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ABSTRACT

This research centers on developing an artificial neural network (ANN) algorithm to predict 
the precise removal of sulfate from synthetically prepared water samples. Two distinct resins, 
sodium-based cationic resin (SBCR) and divinylbenzene styrene (DVBS), were employed to 
achieve this goal. Additionally, the study investigated the influence of column properties (di-
ameter and height), initial sulfate concentration, and contact time on sulfate removal from 
synthetically prepared samples. After collecting data from experimental trials, a feed-forward 
ANN structure was constructed. The selected input parameters for predicting sulfate removal 
encompassed column properties (diameter and height), contact time, resin type, and initial 
sulfate concentration. The model’s performance was assessed using several statistical criteria, 
including the correlation coefficient (R), mean absolute percentage error (MAPE, %), root 
mean square error (RMSE), and mean square error (MSE). The model’s training and test per-
formance yielded impressive results: the correlation coefficient (R) was exceptionally high at 
1.0000 for training and 0.9999 for test, indicating a strong alignment between predicted and 
actual values.
Moreover, the mean absolute percentage error (MAPE, %) was 0.5422 for training and 0.9223 
for testing, reflecting low average percentage differences between predictions and actual data 
and indicating high accuracy. The root mean square error (RMSE) values were also 0.0012 for 
training and 0.0034 for the test, demonstrating minimal average prediction errors. Lastly, the 
mean square error (MSE) values were notably low, with 1.42x10-6 for training and 1.14x10-5 
for test phase, underscoring the model’s ability to provide accurate predictions with minimal 
deviations from actual values. Based on these comprehensive evaluation criteria, the ANN 
exhibited strong predictive performance in estimating sulfate removal.
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INTRODUCTION

Water pollution, in terms of anions, is a public health 
concern with various effects. Sulfate (SO4

2-) is a com-
mon pollutant among all anions and can naturally occur 
in groundwater. High sulfate levels in drinking water are 
known to cause diarrhea, making removing ions essential. 
Several methods and technologies are available for remov-
ing SO4

2- ions from water sources, including ion exchange, 
nanofiltration, adsorption, reverse osmosis, and electro-
dialysis. The choice of method depends on technological 
development, specific use cases, limitations, and cost [1]. 
Generally, these methods can be grouped into physical, 
physicochemical, and biological categories [2]. Physical 
methods involve adsorption using various adsorbents like 
activated carbon, biochar, graphene, zeolite, and bentonite 
[3-6]. Physicochemical methods include ion exchange, pre-
cipitation, and electrocoagulation, while biological meth-
ods encompass artificial wetlands and bioreactors. Studies 
on sulfate removal from water resources using these meth-
ods are in the literature.

In a study conducted by Darbi et al. [3], bentonite was 
used to remove sulfate from groundwater, and its perfor-
mance was compared to ion exchange and nanofiltration 
processes. Another study on adsorption involved sul-
fate removal from wastewater using activated carbon [7]. 
Factors such as adsorbent mass, pH, and contact time were 
investigated. Hong et al. [4] removed sulfate from acid mine 
drainage using polypyrrole-tailored activated carbon. Ma et 
al. [8] used a sol-gel method to create spherical amorphous 
ZrO(OH)2/AlOOH composite adsorbent beads for sulfate 
removal. Spina-christi lotus leaf-derived activated car-
bon was used to remove sulfate from an aqueous solution, 
and the study investigated the effects of pH, contact time, 
temperature, adsorbent concentration, and initial sulfate 
concentration [9]. Salimi et al. [10] used nanoparticles of 
natural clinoptilolite to adsorb sulfate ions from Gamasiab 
River water samples, studying the effects of pH and the 
adsorbent-to-contaminant ratio (D/C). Ao et al. [11] syn-
thesized low-cost zirconium oxide-modified pomelo peel 
biochar (ZrBC) for sulfate ion adsorption from an aque-
ous solution. Sukamto [12] used magnetic silica-chitosan 
hybrids (MP@SiO2/CPTMS/Chi) to adsorb sulfate ions 
from an aqueous solution.

Tjeda-Tover et al. [13] synthesized two different adsor-
bents: these are biochar modified with H2SO4 with a mass-
to-volume ratio of 1:1 (B 1:1) and cellulose modified with 
cetyl trimethyl ammonium chloride (CTAC), for adsorbing 
sulfate in a solution. Obeid et al. [14] removed sulfate from 
wastewater using a clay-based adsorbent (sludge, waste 
limestone, bentonite, SBL), investigating different values of 
pH, contact time, adsorbent dose, and initial SO4

2- concen-
tration. Shahzadi et al. [15] used nickel monometallic and 
nickel-cobalt bimetallic nanoparticles to remove sulfate 
and phosphate ions.

Various methods can be employed for sulfate removal, 
and the choice of method depends not only on experimen-
tal procedures and challenges but also on costs. Parameters 
like maintenance, installation, initial investment, waste 
management, and operational costs are crucial, especially in 
pilot-scale research. In recent years, with the advancement 
of computer technology, modeling studies have gained 
importance, reducing costs such as experimental workloads 
for many processes. Artificial neural networks (ANN) are a 
popular artificial intelligence (AI) technique because they 
can learn complex and nonlinear systems, making them 
preferred in many processes [16-23].

To the author’s best knowledge, ANN modeling of sul-
fate removal from drinking water has not been published. 
Consequently, an ANN model for sulfate removal was 
developed using experiment data. The experimental system 
involved two adsorbents (DVBS and SBCR) with varying 
column diameters and heights, contact times, and initial 
sulfate concentrations. These parameters were determined 
as input parameters for predicting sulfate removal.

MATERIALS AND METHODS

Chemicals
•	 Anhydrous sodium sulfate (Na2SO4)
•	 0.1 M NaOH solution
•	 0.1 M HCl solution
•	 0.1 M NH3 solution

Devices 
•	 Spectrophotometer (Hach-DR 2400)
•	 Specially designed columns with 3, 3.5, and 4 (R(3), 

R(3.5), R(4)) cm inner diameters and 7.5, 10, and 15 cm 
column heights

Adsorbents
•	 Divinylbenzene styrene (DVBS) anionic resin
•	 Sodium-based cationic resin (SBCR)

Preparation of Synthetic Sulfate Solutions 
This study involved the utilization of three distinct con-

centrations of sulfate solutions. To prepare these solutions, 
we initially dried 0.1479 grams of anhydrous sodium sul-
fate (Na2SO4) in an oven at 105°C. It was then dissolved 
in deionized water and diluted to a final volume of 1 liter, 
resulting in a sulfate solution with a concentration of 1000 
mg/L, referred to as C(1000). From this primary solu-
tion, diluted solutions with a concentration of 250 mg/L, 
denoted as C(250), were subsequently derived. The sulfate 
content in the solutions intended for analysis was quanti-
fied using a Hach-DR2400 spectrophotometer. The sulfate 
assay kit used was the SulfaVer4 PP 2-70(10 mL) brand.2.3. 
Experimental System

Within the scope of this investigation, columns possess-
ing internal diameters of 3 cm (R3), 3.5 cm (R3.5), and 4 
cm (R4) were employed, each varying in height at 7.5 cm, 
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10 cm, and 15 cm. The standard sulfate removal technique, 
utilizing the spectrophotometric method, was implemented 
throughout the study. Furthermore, all experimental pro-
cedures were conducted using two distinct types of resins: 
SBCR and DVBS. A visual representation of the experimen-
tal setup is depicted in Figure 1.

During the adsorbent placement within the columns, 
glass fiber was interposed between the column and the 
adsorbent material, ensuring a precise balance. A fixed 
volume of sulfate solution (100 mL) was then passed 
through the column, and samples collected at designated 
time intervals (e.g., 1, 3, and 8 minutes) were analyzed 
using a Hach DR 2400 spectrophotometer. The sulfate 

concentrations were subsequently determined based 
on these measurements. The study evaluated sulfate 
removal efficiencies under these specific conditions, 
examining variations in sulfate concentration concern-
ing column diameter, column bed height, adsorbent 
quantity, and contact duration. Furthermore, the study 
included a comparative analysis of the performance of 
different adsorbents.

Modeling Studies
In this research segment, we have developed an 

Artificial Neural Network (ANN) model to forecast the 
percentage of sulfate removal. To accomplish this, we calcu-
lated sulfate removal efficiency employing the adsorption 
technique with synthetic samples, as detailed in the experi-
mental section of our study, employing DVBS and SBCR as 
adsorbents. Furthermore, our experimental investigations 
encompassed a range of column diameters (3, 3.5, and 4 
cm), column heights (7.5, 10, 15 cm), and initial sulfate 
concentrations.

In the ANN modeling phase of the research, we selected 
input variables consisting of column diameter and height, 
resin type, contact time, and initial sample concentration. 
We employed a total of 70 data points for modeling pur-
poses. The most favorable outcomes were achieved by con-
figuring the ANN with three neurons in the hidden layer, 
employing tangent sigmoid (‘tansig’) activation functions 
for both the hidden and output layers. We randomly par-
titioned the data into a 70% training set and a 30% testing 
set to establish the model. We evaluated the model’s perfor-
mance based on various statistical criteria. A visual repre-
sentation of the constructed ANN architecture is provided 
in Figure 2.

The development of the Artificial Neural Network 
(ANN) model was facilitated using the ANN toolbox 
within the MATLAB environment. In this process, code 
was crafted within MATLAB, and the optimal network 
structure was ascertained through training the network 
with the provided training dataset. Once the network struc-
ture was finalized, the model underwent testing with pre-
viously unseen data to assess its overall performance and 
predictive accuracy.

Figure 2. ANN design.

Figure 1. Experimental setup.
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RESULTS AND DISCUSSION

Sodium-Based Cationic Resin (SBCR) Results
The output sulfate concentrations, denoted as C1 (1 

minute), C3 (3 minutes), and C8 (8 minutes) for a 3.5 
(R(3.5)) cm column diameter and an initial sulfate concen-
tration of 1000 (C(1000)) mg/L, utilizing a sodium-based 
cationic resin (SBCR), are provided in Table 1 below:

Upon reviewing the results presented in Table 1, it 
becomes evident that there is a 99.00% reduction in sul-
fate concentration when employing a column height of 7.5 
cm, a 98.00% reduction at a column height of 10 cm, and a 
remarkable 99.80% reduction at a column height of 15 cm.

Table 2 illustrates the output sulfate concentrations, 
specifically C1, C3 and C8 for SBCR at a column diameter 

of 3 cm (R(3)) and an initial sulfate concentration of 1000 
((C(1000)) mg/L:

Upon analyzing the findings in Table 2, it is evident that 
an impressive 99.90% reduction in sulfate concentration is 
attained when employing a column height of 10 cm.

Table 3 displays the output sulfate concentrations for 
SBCR at a column diameter of 3.5 cm [R(3.5)] and an initial 
sulfate concentration of 250 mg/L [C(250)]:

Upon scrutinizing the data presented in Table 4, it is 
evident that removal efficiencies of 98.80%, 97.50%, and 
94.50% are achieved when utilizing column heights of 7.5 
cm, 10 cm, and 15 cm, respectively.

Table 4 provides the output sulfate concentrations, spe-
cifically C1, C3 and C8 for SBCR at a column diameter of 4 

Table 4. Analysis results for SBCR at 1000 mg/L and 4 cm column diameter

SBCR: C (250 mg/L), R (3 cm)

h (cm) C1 (mg/L SO4) C3 (mg/L SO4) C8 (mg/L SO4) Removal (%)
7.5 25 20 20 92.00
10 45 35 20 92.00
15 65 55 35 86.00

Table 3. Analysis results for SBCR at 250 mg/L and 3.5 cm column diameter

SBCR: C (250 mg/L), R (3.5 cm)

h (cm) C1 (mg/L SO4) C3 (mg/L SO4) C8 (mg/L SO4) Removal (%)
7.5 5 3 2 98.80
10 35 30 25 97.50
15 70 65 55 94.50

Table 2. Analysis results for SBCR at 1000 mg/L and 3 cm column diameter

SBCR: C (1000 mg/L), R (3 cm)

h (cm) C1 (mg/L SO4) C3 (mg/L SO4) C8 (mg/L SO4) Removal (%)
7.5 10 5 2 99.80
10 3 2 1 99.90
15 5 3 1 99.90

Table 1. Analysis results for SBCR 1000 mg/L and 3.5cm column diameter

SBCR: C (1000 mg/L), R (3.5 cm)

h (cm) C1 (mg/L SO4) C3 (mg/L SO4) C8 (mg/L SO4) Removal (%)
7.5 30 20 10 99.00
10 50 10 20 98.00
15 25 10 2 99.80
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cm [R(4)] and an initial sulfate concentration of 1000 mg/L 
[C(1000)]:

As the data in Table 4 indicates, significant removal 
efficiencies of 99.60%, 99.75%, and 99.90% are attained at 
column heights of 7.5 cm, 10 cm, and 15 cm, respectively.

Table 5 outlines the output sulfate concentrations for 
SBCR with a column diameter of 3 cm [R(3)] and an initial 
sulfate concentration of 250 mg/L [C(250)]:

As per the data presented in Table 5, it is noted that 
removal efficiencies of 92.00% and 86.00% are attained at col-
umn heights of 7.5 cm and 10 cm, respectively, while a removal 
efficiency of 86.00% is observed at a column height of 15 cm.

The results obtained with the SBCR are detailed below.

The Effect of Initial Sulfate Concentration on Adsorption 
For SBCR

The influence of the initial sulfate concentration on sul-
fate removal outcomes is presented in Table 6.

Based on the information provided in Table 6, it is evi-
dent that removal efficiencies of 98.00% and 90.00% are 
achieved for initial sulfate concentrations of 1000 mg/L and 
250 mg/L, respectively. This data suggests that as the ini-
tial sulfate concentration increases, the removal efficiency 
also increases. It can be inferred that the adsorbent exhibits 
higher removal capacity at elevated initial concentrations.

The Effect of Column Fill Height on Adsorption for 
SBCR

Table 7 summarizes data, including the initial sulfate 
concentration (C0), output sulfate concentration (Ce), 
absorption capacities, and removal percentages for vari-
ous column heights in an absorption column with a 3.5 cm 
inner diameter.

Based on the data presented in Table 7, removal per-
centages of 99.00%, 98.00%, and 99.80% are observed for 
column heights of 7.5 cm, 10 cm, and 15 cm, respectively. 

Table 8. The effect of column diameter on sulfate removal

Adsorbent h (cm) R (cm) M (g) C0 (mg/L) Ce (mg/L) X= C0-Ce qe = (X/M) . V Removal (%)
SBCR 10 3 36.90 1000 1 999 2.71 99.90
SBCR 10 3.5 42.46 1000 20 980 2.31 98.00
SBCR 10 4 74.96 1000 2,5 997.50 1.33 99.75
SBCR 10 3 36.90 250 20 230 0.62 92.00
SBCR 10 3.5 42.46 250 25 225 0.53 90.00

Table 7. The effect of column height on sulfate removal with SBCR

Adsorbent h (cm) R (cm) M (g) C0 (mg/L) Ce (mg/L) X= C0-Ce qe = (X/M) . V Removal (%)
SBCR 7.5 3.5 42.46 1000 10 990 2.33 99.00
SBCR 10 3.5 56.62 1000 20 980 1.73 98.00
SBCR 15 3.5 84.93 1000 2 998 1.17 99.80

Table 6. The effect of initial sulfate concentration on sulfate removal with SBCR

Adsorbent h (cm) R (cm) M (g) C0 (mg/L) Ce (mg/L) X= C0-Ce qe = (X/M) . V Removal (%)

SBCR 10 3.5 56.62 1000 20 980 1.73 98.00
SBCR 10 3.5 56.62 250 25 225 0.40 90.00

Table 5. Analysis results for SBCR at 250 mg/L and 3 cm column diameter

SBCR: C (1000 mg/L), R (4 cm)

h (cm) C1 (mg/L SO4) C3 (mg/L SO4) C8 (mg/L SO4) Removal (%)
7.5 20 8 4 99.60
10 8 5 2.5 99.75
15 4 2 1 99.90
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While the highest removal is attained at a column height of 
15 cm, there is no significant variation in removal percent-
ages among the other column heights.

In Table 8, when different column diameters for SBCR 
are examined at the same column height, it is evident that 
maximum removal is achieved with a 3 cm column diam-
eter at both 1000 mg/L input concentration (99.9%) and 
250 mg/L input concentration (92%). These results indi-
cate higher removal rates are accomplished when the ini-
tial concentration is elevated, and the column diameter is 
smaller due to increased contact.

In investigating the impact of contact time on adsorp-
tion using SBCR, Figure 3 illustrates the variations in 
adsorption percentages across different concentrations and 

column heights, all within a column with a 3.5 cm internal 
diameter.

As depicted in Figure 3, when assessing the influence 
of contact time on adsorption percentage for initial sul-
fate concentrations of both 1000 mg/L and 250 mg/L, as 
well as for column fill heights of 7.5 cm, 10 cm, and 15 
cm, it becomes apparent that the highest removal rates are 
achieved with a 15 cm column height and an initial concen-
tration of 1000 mg/L. The trend in removal appears consis-
tently increasing with time.

Optimum Conditions for Sulfate Removal with SBCR
The optimal conditions for maximizing sulfate removal 

using the sodium-based cationic resin (SBCR) were deter-
mined to be a 3 cm column diameter, an initial sulfate 
concentration of 1000 mg/L, and a column fill height of 
10 cm, achieving an impressive 99.90% removal efficiency. 
Notably, the experimental results consistently indicated 
that the higher initial concentration of 1000 mg/L yielded 
superior results to the 250 mg/L concentration.

Subsequently, further experiments were conducted 
using a different resin, DVBS, at a concentration of 1000 
mg/L, confirming the preference for the higher initial 
concentration in achieving enhanced sulfate removal 
performance.

Divinylbenzene Styrene (DVBS Anionic Resin)
Table 9 displays the output sulfate concentrations (C1, 

C3, and C8) for DVBS at a 3 cm column diameter and an 
initial sulfate concentration of 1000 mg/L [C(1000 mg/L)], 
measured at 1.3 minutes and 8 minutes, respectively.

Upon examining the data presented in Table 9, it is evi-
dent that removal efficiencies of 54% at a column height 
of 7.5 cm, 92% at a column height of 10 cm, and 98% at a 
column height of 15 cm have been achieved for DVBS.
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Figure 3. Effect of contact time on adsorption percentage 
with SBCR.

Table 10. Analysis results for DVBS at 1000mg/L and 3.5 cm column diameter

DVBS: C (1000 mg/L), R (3.5 cm)

h (cm) C1 (mg/L SO4) C3 (mg/L SO4) C8 (mg/L SO4) Removal (%)
7.5 580 510 410 59.00
10 140 80 40 96.00
15 30 20 10 99.00

Table 9. Analysis results for DVBS at 1000mg/L and 3cm column diameter

DVBS: C (1000 mg/L), R (3 cm)

h (cm) C1 (mg/L SO4) C3 (mg/L SO4) C8 (mg/L SO4) Removal (%)
7.5 620 540 460 54.00
10 140 120 80 92.00
15 60 40 20 98.00
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Table 10 provides the output sulfate concentrations (C1, 
C3, and C8) for DVBS at a 3.5 cm column diameter and an 
initial sulfate concentration of 1000 mg/L, measured at the 
1st, 3rd, and 8th minutes, respectively:

Based on the data presented in Table 10, it is evident 
that removal efficiencies of 59.00% at a column height of 
7.5 cm, 96.00% at a column height of 10 cm, and 99.00% 
at a column height of 15 cm have been achieved for DVBS.

Table 11 provides the output sulfate concentrations for 
DVBS at a 4 cm column diameter and an initial sulfate con-
centration of 1000 mg/L:

Based on the data in Table 11, it is evident that removal 
efficiencies of 98.00% at a column height of 7.5 cm and 99% 
at a column height of 10 cm have been achieved for DVBS.

The results obtained with the DVBS anionic are detailed 
below.

The Effect of Column Fill Height on Adsorption for 
DVBS

Table 12 summarizes data, including the initial sul-
fate concentration (C0), output sulfate concentration (Ce), 
adsorption capacities, and removal percentages for various 
fill heights in a 3.5 cm internal diameter absorption column.

Effect of Column Diameter on Adsorption for DVBS
Table 13 presents sulfate removal percentages for DVBS 

at different column diameters but at a fixed column height. 
It is evident that when examining removal percentages for 
various column diameters at the same column height, a 

notable 99% removal efficiency was achieved with a 4 cm 
column diameter for DVBS. Moreover, there is a trend 
of increased removal percentage as the column diame-
ter increases while maintaining the same initial sulfate 
concentration.

Effect of Contact Time on Adsorption for DVBS
Figure 4 illustrates the variations in adsorption percent-

age for DVBS across different concentrations and column 
heights within a 3.5 cm internal diameter column. Notably, 
the maximum removal is achieved with a 15 cm column 
height, as observed in Figure 4. Additionally, it’s observed 
that there is a more substantial increase in the adsorption 
percentage up to 3 minutes for column heights of 7.5 cm 
and 10 cm. After the 3-minute contact time, the increase in 
adsorption percentage appears to decrease. 

Optimum Conditions for Sulfate Removal with DVBS
The highest efficiency for sulfate removal using the sty-

rene anionic resin DVBS is attained with a 3.5 cm column 
diameter, an initial sulfate concentration of 1000 mg/L, and 
a column height of 15 cm, achieving a remarkable 99.00% 
removal rate.

MODELING RESULTS AND DISCUSSION

The modeling results involve collecting experimental 
data involving SBCR and DVBS anionic resin, with vari-
ous input parameters such as different diameters, heights, 

Table 13. The effect of column diameter on sulfate removal

Adsorbent h (cm) R (cm) M (g) C0 (mg/L) Ce (mg/L) X= C0-Ce qe = (X/M) . V Removal (%)
DVBS 10 3 28,67 1000 80 920 3.21 92.00
DVBS 10 3.5 35.00 1000 40 960 2.74 96.00
DVBS 10 4 43.20 1000 10 990 2.29 99.00

Table 11. Analysis results for DVBS at 1000 mg/L and 4 cm column diameter

DVBS: C (1000 mg/L), R (4 cm)

h (cm) C1 (mg/L SO4) C3 (mg/L SO4) C8 (mg/L SO4) Removal (%)
7.5 280 40 20 98.00
10 220 90 10 99.00
15 NR NR NR NR

Table 12. The effect of column height on sulfate removal with DVBS

Adsorbent h (cm) R (cm) M (g) C0 (mg/L) Ce (mg/L) X= C0-Ce qe = (X/M) . V Removal (%)
DVBS 7.5 3.5 26.3 1000 410 590 2.24 59.00
DVBS 10 3.5 35 1000 40 960 2.74 96.00
DVBS 15 3.5 52.6 1000 10 990 1.88 99.00
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initial sulfate concentrations, and resin types. The training 
and testing outcomes are depicted in Figure 5.

The performance criteria for the model are presented in 
Table 14 for both the training and testing phases. The mod-
el’s performance is evaluated based on the correlation coef-
ficient (R), mean absolute percentage error (MAPE %), root 
mean square error (RMSE), and mean square error (MSE).

The results indicate that the model demonstrates strong 
performance. Low MAPE and RMSE values indicate the 
model’s accuracy in making predictions. Additionally, the 
model achieves very high R-values in both the training and 
test phases, further confirming its effectiveness in captur-
ing the underlying patterns and relationships in the data.

COMPARISON OF RESULTS WITH LITERATURE

This study evaluated the sulfate removal capabilities 
of two distinct resins, SBCR and DVBS, using various 
experimental designs. The experiments demonstrated 
high removal rates with SBCR, outperforming DVBS. This 
disparity can be attributed to the electrostatic interactions 
between the cationic SBCR and sulfate ions (SO4

2-) com-
pared to the anionic DVBS and sulfate ions, as supported 
by references [22-25].

Further comparison with the literature reveals that 
this study has achieved exceptionally high levels of sul-
fate removal, particularly with SBCR, marking a notable 
improvement over previously reported results [14, 26-29]. 
The compatibility of these findings with existing literature 
underscores the efficacy of both SBCR and DVBS in remov-
ing sulfate ions. Additionally, the application of AI model-
ing in this research contributes new insights and value to 
the existing body of knowledge.

Figure 5. Training (a) and test (b) results.
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Figure 4. The effect of contact time on adsorption percent-
age with DVBS.

Table 14. Performance criteria of model

Training Phase Test Phase

R MAPE % RMSE MSE R MAPE % RMSE MSE
1.0000 0.5422 0.0012 1.42x10-6 0.9999 0.9223 0.0034 1.14x10-5
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CONCLUSION

In conclusion, this study presents the development of 
an advanced Artificial Neural Network (ANN) model for 
predicting sulfate removal efficiency in water, address-
ing key health concerns related to high sulfate levels. 
Various factors, including experimental procedures and 
costs, influence the choice of sulfate removal methods. 
The ANN model developed here showcases remarkable 
performance, demonstrated by low error metrics (MAPE 
%, RMSE, MSE) and high correlation coefficients. These 
results indicate the model’s strong capability in accu-
rately estimating sulfate removal. This model significantly 
reduces experimental costs and workload, marking it as 
a practical tool in sulfate removal research. By offering 
precision and efficiency in predictions, the ANN model 
represents a shift in research methodologies towards more 
cost-effective and efficient water treatment and environ-
mental management strategies.
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