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ABSTRACT

This study examines the free vibration and buckling behavior of functionally graded (FG) 
sandwich beams supported by a Winkler-Pasternak elastic foundation, utilizing a quasi-3D 
deformation theory. The material properties of the FG sandwich beams are modeled to vary 
continuously through the thickness according to a power-law distribution. Using Hamilton’s 
principle, the governing equations of motion are derived. Analytical solutions are obtained for 
simply supported FG sandwich beams with homogeneous cores by employing Navier’s meth-
od. The accuracy of the proposed model is demonstrated by comparing the current results 
with the higher-order deformation theories-based solutions available in literature. A compre-
hensive parametric study is also carried out to explore the effect of the skin-core-skin thick-
ness ratio, the power-law index, beam span-to-depth ratio, normal strain, core material, and 
elastic foundation on fundamental natural frequencies and critical buckling loads.
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INTRODUCTION

The necessity to discover or invent new materials has 
significantly increased with the advancement of knowledge 
and technology, along with the evolution of materials from 
monolithic to the emergence of advanced composite mate-
rials. A composite material is a type of advanced material 
consisting of two or more different materials with signifi-
cantly distinct properties that benefit each part’s superior 
characteristics [1]. 

Functionally Graded Materials (FGMs) represent a 
class of advanced composite materials distinguished by 
their gradual variation in properties across a specific direc-
tion. Unlike traditional composites, FGMs eliminate dis-
tinct boundaries between constituent regions, replacing 
them with a smooth gradient transition [2]. This unique 
feature provides FGMs with a combination of the desir-
able properties of their components, such as thermal resis-
tance, wear resistance, and corrosion resistance of ceramics, 
along with the toughness and mechanical strength of met-
als. Commonly composed of ceramic and metallic phases, 

https://sigma.yildiz.edu.tr
https://orcid.org/0009-0008-9872-0693
https://orcid.org/0000-0001-5941-031X
https://orcid.org/0000-0003-1392-4483
http://creativecommons.org/licenses/by-nc/4.0/


Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 47−61, February, 202548

FGMs are particularly suitable for high-temperature con-
ditions and precision-demanding applications [3]. FGMs 
are employed in various structural forms, including beams, 
plates, and shells, across diverse engineering sectors such 
as aerospace, automotive, and civil engineering, offering 
enhanced durability and performance.

Over the past few decades, FG sandwich beams have 
been extensively studied to emphasize their behaviors, 
according to the recent reviews by Sayyad and Ghugal [4] 
and Aman et al. [5]. Birman and Kardomatea [6] presented 
an extensive review of the theoretical frameworks used for 
analyzing sandwich structures, which are primarily catego-
rized into classical beam theory, first-order shear deforma-
tion theory, and higher-order shear deformation theories. 
The classical beam theory (CBT), also known as the Euler-
Bernoulli beam theory, represents the most straightforward 
approach to beam analysis [7]. This theory has been widely 
adopted by researchers to investigate the free vibration, 
buckling, and bending behavior of FG beams, as docu-
mented in numerous studies [8–15]. Despite its simplicity, 
CBT does not account for transverse shear deformation, 
making it applicable only to slender beams.

The first-order shear deformation theory (FSDT), 
introduced by Timoshenko in 1921, addresses the limita-
tions of classical beam theory by incorporating the influ-
ence of shear deformation. This enhancement enables 
FSDT to deliver more accurate predictions for thick beams, 
where the assumptions of classical beam theory are insuf-
ficient. Many investigations have employed the FSDT to 
explore the dynamic, buckling, and static behaviors of FG 
beams, as documented in various research works [16–22]. 
Kahya and Turan [23] developed a finite element (FE) 
model for the buckling and vibration analysis of FG beams 
using FSDT. Turan et al. [24] employed the Ritz method, 
finite element analysis (FE), and artificial neural networks 
(ANNs) based on the first-order shear deformation theory 
(FSDT) to study the free vibration and buckling behavior 
of FG porous beams under different boundary conditions. 
Additionally, Turan and Kahya analyzed the free vibration 
and buckling characteristics of FG sandwich beams, includ-
ing those with homogeneous ceramic cores and FG cores, 
using the Navier method in conjunction with FSDT [25]. It 
is worth noting that FSDT requires appropriate shear cor-
rection factors to accurately capture the effects of transverse 
shear deformation.

Higher-order shear deformation theories (HSDTs) 
have been developed to eliminate the need for shear cor-
rection factors while accurately accounting for transverse 
shear deformation. These theories utilize polynomial or 
non-polynomial shape functions to describe the displace-
ment field [26–34] Reddy [35] introduced a third-or-
der polynomial shear deformation theory for analyzing 
isotropic and anisotropic composite structures. Sayyad 
and Ghugal [36] proposed a modified exponential shear 
deformation theory for studying the free vibration, buck-
ling, and bending behaviors of exponential FG beams 

under various boundary conditions. Avcar et al. [37] 
applied HSDT to examine the natural frequencies of sig-
moid FG sandwich beams. Ramteke et al. [38] utilized 
finite element (FE) solutions based on HSDT for the static 
analysis of FG structures with variable grading patterns 
and porosity effects. Derikvand et al. [39] investigated 
the buckling behavior of FG sandwich beams with porous 
ceramic cores using third-order shear deformation theory. 
Ramteke and Panda [40] explored the free vibration fre-
quencies of multi-directional FG structures, considering 
the effects of variable grading and porosity distributions 
with HSDT. Nguyen et al. [41] introduced a hyperbolic 
HSDT for evaluating the buckling and free vibration char-
acteristics of isotropic and FG sandwich beams under 
various boundary conditions. Vo et al. [42] proposed an 
FE model based on a refined parabolic shear deformation 
theory for analyzing the vibration and buckling properties 
of FG sandwich beams.

Quasi-3D theories have been introduced as an exten-
sion of HSDTs to better capture the behavior of FG sand-
wich beams, particularly by incorporating the effects 
of transverse normal stress. These theories account for 
thickness-stretching effects in the transverse displacement 
through higher-order shear shape functions, enabling more 
precise predictions. Sayyad and Ghumare [43] developed 
analytical solutions for bending and buckling analysis of FG 
beams using a fifth-order shear and normal deformation 
theory. Bennai et al. [44] proposed a novel higher-order 
shear and normal deformation theory for studying the free 
vibration and buckling of FG sandwich beams under vari-
ous boundary conditions. Sayyad and Shinde [45] applied 
a quasi-3D polynomial shear and normal deformation the-
ory to analyze the bending behavior of laminated compos-
ite and FG sandwich beams. Nguyen et al. [46] introduced 
a Ritz-based quasi-3D solution for the free vibration and 
buckling analysis of FG sandwich beams under diverse 
boundary conditions. Karamanli and Aydogdu [47] utilized 
the quasi-3D theory in conjunction with the Ritz method 
to investigate the free vibration and buckling character-
istics of laminated composite and sandwich microbeams 
with arbitrary boundary conditions. Karamanli Karamanli 
[48] examined the free vibration and buckling behaviors of 
two-directional FG beams using the Ritz method and qua-
si-3D theory. Vo et al. [49,50] applied a quasi-3D theory 
for the buckling and free vibration analysis of FG sand-
wich beams using both finite element (FEM) and Navier 
methods. Osofero et al. [51] developed Navier-based solu-
tions for bending, buckling, and free vibration analyses of 
FG sandwich beams employing non-polynomial quasi-3D 
theories.

Various models have been developed to describe the 
interaction between beams and elastic foundations, with 
the Winkler and Pasternak models being among the most 
commonly used. The Winkler model simplifies the foun-
dation as a series of independent vertical springs [52], 
assuming that the foundation behaves elastically, and 
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the beam’s deflection is proportional to the applied load. 
The Pasternak model enhances this by introducing addi-
tional shear springs to account for the shear interaction 
between adjacent supports [53], enabling the founda-
tion to exhibit non-linear behavior and coupling effects 
between vertical and horizontal deformations. Thi [54] 
conducted bending, buckling, and free vibration analyses 
of FG sandwich curved beams on Pasternak foundations 
using an analytical method and FSDT. Zenkour et al. [55] 
performed the buckling analysis of size-dependent FG 
nanobeams on a two-parameter elastic foundation via 
third-order shear deformation theory. Mohammed et al. 
[56] investigated the bending and buckling behaviors of 
FG Euler-Bernoulli beams resting on Winkler-Pasternak 
foundations. 

Songsuwan et al. [57] studied the free vibration and 
dynamic response of FG sandwich Timoshenko beams 
subjected to a moving harmonic load on an elastic foun-
dation. Hung and Truong [58] analyzed the free vibration 
of sandwich beams with FG porous cores supported by a 
Winkler foundation, using different shear deformation 
theories. Fahsi et al. [59] proposed a refined quasi-3D 
theory for free vibration, bending, and buckling analyses 
of FG porous beams on elastic foundations. Atmane et 
al. [60] extended quasi-3D theory to evaluate the effects 
of porosity on the vibration, bending, and buckling 
behavior of FG beams resting on a two-parameter elastic 
foundation.

The review of existing literature highlights that most 
studies focus on single-layered FG beams and shear defor-
mation theories. To the best of the authors’ knowledge, 
no research has specifically addressed the effects of elastic 
foundations on the free vibration and buckling behaviors of 
FG sandwich beams while accounting for both shear and 
normal deformations. Moreover, there is a notable gap in 
studies exploring the free vibration and buckling character-
istics of FG sandwich beams with soft cores using higher-or-
der shear and normal deformation theories. To address this 
gap, the primary objective of this paper is to analyze the free 
vibration and buckling behaviors of symmetric FG sand-
wich beams with homogeneous cores (both hardcore and 
softcore) resting on a two-parameter Winkler-Pasternak 
elastic foundation, employing a quasi-3D theory. This work 
also aims to provide benchmark results for the fundamen-
tal natural frequencies and critical buckling loads of FG 
sandwich beams with soft cores. The material properties of 
the beams are assumed to vary continuously through the 
thickness following a power-law distribution. Analytical 
solutions for simply supported FG sandwich beams are 
derived using Navier’s method. Extensive numerical studies 
have been conducted, and the nondimensional results are 
validated by comparison with other higher-order theories 
reported in the literature to confirm the accuracy and con-
vergence of the proposed model. Furthermore, a compre-
hensive parametric analysis is performed to examine the 
influence of factors such as the skin-core-skin thickness 

ratio, power-law index, span-to-depth ratio, normal strain, 
and elastic foundation parameters on the fundamental nat-
ural frequencies and critical buckling loads of FG sandwich 
beams.

PROBLEM

Geometrical Configuration 
Consider a three-layered FG sandwich beam, where 

the face layers are made of a mixture of ceramic and 
metal, and the core is an isotropic homogeneous material, 
as depicted in Figure 1. The beam has a length L and the 
overall thickness h and width b, with the width normalized 
to unity. The top and bottom face layers are positioned at z 
= ±h/2 The beam is assumed to be supported by a two-pa-
rameter elastic foundation, which includes Winkler and 
Pasternak’s shear layer springs with constants kw and kp, 
respectively. As shown in Figure 1, the homogeneous 
core can either be ceramic (hardcore) or metal (softcore). 
The face layers of the first type are graded from metal to 
ceramic, while in the second type, they are graded from 
ceramic to metal.

Material Properties
The material properties of FG sandwich beams are dis-

tributed progressively and smoothly across the thickness 
direction, following a power-law variation:

  
(1)

for homogeneous hardcore, and 

  
(2)

for homogeneous softcore. In Eqs. (1) and (2), E(z) is 
the modulus of elasticity and ρ(z) is the density of the mate-
rial. Here, the subscripts m and c represent the metallic and 
ceramic components, respectively. The volume fraction of 
the FG sandwich beam is described by a power-law func-
tion along the thickness direction, defined as: 

  

(3)

where Vc(z) is the volume fraction p is the power-law 
index. 
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THEORETICAL FORMULATION

Kinematics
The displacement field of the present quasi-3D theory is 

given as follows [46]: 

  
(4)

where u and w denote the displacements of a generic 
point within the FG sandwich beam along the x- and z- 
-axes, respectively. The variables u0 and w0 represent the 
displacements at the beam’s mid-line, while ψx and ψz cor-
respond to the shear slopes associated with transverse shear 
and normal deformations. Here, g(z) = f '(z), and the shear 
shape function f(z) is chosen as follows [35]:

  (5)

The strain field is derived using the strain-displacement 
relationships from elasticity theory and can be written as:

  (6)

where

  (7)

The stress-strain relationship of the FG sandwich beam 
is given as the following:

  
(8)

where

  (9)

where v is Poisson’s ratio.

Equation of Motion
The governing differential equations of the proposed 

theory are derived by applying Hamilton’s principle, which 
can be expressed as follows: 

  
(10)

where the symbol δ denotes the variational operator 
and U, UF, V, and K represent the strain energy, additional 
strain energy induced by the elastic foundations, potential 
energy, and kinetic energy, respectively. The variation of the 
strain energy of the beam can be expressed as follows:

Figure 1. Geometry and dimensions of FG sandwich beam resting on two-parameter elastic foundation



Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 47−61, February, 2025 51

  

(11)

where  and  are force and moment 
resultants defined by

  

(12)

Substituting Eqs. (4), (5), (7), and (8) into Eq. (12) yields 

  

(13)

where

  

(14)

The variation of the kinetic energy can be defined as

  

(15)

where 

  

(16)

The variation of potential energy due to external axial 
force can be written as

  
(17)

where N0 is the axial force.
The variation of strain energy induced by the elastic 

foundation can be expressed as

  
(18)

where kw and kp are the constants of Winkler and shear 
layer springs.

Substituting Eqs. (11), (15), (17), and (18) into Eq. (10), 
performing integration by parts, collecting the coefficients 
of the unknown displacement variables (δu0, δw0, δψx, δψz), 
and setting them equal to zero, the following equations of 
motion can be obtained:

  

(19)

Analytical Solution
Analytical solutions for free vibration and buckling 

analysis of simply supported FG beams on an elastic foun-
dation are derived using Navier’s method. In this approach, 
the unknown displacement variables are expressed as [45]:

  

(20)



Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 47−61, February, 202552

where Um, Wm, ψxm and ψzm are unknown coefficients, 
ω refers to the natural frequency of the beam, α = mπ/L is a 
nondimensional parameter, m is a positive integer, which is 
taken as m = 1, and √i = -1 represents the imaginary unit. 
Substituting Eqs. (20) into Eqs. (19), the following matrix 
equations are obtained:

  (21)

for free vibration and

  (22)

For buckling. Here, K denotes the stiffness matrix, M 
represents the mass matrix, G is the geometric matrix, and 
Δ is the vector of unknown coefficients. Detailed expres-
sions for the components of these matrices are provided in 
the Appendix. 

NUMERICAL RESULTS AND DISCUSSION

This section provides numerical examples and discusses 
their results to validate the accuracy of the proposed study. 
It also examines the influence of the elastic foundation on 
the fundamental natural frequencies and critical buckling 
loads of FG sandwich beams. The FG layers of the beams 
are assumed to consist of a mixture of Alumina (Al2O3) 
and Aluminum (Al),), while the core layer is modeled as 
a homogeneous material, considering both hardcore and 
softcore configurations. A comprehensive parametric study 
is conducted to analyze the effects of the power-law index, 
span-to-depth ratio, skin-to-core thickness ratio, and elas-
tic foundation parameters on the free vibration and buck-
ling behaviors. The material properties utilized in this study 
are as follows: Ec = 380 GPa, ρc = 3960 kg/m3, ν = 0.3 for 
ceramic material and Em = 70 GPa, ρm = 2702 kg/m3, v = 
0.3 for metal material. For simplicity, the fundamental nat-
ural frequency, critical buckling load, and elastic founda-
tion parameters are, respectively, defined in the following 
non-dimensional forms: 

  
(23)

Effect of the Power-Law Index and Skin-Core-Skin 
Thickness Ratio

To validate the accuracy of the proposed quasi-3D the-
ory, free vibration and buckling analyses of various types 
of simply supported FG sandwich beams without elastic 
foundations are conducted. Tables 1–4 compare the non-
dimensional fundamental natural frequencies and critical 
buckling loads of FG sandwich beams with homogeneous 
hardcore and softcore configurations. The analysis con-
siders four symmetric FG sandwich beam configurations 
with different skin-to-core thickness ratios: 1-0-1, 2-1-2, 

1-1-1, and 1-2-1, for span-to-depth ratios of L/h = 5 and 
20. The results are benchmarked against existing stud-
ies using HSDT [42] and quasi-3D theories [46,49]. The 
findings indicate excellent agreement between the current 
theory and previous studies that account for transverse 
normal deformation effects. Notably, while the displace-
ment field in the present theory aligns with the quasi-3D 
approach in [46], the results more closely match those 
in [49], which employ polynomial shape functions. This 
highlights the improved accuracy of polynomial shape 
functions in capturing transverse shear and normal defor-
mation effects. Existing quasi-3D studies have primar-
ily focused on FG sandwich beams with ceramic cores 
(homogeneous hardcore), examining only their free vibra-
tion and buckling characteristics. However, no studies in 
the literature provide results for FG sandwich beams with 
metal cores (homogeneous softcore) using quasi-3D the-
ory. Thus, the present results for softcore configurations 
are validated against HSDT and also offer benchmark 
data. The slight deviations from HSDT can be attributed 
to the neglect of transverse normal strain in HSDT, which, 
when considered, leads to higher predictions for natural 
frequencies and buckling loads. This underscores the 
importance of accounting for transverse normal strain 
effects in FG sandwich beams. The data also reveal that 
as the power-law index p increases, the fundamental natu-
ral frequencies and critical buckling loads decrease in FG 
sandwich beams with homogeneous hardcore but increase 
in those with homogeneous softcore. This behavior is 
explained by the material composition: a higher p value 
indicates a greater metal fraction, making hardcore beams 
more flexible. In contrast, for softcore configurations, a 
higher p value corresponds to a larger ceramic fraction, 
resulting in increased stiffness and rigidity. These obser-
vations emphasize the critical role of the power-law index 
in determining the mechanical performance of FG sand-
wich beams. The choice of p directly influences the free 
vibration and buckling responses, highlighting its impor-
tance in tailoring FG sandwich beams for specific engi-
neering applications.

Figures 2 and 3 demonstrate the influence of the pow-
er-law index and the skin-core-skin thickness ratio on the 
fundamental natural frequencies and critical buckling loads 
for a span-to-depth ratio of L/h = 5. The results reveal that 
for FG sandwich beams with homogeneous hardcore, the 
1-0-1 configuration yields the highest values for natural 
frequencies and buckling loads, while the 1-2-1 config-
uration exhibits the lowest. Conversely, for beams with 
homogeneous softcore, the trends are reversed, with the 
1-2-1 configuration achieving the highest values and the 
1-0-1 configuration the lowest. As the power-law index 
increases and the core thickness decreases, the fundamen-
tal natural frequencies and critical buckling loads decline 
for FG sandwich beams with homogeneous hardcore, 
whereas they increase for beams with homogeneous soft-
core. This behavior is attributed to the material-dependent 
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Table 1. Nondimensional fundamental natural frequencies of simply supported FG sandwich beams with homogeneous 
hardcore

p Theory L/h = 5 L/h = 20

1-0-1 2-1-2 1-1-1 1-2-1 1-0-1 2-1-2 1-1-1 1-2-1
0 Present 5.1616 5.1616 5.1616 5.1616 5.4610 5.4610 5.4610 5.4610

HSDT [42] 5.1528 5.1528 5.1528 5.1528 5.4603 5.4603 5.4603 5.4603
Quasi-3D [46] 5.1620 5.1620 5.1620 5.1620 5.4611 5.4611 5.4611 5.4611
Quasi-3D [49] 5.1618 5.1618 5.1618 5.1618 5.4610 5.4610 5.4610 5.4610

0.5 Present 4.1342 4.2427 4.3381 4.4879 4.3153 4.4295 4.5330 4.6985
HSDT [42] 4.1268 4.2351 4.3303 4.4798 4.3148 4.4290 4.5324 4.6979
Quasi-3D [46] 4.1329 4.2417 4.3373 4.4874 4.3137 4.4284 4.5321 4.6979
Quasi-3D [49] 4.1344 4.2429 4.3383 4.4881 4.3153 4.4296 4.5330 4.6985

1 Present 3.5801 3.7367 3.8828 4.1183 3.7151 3.8773 4.0333 4.2895
HSDT [42] 3.5735 3.7298 3.8755 4.1105 3.7147 3.8768 4.0328 4.2889
Quasi-3D [46] 3.5804 3.7369 3.8830 4.1185 3.7153 3.8774 4.0334 4.2896
Quasi-3D [49] 3.5803 3.7369 3.883 4.1185 3.7152 3.8773 4.0333 4.2895

2 Present 3.0736 3.2425 3.4255 3.7408 3.1768 3.3469 3.5394 3.8774
HSDT [42] 3.0680 3.2365 3.4190 3.7334 3.1764 3.3465 3.5389 3.8769
Quasi-3D [46] 3.0739 3.2428 3.4258 3.7410 3.1769 3.3471 3.5395 3.8775
Quasi-3D [49] 3.0737 3.2427 3.4257 3.7410 3.1785 3.3488 3.5413 3.8793

5 Present 2.7492 2.8487 3.0236 3.3839 2.8443 2.9314 3.1115 3.4926
HSDT [42] 2.7446 2.8439 3.0181 3.3771 2.8439 2.9310 3.1111 3.4921
Quasi-3D [46] 2.7497 2.8491 3.0239 3.3840 2.8444 2.9315 3.1116 3.4927
Quasi-3D [49] 2.7493 2.8489 3.0238 3.3840 2.8443 2.9314 3.1115 3.4926

10 Present 2.6977 2.7398 2.8858 3.2421 2.8045 2.8191 2.9665 3.3411
HSDT [42] 2.6932 2.7355 2.8808 3.2356 2.8041 2.8188 2.9662 3.3406
Quasi-3D [46] 2.6982 2.7402 2.8862 3.2423 2.8046 2.8192 2.9666 3.3412
Quasi-3D [49] 2.6978 2.7400 2.8860 3.2422 2.8045 2.8191 2.9665 3.3411

Table 2. Nondimensional fundamental natural frequencies of simply supported FG sandwich beams with homogeneous 
softcore

p Theory L/h = 5 L/h = 20

1-0-1 2-1-2 1-1-1 1-2-1 1-0-1 2-1-2 1-1-1 1-2-1
0 Present 2.6819 2.6819 2.6819 2.6819 2.8375 2.8375 2.8375 2.8375

HSDT [42] 2.6773 2.6773 2.6773 2.6773 2.8371 2.8371 2.8371 2.8371
0.5 Present 4.4501 4.3115 4.1904 3.9979 4.8585 4.7466 4.6300 4.4165

HSDT [42] 4.4427 4.3046 4.1839 3.9921 4.8579 4.7460 4.6294 4.4160
1 Present 4.8612 4.7260 4.5935 4.3730 5.2997 5.2224 5.1167 4.8944

HSDT [42] 4.8525 4.7178 4.5858 4.3663 5.2990 5.2217 5.1160 4.8938
2 Present 5.1040 5.0063 4.8828 4.6536 5.5247 5.5120 5.4418 5.2452

HSDT [42] 5.0945 4.9970 4.8740 4.6459 5.5239 5.5113 5.4410 5.2445
5 Present 5.1976 5.1703 5.0799 4.8650 5.5653 5.6391 5.6250 5.4851

HSDT [42] 5.1880 5.1603 5.0703 4.8564 5.5645 5.6382 5.6242 5.4843
10 Present 5.1942 5.2066 5.1400 4.9416 5.5309 5.6460 5.6629 5.5583

HSDT [42] 5.1848 5.1966 5.1301 4.9326 5.5302 5.6452 5.6621 5.5575
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Table 3. Nondimensional critical buckling loads of simply supported FG sandwich beams with homogeneous hardcore

p Theory L/h = 5 L/h = 20

1-0-1 2-1-2 1-1-1 1-2-1 1-0-1 2-1-2 1-1-1 1-2-1

0 Present 49.5906 49.5906 49.5906 49.5906 53.3145 53.3145 53.3145 53.3145
HSDT [42] 48.5959 48.5959 48.5959 48.5959 53.2364 53.2364 53.2364 53.2364
Quasi-3D [46] 49.5970 49.5970 49.5970 49.5970 53.3175 53.3175 53.3175 53.3175
Quasi-3D [49] 49.5906 49.5906 49.5906 49.5906 49.5906 53.3145 53.3145 53.3145

0.5 Present 28.4623 30.6824 32.5698 35.5155 29.7625 32.1021 34.1379 37.3724
HSDT [42] 27.8574 30.0301 31.8784 34.7653 29.7175 32.2629 34.0862 37.3159
Quasi-3D [46] 28.4407 30.6650 32.5547 35.5032 29.7410 32.0853 34.1242 37.3626
Quasi-3D [49] 28.4624 30.6825 32.5699 35.5156 29.7626 32.1022 34.1380 41.8227

1 Present 20.0894 22.7065 25.1075 29.0755 20.7530 23.4572 25.9989 30.2774
HSDT [42] 19.6525 22.2108 24.5596 28.4447 20.7212 23.4211 25.9588 30.2307
Quasi-3D [46] 20.0899 22.7061 25.1060 29.0723 20.7541 23.4584 26.0001 30.2785
Quasi-3D [49] 20.7425 22.7065 25.1075 29.0755 20.7530 23.4572 25.9989 30.2774

2 Present 13.8838 16.2761 18.7772 23.3042 14.2190 16.6307 19.2299 24.0276
HSDT [42] 13.5801 15.9152 18.3587 22.7863 14.1973 16.6050 19.3116 23.9900
Quasi-3D [46] 13.8852 16.2761 18.7756 23.3002 14.2199 16.6317 19.2309 24.0284
Quasi-3D [49] 13.8839 16.2761 18.7772 23.3042 14.2190 16.6307 19.2299 24.0276

5 Present 10.3673 11.9301 14.0352 18.5092 10.6330 12.1068 14.2505 18.9172
HSDT [42] 10.1460 11.6676 13.7212 18.0914 10.6171 12.0883 14.2284 18.8874
Quasi-3D [46] 10.3708 11.9320 14.0352 18.5058 10.6341 12.1078 14.2515 18.9180
Quasi-3D [49] 10.3673 11.9301 14.0353 18.5092 10.6330 12.1068 14.2505 18.9172

10 Present 9.6535 10.7689 12.5393 16.7574 9.9994 10.9239 12.7014 17.0712
HSDT [42] 9.4515 10.5348 12.2605 16.3783 9.9847 10.9075 12.6819 17.0443
Quasi-3D [46] 9.6573 10.7715 12.5402 16.7550 10.0003 10.9246 12.7023 17.0723
Quasi-3D [49] 9.6535 10.7689 12.5393 16.7574 9.9995 10.9239 12.7014 17.0712

Table 4. Nondimensional critical buckling loads of simply supported FG sandwich beams with homogeneous softcore

p Theory L/h = 5 L/h = 20

1-0-1 2-1-2 1-1-1 1-2-1 1-0-1 2-1-2 1-1-1 1-2-1

0 Present 9.1351 9.1351 9.1351 9.1351 9.8211 9.8211 9.8211 9.8211
HSDT [42] 8.9519 8.9519 8.9519 8.9519 9.8067 9.8067 9.8067 9.8067

0.5 Present 28.9557 26.4203 24.4839 21.7615 33.2659 30.8982 28.8571 25.6412
HSDT [42] 28.4280 25.9503 24.054 21.3821 33.2187 30.8546 28.8167 25.6086

1 Present 36.8893 33.4917 30.7778 26.9366 42.2413 39.4682 36.8962 32.6255
HSDT [42] 36.2103 32.8974 30.2449 26.4801 42.1810 39.4124 36.8445 32.5803

2 Present 43.2667 39.5732 36.3395 31.5445 48.7919 46.2696 43.6024 38.7731
HSDT [42] 42.4501 38.8589 35.7058 31.0152 48.7215 46.2035 43.5408 38.7192

5 Present 47.5776 44.3595 41.0572 35.6386 52.4419 50.8343 48.5858 43.8252
HSDT [42] 46.6504 43.5338 40.3235 35.0357 52.3655 50.7608 48.5163 43.7637

10 Present 48.7461 45.9842 42.8470 37.3250 53.1108 52.0560 50.1623 45.6685
HSDT [42] 47.7825 45.1141 42.0693 36.6874 53.0331 51.9804 50.0902 45.604



Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 47−61, February, 2025 55

bending stiffness of the beam: for homogeneous hardcore, 
an increase in the power-law index or a reduction in core 
thickness enhances bending flexibility, reducing stiffness. 
In contrast, for homogeneous softcore, these changes lead 
to an increase in the ceramic fraction, which enhances the 
beam’s bending stiffness.

Effect of Elastic Foundation 
The influence of the elastic foundation on the free 

vibration and buckling behavior of simply supported FG 
sandwich beams is analyzed. For this purpose, free vibra-
tion and buckling analyses are performed on various 
FG sandwich beam configurations resting on a two-pa-
rameter elastic foundation. Figures 4 and 5 depict the 
variations in nondimensional fundamental natural fre-
quencies and critical buckling loads for simply supported 
FG sandwich beams with a 2-1-2 configuration, different 
power-law indices, and L/h = 10, under three foundation 

conditions: no elastic foundation, a Winkler foundation, 
and a Pasternak foundation. The results show that the 
inclusion of elastic foundation models enhances the non-
dimensional fundamental natural frequencies and critical 
buckling loads for all cases. The addition of the Winkler 
parameter (kw) provides a modest increase in these values 
due to the added stiffness and support provided by the 
Winkler foundation. In contrast, the Pasternak param-
eter (kp) significantly amplifies the fundamental natural 
frequencies and critical buckling loads by increasing the 
shear stiffness of the foundation, resulting in notable 
improvements in the beam’s free vibration and buckling 
performance. These findings highlight that the Pasternak 
parameter has a far more substantial effect on the natural 
frequencies and critical buckling loads compared to the 
Winkler parameter. This suggests that incorporating the 
Pasternak foundation model is particularly beneficial for 

Figure 2. Nondimensional fundamental natural frequen-
cies of simply supported FG sandwich beams for various 
skin-core-skin thickness ratios (L/h = 5)

Figure 3. Nondimensional critical buckling loads of simply 
supported FG sandwich beams for various skin-core-skin 
thickness ratios (L/h = 5)
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enhancing the stability and vibrational characteristics of 
FG sandwich beams.

Figures 6 and 7 illustrate the effect of the span-to-
depth ratio L/h on the fundamental natural frequencies 
and critical buckling loads of FG sandwich beams with 
homogeneous hardcore and softcore under three differ-
ent scenarios: Case 1 (ξw = 0, ξp = 0), Case 2 (ξw = 0.01, 
ξp = 0), Case 3 (ξw = 0.01, ξp = 0.01). A beam with a 1-2-1 
configuration and a power-law index of p = 2 is analyzed. 
For Case 1, the results show a slight increase in the non-
dimensional fundamental natural frequencies and criti-
cal buckling loads with increasing L/h. This behavior is 
attributed to the enhanced bending and buckling resis-
tance associated with the higher span-to-depth ratio, as 
a longer beam exhibits greater overall stiffness. In Case 
2, the introduction of spring constants from the elastic 
foundation leads to a notable increase in both natural fre-
quencies and buckling loads, demonstrating the influence 
of the Winkler parameter in enhancing beam stability and 
vibrational performance. In Case 3, the inclusion of the 

Pasternak parameter results in a dramatic rise in the non-
dimensional fundamental natural frequencies and critical 
buckling loads. This significant improvement is due to the 
additional shear stiffness provided by the Pasternak foun-
dation, which greatly enhances the overall stiffness of the 
FG sandwich beams. The observed trends indicate that 
as L/h. increases, the impact of the Pasternak parameter 
becomes increasingly pronounced. This suggests that the 
interaction between the beam and the elastic foundation 
intensifies with beam length, further emphasizing the 
importance of considering both foundation parameters, 
especially for longer beams.

Figures 8 and 9 display the variations in nondi-
mensional fundamental natural frequencies and criti-
cal buckling loads of FG sandwich beams with a 1-1-1 
configuration, homogeneous hardcore, and softcore, 
as functions of the Winkler spring constant (ξw) with 
p = 2 and L/h = 5 with varying values of the Pasternak 
shear layer parameter (ξp). These figures aim to sep-
arately assess the effects of the Winkler and Pasternak 

Figure 4. Effect of foundation parameters on nondimen-
sional fundamental natural frequencies (2-1-2, L/h = 10)

Figure 5. Effect foundation parameters on nondimensional 
critical buckling loads (2-1-2, L/h = 10)
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elastic foundation parameters. The results reveal that 
both the nondimensional fundamental natural frequen-
cies and critical buckling loads follow a linear relation-
ship with the foundation parameters. Additionally, it is 
evident that as the Pasternak parameter increases, there 
is a significant rise in the fundamental natural frequen-
cies and critical buckling loads. This enhancement can 
be attributed to the stronger shear interaction between 
the shear layer and the beam, provided by a (ξp) value, 
which in turn improves the overall stability and stiffness 
of the beam. This effect is linked to the additional lateral 
support offered by the Pasternak foundation. Therefore, 
it can be concluded that the increase in (ξp) has a more 
pronounced effect on the fundamental natural frequen-
cies and critical buckling loads than the increase in ξw. 
This highlights the significant role of shear interaction 
in influencing the dynamic and stability behaviors of FG 
sandwich beams.

CONCLUSION

In this paper, Navier-type analytical solutions for the 
free vibration and buckling analysis of FG sandwich beams 
with homogeneous hardcore and softcore, resting on a 
Winkler-Pasternak elastic foundation, are presented. The 
proposed model is based on a quasi-3D deformation the-
ory, and the governing differential equations of motion are 
derived using Hamilton’s principle. To validate the model, 
several numerical examples are considered, and the results 
are compared with those available in the literature. A com-
prehensive parametric study is conducted to investigate the 
effects of various parameters, such as the skin-core-skin 
thickness ratio, power-law index, span-to-depth ratio, nor-
mal strain, and elastic foundation parameters, on the fun-
damental natural frequencies and critical buckling loads of 
FG sandwich beams with homogeneous hardcore and soft-
core. The main findings of the study can be summarized as 
follows:

Figure 6. Variation of nondimensional fundamental natu-
ral frequencies of FG sandwich beams with the spring con-
stants and beam slenderness (1-2-1, p = 2)

Figure 7. Variation of nondimensional critical buckling 
loads of FG sandwich beams with the spring constants and 
beam slenderness (2-1-2, p = 2)
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• The proposed model provides more accurate and effi-
cient predictions for the free vibration and buckling 
responses of FG sandwich beams with homogeneous 
hardcore and softcore on a two-parameter Winkler-
Pasternak elastic foundation.

• For FG sandwich beams with homogeneous hardcore, 
the fundamental natural frequencies and critical buck-
ling loads decrease as the power-law index increases. 
Conversely, these values increase for FG sandwich 
beams with homogeneous softcore as the power-law 
index rises.

• As the span-to-depth ratio increases, the fundamental 
natural frequencies and critical buckling loads of FG 
sandwich beams with homogeneous cores also increase.

• The fundamental natural frequencies and critical buck-
ling loads of the FG sandwich beams increase signifi-
cantly with higher spring and shear constants of the 

elastic foundation, especially when the shear layer con-
stant increases.

APPENDIX

  

(A1)

Figure 8. Variation of nondimensional fundamental nat-
ural frequencies of FG sandwich beams (1-1-1) with the 
foundation parameters (L/h = 5, p = 2)

Figure 9. Variation of nondimensional critical buckling 
loads of FG sandwich beams (1-1-1) with the foundation 
parameters (L/h = 5, p = 2)
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