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ABSTRACT

In this study, The fractional random HIV/AIDS model approximate analytical solutions were 
produced using the differential transformation method. The approximate analytical solution 
of the fractional order Random HIV/AIDS model was obtained with the help of the differ-
ential transformation method. For the fractional random HIV/AIDS model, which was cre-
ated by choosing the initial conditions from the exponential, beta, and normal distributions, 
graphic simulations of the expected value, variance, and confidence intervals of the most com-
monly used probability characteristics were obtained with the help of the MATLAB package 
program. Results obtained are interpreted.
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INTRODUCTION

AIDS was first discovered in the USA in 1981. HIV 
(human immunodeficiency virus) factor causes AIDS by 
crashing the immune system in humans. The HIV virus, 
known to have emerged for the first time in 1960, was first 
seen in monkeys. In 2017, 940,000 HIV-related deaths and 
1.8 million new cases of HIV infection were detected. As 
of the year 2022, over 37.7 million individuals have been 
infected with HIV [1]. There are two different variations of 
HIV. These are HIV-1, which is common worldwide, and 
HIV-2, which is more common in African countries. HIV-1 
was first isolated in 1983 in Paris, France (Anderson, 1990). 
It is assumed that HIV-1 is transmitted to humans by a min-
imum of 4 zoonotic strains. It is estimated that this contam-
ination may have occurred in the 1930s (±20 years) in the 
light of the molecular phylogenetic biological information 

available [2]. HIV-2 isolation was done by Clavel et al. in 
1986 [3]. HIV-2 is less pathogenic than HIV-1. As a result 
of this situation, a longer prognosis is observed in the cases. 
While it is observed that immunodeficiency symptoms and 
AIDS occur later, the mother-infant transmission rate is 
much lower (2-7%) compared to HIV-1 (10-40%) [4].

HIV often compromised an individual’s immune sys-
tem, leading to the eventual development of acquired 
immune deficiency syndrome [5]. This was particularly 
true if the individual was unaware of their protection 
options and was not receiving active treatment for AIDS. 
AIDS continues to threaten our lives because no cure has 
yet been found. Thus, our greatest mathematical advantage 
in this field comes from knowing the dynamics of the epi-
demic, which is crucial [6]. In addition to understanding 
the dynamics of the epidemic, these studies also enable us 
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to manage this process more efficiently and to make predic-
tions about the disease [7].

In our study, fractional order random HIV/AIDS model 
was examined. Three distinct absolute continuous distribu-
tions were used to choose the initial conditions, and the 
probability characteristics of each were looked at. In our 
daily lives, stochastic differential equations are becoming 
more and more popular. They have applications in popu-
lation dynamics, engineering, finance, and economics [8].

Functions for the expected values and variances of 
approximate analytical solutions of random equations are 
obtained.For the remainder of this investigation, part 3 of 
the fractional random HIV/AIDS model’s solutions and 
behaviors, as well as the materials and methods from part 2 
of the study, are both explored. The conclusion is presented 
in the final section.

MATERIALS AND METHODS

The concept of a fractional derivative was first intro-
duced in the latter half of the 17th century and was devel-
oped by Leibniz and Newton. As a matter of fact, the 
concept of a fractional derivative predates that of an integer 
derivative. Due to the fact that the fractional derivative is 
really just an expanded version of the integer derivative. 
The Rieman-Liouville and Caputo definitions are the ones 
that are most frequently discussed in the literature [9].

For more than 300 years, the fractional derivative has 
drawn interest in mathematics. On this topic, scientists 
have conducted a number of investigations. Due to this cir-
cumstance, various definitions have occasionally emerged 
[10].

The fractional derivative has major advantages over 
the integer derivative in applied fields such as medicine, 
biology, and bioengineering. These advantages, which are 
supported by a number of models, not only improve the 
convenience of our daily lives but also present persuasive 
arguments for solutions to issues such as the spread of dis-
eases [11]. Fractional differential equations in mathemat-
ical models have been more and more common in recent 
years due to their advantages. However, the problem’s struc-
ture also influences the analytical solution of these equa-
tions [12].

Preliminaries
Definition 1. The Riemann-Liouville fractional deriva-

tive of order 0 < α < 1  of a function is defined as [13]

	 	
(1)

Definition 2. The Riemann-Louville fractional integral 
of order 0 < α < 1 of a function is defined as [13]

	 	
(2)

 
where Γ(.) represents the Gamma function. 

Definition 3 [14-15] The Caputo fractional derivative 
of order α > 0 of a function  in the sense of 
Caputo is defined as 

	 	
(3)

where m - 1 < α < m ∈ ℕ. If α = m ∈ ℕ, then 

Definition 4: The Laplace transform of function is 
defined as 

for all real numbers t ≥ 0  if the integral exists.
Definition 5. [14-15] The Laplace transform of the 

transform of the Caputo fractional derivative  is 
defined as

	 	
(4)

where α > 0, m - 1 < α < m and ℒ denotes the Laplace 
transform operator.

DIFFERENTIAL TRANSFORM METHOD

The basic definitions of differential transform are intro-
duced as follows. Let u(t) be analytic in a domain D and let 
t = t0 represent any point in D. The function u(t) is then 
represented by one power series whose center is located 
at t0. The differential transform of the k-th derivative of a 
function u(t) is defined as follows:

In (1), u(t) is the original function and U(k) is the trans-
formed function[16]. The differential inverse transforma-
tion of U(k) is defined as follows:

from (1) and (2), we obtain
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The fundamental theorems of the one-dimensional dif-
ferential transform[16-18] are:

Theorem 1. If z(t) = u(t) ± v(t), then Z(k) = U(k) ± V(k).
Theorem 2. If z(t) = cv(t), then Z(k) = cV(k), where c 

is constant.
Theorem 3. If , then Z(k) = (k + 1)V(k + 1).
Theorem 4. If   , then  .

Theorem 5. If z(t) = u(t)v(t), then 
.

Theorem 6. If z(t) = tn, then 
.

In real applications, the function u(t) is expressed by a 
finite series and (3) can be written as

Equation (4) implies that  is neg-
ligibly small.

Fractional Time Derived (Random) HIV/AIDS Model
This section presents the results of solving the random 

fractional order HIV/AIDS modeling using the differential 
transformation method (DTM) and provides examples of 
the variances, confidence intervals, and expected values 
of various probability distributions of these solutions [19-
21]. There are now initial conditions that include randomly 
effective terms with various probability distributions. In 
recent years, the mean square calculation has been used to 
solve a few first-order random differential equations and 
models [22-32].

The deterministic form of the nonlinear HIV/AIDS 
model [19] is following:

	 	
(5)

 

	 	
(6)

In this model, those infected are denoted by  
l(t). Those who are infected can transmit the disease to 
susceptible persons indicated by S(t). Also, when infected 
persons in our model are sick, they are denoted by A(t). The 
parameters of our model are μ, β, δ and d and take values 
in the range of [0, ∞). The Table 1 below displays the values 
and descriptions for these parameters.

If DTM is applied with the fractional HIV/AIDS model 
given in (5) and the initial conditions given in (6),

	

(7)

The fractional derivative of our model as 

 

	 	

(8)

is in the form above.
The initial conditions in our model are S0 ~Exp(λ = 2)   

exponential distribution, I0 ~N(μ = 3, σ2 = 9) normal distri-
bution and A0 ~Beta(k = 3, l = 3) beta distribution, chosen 
from three different absolute continuous distributions. 

The parameters of the normally distributed random 
variable X are X~N(μ, σ2). Using the moment generating 
function of the normal distribution, we get

from (17), the 1st and 2nd moment of the random vari-
able X~N(μ, σ2)  are,

is calculated as. If the basic properties of the expected 
value for the X and Y independent random variables are 
used, the expected value of equation (16) is

Table 1. Parameter descriptions and values [19]

Parameter  Explanation Value
μ Birth and natural death rate 2
β The rate of transmission of the infection 1.5
δ Rate of infected individuals having AIDS 4
d Death rate from AIDS disease 1
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where Y is a random variable.
If there is a probability density function of the form, 

it has a standard Beta distribution and is denoted by 
Y~Beta(k, l). Expected value for this distribution 

and variance

is in the form above.
The moment generating function of the exponential 

distribution;

 is indicated by X~(λ). Expected value and variance[20]:

	 	

(9) 

	 	 (10)

The expectations can be compared to the deterministic 
results of equation (1) above (Figure 1) in a single graph 
(Figure 1). The following are the maximum and minimum 
values of the expected values of the random variables: S(t) 
has a maximum value of 265.1 when t = 2 and a minimum 
value of 2 when t = 0.

	 	
(11)

	 	 (12)

For comparison with the deterministic outcomes of the 
equation above, expectations can be presented in a single 
graph (Figure 2). The following methods are used to deter-
mine the maximum and minimum values of the expected 
values of the random variables: At t = 0 and t = 2, respec-
tively, l(t) takes the maximum value of 3 and the minimum 
value of -138.3.

	 	
(13)

	 	 (14)

The expectations can be presented in a single graph 
(Figure 3) for comparison with the deterministic outcomes 
of equation (1) above (Figure 3). The following methods 
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Figure 2. Time-dependent variation of the expected value 
of infected individuals.
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Figure 1. Time-dependent variation of the expected value 
of individuals susceptible to the virus.
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are used to determine the maximum and minimum values 
of the expected values of the random variables: At t = 0 and 
t = 2, respectively, A(t) takes the maximum value of 1.167 
and the minimum value of -120.7.

In our model, variance values were calculated according 
to the values and distributions given above. 

	 	

(15)

	
(16)

	 	 (17)

The S(t) variances are shown above (Figure 4). The fol-
lowing is how the extreme variances of the random vari-
ables are obtained: Maximum max[Var(S(t))] = 10720 at 
time t = 2 and minimum min[Var(S(t))] = 0.25 at time t = 0.

	 	
(18)

	 	

(19)

	 	 (20)

The variances of l(t) is given above (Figure 5). Extremum 
values of the variances of the random variables are obtained as 
follows: min[Var(I(t))] = 2 at t = 0 and max[Var(I(t))] = 9788 
at t = 2.

	 	

(21)
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Figure 4. Time-dependent variation of the variance value 
of individuals susceptible to the virus.
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Figure 3. Time-dependent variation of the expected value 
of sick individuals.
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Figure 5. Time-dependent variation of the variance value 
of infected individuals.
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(22)

	 	 (23)

The variances of A(t) is given above (Figure 6). 
Extremum values of the variances of the random variables 
are obtained as follows: min[Var(I(t))] = 0.04 at t = 0 and 
max[Var(I(t))] = 51230 at t = 2.

Confidence intervals for random variable expected 
values,

is equal, which can be determined using standard devia-
tions. For K = 3, this formula yields a % 99 confidence inter-
val(C.I.) for the expected value of a normally distributed 
random variable [21]. Figure 7 depicts a % 99 C.I. plotted 
with MATLAB (2013a).This popular rule, known as the 
three sigma rule, states that 99.73% of values for a normally 
distributed variable are within three standard deviations of 
the mean. Thus, using the appropriate parameters, we will 
compare the variations of the results for two continuous 
distributions with limited and unlimited support, respec-
tively. Nearly all potential values for the random effects for 
both distributions will come from the same range if the 
parameters are chosen appropriately.

The confidence intervals of S(t) are given in Figure 7. 
The extremum values of the confidence intervals are as fol-
lows: min(E(S(t)) - 3std(S)) = -45.48 at t = 2 and max(E(S(t)) 
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Figure 6. Time-dependent variation of the variance value 
of sick individuals.
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Figure 7. Time-dependent variation of % 99 C.I. intervals 
of virus-susceptible individuals.
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Figure 8. Time-dependent variation of %99 C.I. of infected 
individuals
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Figure 9. Time-dependent variation of % 99 C.I. of patients.
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+ 3std(S)) = 575.6 at t = 2. Here, K = 3 gives an approximate 
%99 confidence interval.

The confidence intervals of l(t) are given in Figure 8. 
The extremum values of the confidence intervals are as fol-
lows: min(E(I(t)) - 3std(I)) = -1077 at t = 2 and max(E(I(t)) 
+ 3std(I)) = 800.2 at t = 2. Here, K = 3 gives an approximate 
%99 confidence interval.

The confidence intervals of l(t) are given in Figure 9. 
The extremum values of the confidence intervals are as 
follows: min(E(A(t)) - 3std(A)) = -799.7 at t = 2 and max-
(E(A(t)) + 3std(A)) = 558.3 at t = 2. Here, K = 3 gives an 
approximate %99 confidence interval.

CONCLUSION

In this study, random fractional ordinary differen-
tial equations were solved using the fractional differential 
transformation method. The motivation of this study is 
to determine the probability characteristics of a random-
ized fractional-order HIV/AIDS Modelling under random 
effects. Normal, Beta, and exponential distributions are 
used to select the initial conditions or coefficients of ran-
dom fractional ordinary differential equations. Expected 
value, variance, and confidence intervals from probability 
properties were found and graph for the analysis of random 
effect are presented accordingly. Examining standard devi-
ations, variations, and confidence intervals for expected 
values reveals how virus transmission dynamics change 
over time. By selecting different probability distributions 
from many epidemic models in the literature, the behav-
ior under random effects can be examined. We believe that 
this study will be an important component in mathemati-
cal modeling studies on the transmission of the HIV/AIDS 
virus. The results are guaranteed to be useful for the ran-
dom differential equation system if the deterministic and 
random analysis results are comparable. The stochastic 
model can simulate the dynamics of disease transmission 
just as well as the deterministic model, but it can also yield 
information about the model’s variability, including coeffi-
cients of variation and standard deviations. We observe that 
random expectations are also consistent with the determin-
istic model’s results, which are comparable to the numerical 
results from the relevant study. Results for the expected val-
ues’ confidence intervals are also provided by the random 
model. Any deterministic compartment disease model can 
be created using this method of creating random models 
from deterministic models. Using actual data for parameter 
variations rather than speculative values can improve the 
results. Research on the stability and ideal management 
of diverse mathematical models of other illnesses, like 
COVID-19 and tuberculosis, can also be utilized to explore 
the dynamics of disease dissemination. 

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the 
findings of this study are available within the article. Raw 
data that support the finding of this study are available from 
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest 
with respect to the research, authorship, and/or publication 
of this article.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

ETHICS

There are no ethical issues with the publication of this 
manuscript.

REFERENCES

	 [1]	 World Health Organization. HIV. 2022. Available at: 
https://www.who.int/news-room/factsheets/detail/
hiv-aids Last Accessed Date: 19.02.2022.

	 [2]	 Worobey M, Gemmel M, Teuwen DE, Haselkorn T, 
Kunstman K, Bunce M. Direct evidence of exten-
sive diversity of HIV-1 in Kinshasa by 1960. Nature 
2008;455:661–664. [CrossRef]

	 [3]	 Clavel F, Guétard D, Brun-Vézinet F, Chamaret S, Rey 
MA, Santos-Ferreira MO, Montagnıer L. Isolation of 
a new human retrovirus from West African patients 
with AIDS. Science 1986;233:343–346. [CrossRef]

	 [4]	 Burgard M, Jasseron C, Matheron S, Damond F, 
Hamrene K, Blanche S. Mother-to-child transmis-
sion of HIV-2 infection from 1986 to 2007 in the 
ARNS French Perinatal Cohort EPF-CO1. Clin 
Infect Dis 2010;51:833–843. [CrossRef]

	 [5]	 Xuanpei Z, Wenshuang L, Fengying W, Xuerong 
M. Dynamics of an HIV/AIDS transmission model 
with protection awareness and fluctuations. Chaos 
Solit Fract 2023;169. [CrossRef]

	 [6]	 Vyambwera M. Mathematical modelling of the 
HIV/AIDS epidemic and the eff ect of public health 
education. Unpublished master’s thesis. Cape Town: 
Western Cape University; 2014.

	 [7]	 Kirschner D. Using mathematics to understand 
HIV ımmune dynamics. Notices Am Math Soc 
1996;43:191–202.

	 [8]	 Emvudu Y, Bongor D. Mathematical analysis of a 
HIV/AIDS model with treatment. IEJPAM 2012;4.

	 [9]	 Lüleci G. Solution of the initial boundary value 
problem for the fractional diffusion equation. 
Unpublished master’s thesis. Kocaeli: Kocaeli 
Üniversitesi; 2019.

https://doi.org/10.1038/nature07390
https://doi.org/10.1126/science.2425430
https://doi.org/10.1086/656284
https://doi.org/10.1016/j.chaos.2023.113224


Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1899−1906, December, 20241906

[10]	 Samko SG, Kilbas AA, Marichev OI. Fractional 
İntegrals and Derivatives Theory and Applications. 
Yverdon: Gordon ve Breach; 1993.

[11]	 Miller KS, Ross B. An Introduction to The Fractional 
Calculus and Fractional Differential Equations. 
London: John Wiley & Sons; 1993.

[12]	 İbiş B. Numerical solutions of differential-algebraic 
equations of fractional order. Unpublished doc-
toral thesis. İstanbul: Yıldız Technical University; 
2011.

[13]	 Podlubny I. Fractional differential equations. San 
Diego, USA: Academic Press; 1998.

[14]	 Kilbas AA, Srivastava HM, Trujillo JJ. Theory and 
Applications of Fractional Differential Equations. 
Philadelphia, USA: Elsevier Science; 2006.

[15]	 Caputo M. Elasticita e Dissipazione. Bolonga: 
Zanichelli; 1969.

[16]	 Zhou J. Differential transformation and its applica-
tions for electrical circuits. Wuhan, China: Borneo 
Huazhong University Press; 1986.

[17]	 Pukhov GE. Computational structure for solving 
differential equations by Taylor transformations. 
Cybernt Syst Anal 1978;14:383–390. [CrossRef]

[18]	 Ayaz F. Solutions of the system of differential equa-
tions by differential transform method. Appl Math 
Comput 2004;147:547–567. [CrossRef]

[19]	 El-Metwally H, Sohaly MA, Elbaz IM. Stochastic 
global exponential stability of disease-free equi-
librium of HIV/AIDS model. Eur Phys J Plus 
2020;135:840. [CrossRef]

[20]	 Erbaş OS. Probability and Statistics. Ankara: Gazi 
Kitabevi; 2020.

[21]	 Feller W. An Introduction to Probability Theory and 
Its Applications. 3rd ed. New York, USA: John Wiley 
& Sons; 1968.

[22]	 Merdan M, Anac H, Bekiryazici Z, Kesemen T. 
Solving of some random partial differential equa-
tions by using differential transformation method 
and laplace-padé method. J Gumushane Univ Inst 
Sci Technol 2019;9:108–118.

[23]	 Merdan M, Şişman Ş. Analysıs of random dis-
crete time logistic model. Sigma J Eng Nat Sci 
2020;38:1269–1298.

[24]	 Merdan M, Altay Ö, Bekiryazici Z. Investigation of 
the behaviour of volterra ıntegral equations with 
random effects. J Gumushane Univ Inst Sci Technol 
2020;10:205–216. [CrossRef]

[25]	 Bekiryazıcı Z, Kesemen T, Merdan M, Khaniyev T. 
Modeling disease transmission dynamics with ran-
dom data and heavy tailed random effects: The Zika 
case. TWMS J App Eng Math 2023;13:1272–1286.

[26]	 Şengül S, Bekiryazıcı Z, Merdan M. Wong-Zakai 
approximation for stochastic models of smoking, 
Sigma J Eng Nat Sci 2023;41:958–968. [CrossRef]

[27]	 Merdan M, Atasoy N. On the solutions of fractional 
random ordinary differential equations with the 
Residual power series method, Alexandria Eng J 
2023;70:169–177. [CrossRef]

[28]	 Jamil S, Farman M, Akgül A. Qualitative and quan-
titative analysis of a fractal fractional HIV/AIDS 
model, Alexandria Eng J 2023;76:167–177. [CrossRef]

[29]	 Xu C, Liu Z, Pang Y, Akgül A, Baleanu D. Dynamics 
of HIV-TB coinfection model using classi-
cal and Caputo piecewise operator: A dynamic 
approach with real data from South-East Asia, 
European and American regions. Chaos Solit Fract 
2022;165:112879. [CrossRef]

[30]	 Farman M, Akgül A, Tekin MT, Akram MM, Ahmad 
A, Mahmoud EE, et al. Fractal fractional-order 
derivative for HIV/AIDS model with Mittag-Leffler 
kernel. Alexandria Eng J 2022;61:10965–10980. 
[CrossRef]

[31]	 Liu X, Ahmad S, Rahman M, Nadeem Y, Akgül A. 
Analysis of a TB and HIV co-infection model under 
Mittag-Leffler fractal-fractional derivative. Phys 
Script 2022;97:054011. [CrossRef]

[32]	 Ahmad S, Ullah A, Akgül A, De la Sen M. Study of 
HIV Disease and Its Association with Immune Cells 
under Nonsingular and Nonlocal Fractal-Fractional 
Operator, Complexity 2021;2021:1904067. [CrossRef]

https://doi.org/10.1007/BF01074670
https://doi.org/10.1016/S0096-3003(02)00794-4
https://doi.org/10.1140/epjp/s13360-020-00856-0
https://doi.org/10.17714/gumusfenbil.586796
https://doi.org/10.14744/sigma.2023.00114
https://doi.org/10.1016/j.aej.2023.02.025
https://doi.org/10.1016/j.aej.2023.06.021
https://doi.org/10.1016/j.chaos.2022.112879
https://doi.org/10.1016/j.aej.2021.07.040
https://doi.org/10.1088/1402-4896/ac645e
https://doi.org/10.1155/2021/1904067

