 05938 05988 05872 05921  0.5997
5,5,10 0.6634 07277 06399 08953 08795 09189  0.8963
5,5,6 01163  0.1323 01123 01411 01511  0.1432  0.1505
40,50,60 5,5,8 04950 05549 04724 06407 06591  0.6599  0.6712
5,5,10 06630 07370 06277 0909 09228 09335 09315
5,5,6 01498 01752 01097 01713 01814 01611  0.1602
25,50,75 5,5,8 0.6815 07300 05755 07099 07266  0.6785  0.6674
5,5,10 0.8951 09605  0.8291 09486 09433  0.8874  0.8828

of the PB test. In the results given in Tables 6 and 7, it is
observed that the CAT1, CAT2, and CAT4 are most pow-
erful in balanced and unbalanced designs, the GP and PB
test have similar power in unbalanced designs. A signifi-
cant increase in the power of CAT3 is observed and it is one
of the most powerful tests when the sample size increases.
However, the increasing of scale parameter value decreases
the power of the GP test, the PB, CAT3, and CAT4 main-
tain their performance. Results k = 5 given in Tables 8 and
9 indicate that the CAT1 and CAT?3 are the most powerful,
also the GP and PB tests are most powerful in only unbal-
anced designs. When the sample size increases and the

design type is unbalanced, the performance of the CAT1
and CAT3 decreases, and the GPV and PB tests main-
tain their powers. Despite the increasing scale parameter
value, the GP, PB, and CAT3 maintain their powers. As a
result, CATs outperform others in balanced design, the PB
test is the most powerful in unbalanced design. When the
k increases, the power of the GP test is competitive with
the powerful tests. The PB and CAT1 tests maintain their
power against the increase in the value of the scale parame-

ter.



82

Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 73-87, February, 2025

Table 6. The penalized power for lower scale parameters and k = 4

n, a; b, GP PB FA CATI  CAT2 CAT3  CAT4
2,2,2,3 0.0096 0.0135 0.0028 0.0864 0.0847 0.0293 0.0780
10,10,10,10 2,2,2,4 0.0170 0.0315 0.0036 0.0990 0.0942 0.0372 0.0928
2,2,2,5 0.0229 0.0457 0.0057 0.0982 0.0933 0.0356 0.0854
2,2,2,3 0.0243 0.0375 0.0043 0.0757 0.0859 0.0250 0.0726
6,8,12,14 2,2,2,4 0.0678 0.0804 0.0072 0.0765 0.0835 0.0306 0.0775
2,2,2,5 0.1445 0.1249 0.0079 0.0765 0.0788 0.0290 0.0618
2,2,2,3 0.0474 0.0713 0.0058 0.0678 0.0757 0.0263 0.0418
4,8,12,16 2,2,2,4 0.1468 0.1220 0.0094 0.0671 0.0772 0.0214 0.0409
2,2,2,5 0.2861 0.1978 0.0152 0.0580 0.0645 0.0214 0.0334
2,2,2,3 0.1296 0.2041 0.0919 0.1961 0.2013 0.1534 0.2023
30,30,30,30 2,2,2,4 0.4103 0.5641 0.3435 0.5505 0.5679 0.4546 0.5629
2,2,2,5 0.7006 0.8315 0.6133 0.8046 0.8259 0.7175 0.8204
2,2,2,3 0.2992 0.3359 0.1655 0.3110 0.3275 0.2626 0.2910
18,24,36,42 2,2,2,4 1,1,1,1 0.7183 0.7578 0.5341 0.7800 0.7953 0.6917 0.7427
2,2,2,5 0.8200 0.8845 0.7325 0.9620 0.9512 0.8673 09118
2,2,2,3 0.3414 0.3565 0.1578 0.3349 0.3465 0.3069 0.2990
12,24,36,48 2,2,2,4 0.7551 0.8169 0.5513 0.7727 0.7783 0.7703 0.7693
2,2,2,5 0.8385 0.9723 0.7846 0.9372 0.9141 0.9565 0.9614
2,2,2,3 0.3063 0.3813 0.2713 0.3670 0.3719 0.3693 0.3679
50,50,50, 50 2,2,2,4 0.7276 0.8080 0.6941 0.8271 0.8350 0.8832 0.8289
2,2,2,5 0.8350 0.8891 0.8154 0.9083 0.9160 0.9842 0.9074
2,2,2,3 0.5616 0.5568 0.4221 0.5153 0.5376 0.5488 0.5367
30,40,60,70 2,2,2,4 0.9058 0.9325 0.8639 0.9062 0.9179 0.9509 0.9251
2,2,2,5 0.9206 0.9525 0.8971 0.9285 0.9366 0.9713 0.9449
2,2,2,3 0.6425 0.6050 0.4171 0.5834 0.5982 0.5422 0.5376
20,40,60,80 2,2,2,4 0.9317 0.9720 0.8048 0.9600 0.9629 0.8994 0.9071
2,2,2,5 0.9449 1 0.8383 0.9806 0.9806 0.9206 0.9285
REAL DATA APPLICATION weeks in antidote. It is observed that the estimates of the

In this application, the effect of antidotes developed
against the poisons was tested on mice. The data set poi-
sons obtained from [27], and available in boot package in
R, the response times of the mice against the treatment of
antidotes A, B, C, and D were made. Parameter estimates
and summary statistics (in week) are given in Table 10.

According to the summary statistics given in Table 10,
antidote treatment is given to mice. The mean duration
of remission is 0.33 weeks in antidote A, 0.71 in antidote
B, and antidote C hence 0.41 weeks in antidote and 0.56

scale parameters are different. The data set is an example of
a small sample balanced design. The distribution of remis-
sion times to treatment is given in Figure 1.

The distribution of the remission times of the poisons
are right skewed and not normal according to the p-value
of the Shapiro-Wilk Normality test is 0.0001 at the signif-
icance level is 0.05. Thus, the proposed tests for two-pa-
rameter exponential distribution should be used because
of the distribution of data. In this example, the aim is to
test whether antidotes have equal effects on the duration
of remission. Thus, the most effective treatment can be
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Table 7. The penalized power for higher scale parameters and k = 4

n, a; b, GP PB FA CAT1  CAT2  CAT3  CAT4
5,5,5,6 0.0066 0.0090 0.0021 0.0758 0.0709 0.0241 0.0703
10,10,10,10 5,5,5,8 0.0125 0.0172 0.0028 0.0977 0.0893 0.0342 0.0901
5,5,5,10 0.0170 0.0315 0.0036 0.1077 0.1003 0.0365 0.0990
5,5,5,6 0.0118 0.0187 0.0029 0.0684 0.0748 0.0236 0.0566
6,8,12,14 5,5,5,8 0.0317 0.0492 0.0043 0.0780 0.0929 0.0244 0.0687
5,5,5,10 0.0678 0.0804 0.0072 0.0780 0.0863 0.0299 0.0733
5,5,5,6 0.0163 0.0463 0.0044 0.0664 0.0716 0.0279 0.0383
4,8,12,16 5,5,5,8 0.0667 0.0820 0.0065 0.0640 0.0753 0.0270 0.0429
5,5,5,10 0.1468 0.1220 0.0094 0.0679 0.0768 0.0270 0.0402
5,5,5,6 0.0397 0.0737 0.0281 0.0702 0.0718 0.0543 0.0728
30,30,30,30 5,5,5,8 0.1745 0.2684 0.1299 0.2800 0.2873 0.2090 0.2816
5,5,5,10 0.4103 0.5641 0.3435 0.5601 0.5679 0.4584 0.5679
5,5,5,6 0.0683 0.0960 0.0351 0.1089 0.1127 0.0886 0.1002
18,24,36,42 5,5,5,8 1,1,1,1 0.3983 0.4463 0.2280 0.3951 0.4215 0.3394 0.3846
5,5,5,10 0.7183 0.7578 0.5341 0.7723 0.7877 0.6701 0.7427
5,5,5,6 0.0783 0.1109 0.0453 0.1049 0.1200 0.0945 0.0942
12,24,36,48 5,5,5,8 0.4444 0.4624 0.2325 0.4233 0.4384 0.3846 0.3973
5,5,5,10 0.7551 0.8169 0.5513 0.7521 0.7852 0.7351 0.7547
5,5,5,6 0.0621 0.0873 0.0526 0.1178 0.1167 0.0966 0.1158
50,50,50, 50 5,5,5,8 0.4137 0.5060 0.3748 0.5347 0.5276 0.4707 0.5287
5,5,5,10 0.7276 0.8080 0.6971 0.8971 0.8894 0.8282 0.8991
5,5,5,6 0.1464 0.1621 0.1069 0.1451 0.1545 0.1346 0.1424
30,40,60,70 5,5,5,8 0.6867 0.6817 0.5649 0.6776 0.7040 0.6406 0.6678
5,5,5,10 0.9058 0.9325 0.8639 0.9570 0.9703 0.9090 0.9420
5,5,5,6 0.1446 0.1570 0.0831 0.1602 0.1575 0.1545 0.1471
20,40,60,80 5,5,5,8 0.7644 0.7310 0.5379 0.7046 0.6790 0.7278 0.7148
5,5,5,10 0.9317 0.9720 0.8048 0.9334 0.8891 0.9674 0.9580
provided by determining the antidotes or antidotes to be CONCLUSION

used. The tests are considered in this study implemented
in doex package as well as the other ANOVA methods
under non-normality [28, 29, 30] and used for testing null
hypothesis and the p-values obtained are given in Table 11.

The null hypothesis is rejected at the 0.05 significance
level according to the p-value results obtained from all tests
except the FA test from the tests given in the table above.
Thus, it is concluded that the duration of remission of anti-

dotes is not equal.

Based on the simulation results and the application to
a real dataset, several conclusions can be drawn regarding
the performance of the proposed tests and their applica-
bility in practical scenarios. In both balanced and unbal-
anced designs, CAT1 emerges as the most powerful test,
outperforming others. The PB test, while generally pow-
erful, exhibits its highest power in more unbalanced
designs, showcasing its suitability for specific scenarios.
As the sample size increases, CAT4 becomes more power-
ful in both balanced and unbalanced designs, with CAT2



84

Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 73-87, February, 2025

Table 8. The penalized power for lower scale parameters and k = 5

n; a; b, GP PB FA CAT1 CAT2 CAT3 CAT4
22,223 0.0065 00170  0.0014 00815 00170  0.0744  0.0576
10,10,10,10,10 22,224 0.0123 00280  0.0029 00969  0.0216 00849  0.0685
22,225 0.0210  0.0383 00036 01041 00208 0.0791  0.0736
22,223 0.0204 00322 00064 00753 00213 00624  0.0533
6,8,10,12,14 22,224 0.0430 00605  0.0078 00844 00190  0.0713  0.0597
2,2,2,2,5 0.0955 00951  0.0092 00753  0.0134 00525  0.0533
22,223 0.0458 00756  0.0119 00779  0.0283  0.0438  0.0551
4,6,10,14,16 22,224 01288  0.1266 00157 00765 00250  0.0438  0.0541
2,2,2,2,5 02616  0.1587 00171 00628 00200  0.0338  0.0444
22,223 0.0905  0.1564  0.0618  0.1991  0.1363 02049  0.1408
30,30,30,30,30 22,224 03139 04552 02329 05206 03751 05226  0.3681
2,2,2,2,5 05741 07239 04741 07557  0.5960  0.7698  0.5343
22,223 03062 03061 01511 02785 02504 02726  0.1970
18,24,30,36,42 22,224 L,1,1,1,1 07292 07323 04736 07112 06699 07325  0.5029
2,2,2,2,5 0.8738 09153 07201  0.8913  0.8825 09316  0.6303
2,2,2,2,3 03761 03186 01560 03228 02193 02272  0.2282
12,18,30,42,48 2,2,2,2,4 0.8079 07848 04793 07713  0.6040  0.6203  0.5454
2,2,2,2,5 09074 09480 07422 09545 08121  0.8146  0.6749
2,2,2,2,3 02688 03578 02239 03885 03269 03875  0.2747
50,50,50, 50,50 2,2,2,2,4 07091  0.8308  0.6578  0.8635 07705  0.8654  0.6106
2,2,2,2,5 0.8384 09300  0.8038 09625  0.8881 09635  0.6806
22,223 05460 04630 03871 05510 04817 05138  0.3896
30,40,50,60,70 2,2,2,2,4 09160  0.8408  0.8544 09730  0.8800  0.9353  0.6880
2,2,2,2,5 09356 0.8686  0.9092 09980 09035 09603  0.7057
2,2,2,2,3 0.6406 05485 03739 05283 04802 04702  0.3726
20,30,50,70,80 22,224 09210 09372 07706 09081  0.8695  0.8636  0.6421
22,22, 09285 09613 08103 09266  0.8891  0.8821  0.6552

also demonstrating increased power, particularly in more
unbalanced designs. However, it's noteworthy that the
power of the PB test decreases with an increase in the scale
parameter value.

Considering the results for various scenarios and design
types, CAT1, CAT2, and CAT4 consistently prove to be the
most powerful tests, while GP and PB tests demonstrate
similar power in unbalanced designs. CAT3 exhibits a sig-
nificant increase in power with an increase in the sample
size, becoming one of the most powerful tests. Notably, GP’s
power decreases with an increase in the scale parameter

value, whereas PB, CAT3, and \textbf{ CAT4} maintain
their performance.

For the case when k = 5, CAT1 and CAT3 emerge as
the most powerful tests, with GP and PB being particularly
powerful in unbalanced designs. With an increase in sample
size and unbalanced design, the power of CAT1 and CAT3
decreases, but GP and PB tests maintain their effective-
ness. Remarkably, despite an increase in the scale param-
eter value, GP, PB, and CAT3 maintain their power. CATs
consistently outperform other tests in balanced designs,
while the PB test stands out as the most powerful test in
unbalanced designs. As k increases, GP’s power competes
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Table 9. The penalized power for higher scale parameters and k = 5

n, a; b, GP PB FA CAT1 CAT2 CAT3 CAT4
5,5,5,5,6 0.0036  0.0088  0.0014  0.0625  0.0147  0.0553  0.0442

10,10,10,10,10 5,5,5,5,8 0.0080  0.0177  0.0021  0.0869  0.0193  0.0839  0.0615
5,5,5,5,10 0.0123  0.0280  0.0029  0.0969  0.0216  0.0849  0.0685
5,5,5,5,6 0.0066  0.0212  0.0036 00662  0.0182  0.0574  0.0468

6,8,10,12,14 5,5,5,5,8 0.0226  0.0401  0.0064 00778  0.0213  0.0634  0.0550
5,5,5,5,10 0.0430  0.0605  0.0078  0.0844  0.0190  0.0713  0.0597
5,5,5,5,6 0.0248  0.0539  0.0089  0.0736  0.0300  0.0402  0.0521

4,6,10,14,16 5,5,5,5,8 0.0636  0.0841  0.0127  0.0808  0.0300  0.0466  0.0572
5,5,5,5,10 0.1288  0.1266  0.0157  0.0765  0.0250  0.0438  0.0541
5,5,5,5,6 0.0280  0.0530  0.0204 0.0728  0.0561  0.0765  0.0515

30,30,30,30,30 5,5,5,5,8 0201 02024  0.0087 02574  0.1782  0.2657  0.1820
5,5,5,5,10 03139 04552 02329 05206 03751  0.5226  0.3681
5,5,5,5,6 00727  0.1106  0.0425  0.0975  0.0841  0.0951  0.0689

18,24,30,36,42 5,5,5,5,8 I,I,1,1,1 04050 04014 02107 03630 03184 03716  0.2567
5,5,5,5,10 07292 07323 04736 07112 0.6699 07325  0.5029
5,5,5,5,6 0.1050  0.1166  0.0449  0.1059  0.0679  0.0708  0.0749

12,18,30,42,48 5,5,5,5,8 04957  0.4089 02009 04198 02916 03032  0.2969
5,5,5,5,10 0.8079  0.7848  0.4793  0.7713  0.6040  0.6203  0.5454
5,5,5,5,6 00625  0.0927  0.0527 0.1020 0.0826  0.1010  0.0721

50,50,50, 50,50 5,5,5,5,8 03651  0.4730  0.3188 05012  0.4328  0.5090  0.3544
5,5,5,5,10 07091  0.8308  0.6578  0.8635  0.7705  0.8654  0.6106
5,5,5,5,6 01264  0.1271  0.0895  0.1290  0.1059  0.1174  0.0912

30,40,50,60,70 5,5,5,5,8 06715 05762 05121  0.6860  0.6066  0.6563  0.4851
5,5,5,5,10 09160  0.8408  0.8544 09730  0.8800  0.9353  0.6880
5,5,5,5,6 0.1569  0.1453  0.0819  0.1337  0.1167  0.1131  0.0945

20,30,50,70,80 5,5,5,5,8 07614  0.6909 04826  0.6629  0.6076  0.6028  0.4688
5,5,5,5,10 09210 09372 07706 09081  0.8695  0.8636  0.6421

Table 10. The summary statistics of the data Table 11. The results of the tests

Statistics A B C D Test p-value

n 12 12 12 12 GP 0.0475%

a 0.15 0.42 0.19 0.26 PB 0.0205*

b, 018 029 0.22 030 A 0.0630

R CATI1 0.0032**

I, 0.33 0.71 0.41 0.56 CATS 0.0038

CAT3 0.0077**
CAT4 0.0036**

*significance at « = 0.05, **significance at a = 0.01
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Poison

Figure 1. The PDFs of remission times of the poisons.

with other powerful tests. Both PB and CAT1 tests main-
tain their power against an increase in the scale parameter
value. In conclusion, the proposed computational approach
tests, particularly CAT1 and PB, demonstrate robust per-
formance in various simulated scenarios and a real-world
application involving antidote treatment on mice. These
findings highlight the efficacy of the proposed tests in han-
dling skewed distributions, emphasizing their potential in
addressing Behrens-Fisher-type problems in non-normal
settings.
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