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ABSTRACT

In this article, Computer algebra systems and the Riccati-Bernoulli sub-ODE method are ef-
ficiently utilized to solve Davey-Stewartson and Maccari’s systems. We successfully obtained 
the set of new exact solutions for these systems using the computer algebra MAPLE system. 
For the validity of acquired solutions, the constraint conditions are given. To investigate the 
behavior of these solutions, graphical representations of the derived solutions are provided 
under suitable parameter values.
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INTRODUCTION 

Computers are generally thought of as number crunch-
ers, but there is no reason why they cannot also be used as 
formula crunchers. Computer algebra systems allow us to 
manipulate formulae. A computer algebra system computes 
with symbols rather than numbers. Such systems are useful 
for manipulating formulae. A particularly useful technique 
is the calculation of the coefficients of the polynomials. We 
have used computer algebra systems in several ways to solve 
our problem [1-4].

Nonlinear partial differential equations (NLPDEs) are 
utilized in diverse areas to model notable phenomena. 
So, the solutions of NLPDEs have a significant role in the 
research of physics, engineering, and applied mathematics, 
containing population ecology, solid-state physics, plasma 

waves, plasma physics, optical fibers, quantum mechanics, 
fluid mechanics, heat flow, propagation of shallow waves 
and wave propagation phenomena. To acquire soliton and 
traveling wave solutions for NLPDEs, numerous compu-
tational approaches have been constructed. Some of these 
approaches are the new extended direct algebraic method 
[5-7], the extended Jacobi elliptic function expansion 
method [8], the generalized Kudryashov method [9], the 
generalized algebraic method [10], the extended general-
ized Riccati equation mapping method [11], Q-function 
method [12,13], extended tanh method [14].

This research article aims to examine the analytical 
solutions of the Maccari’s system and Davey-Stewartson 
system with the aid of the Riccati-Bernoulli sub-ODE 
method [15-18].
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The nonlinear complex Maccari’s system (CNMS) [19] 
is described as:

	 	

(1)

The CNMS is a form of the complex nonlinear system 
modeling the motion of an isolated wave is localized in a 
small part of space and used in several fields such as plasma 
physics, nonlinear optic, hydrodynamic [20]. Q(x, y, t), S(x, 
y, t) and N(x, y, t) are complex-valued functions and R(x, y, 
t) is a real-valued function. In order to acquire novel trav-
eling solutions of CNMS, various new methods have been 
presented. Some of these methods are the new extension of 
the (G'/G)-expansion method [19], the sine-Gordon expan-
sion method [21], the modified exp (-ϕ(η))-expansion 
function method [22], the modified F-Expansion method 
and the generalized projective Riccati equation method 
[23], the first integral method [24].

In this research article, the Riccati- Bernoulli sub- ODE 
method is also applied to the Davey Stewartson system 
given by:

	 	 (2)

where U = U(x, y, t) and V = V(x, y, t) are the com-
plex wave envelope and the real forcing terms, respectively 
in [25]. γ, μ and σ are real constants. In order to acquire 
the solutions of various forms of the Davey Stewartson 
system, several mathematical techniques have been uti-
lized, for example; the exponential function method [25], 
the extended sinh-Gordon equation expansion method 
[26], the exp (-Φ (ξ))-expansion method, the first integral 
method and the Sine-Gordon expansion method [27], the 
Generalized Elliptic Equation Rational Expansion method 
[28], the direct similarity reduction method [29], the 
extended tanh method [30], the extended mapping method 
[31].

The paper’s draft is formed as follows: the Riccati 
Bernoulli sub-ODE method is summarized in Section 2. 
The technique is utilized to solve the nonlinear Maccari’s 
and Davey Stewartson systems in Section 3. Eventually, the 
conclusion of this paper is given in Section 4.

Riccati Bernoulli Sub-Ode Method
In this section, we express the elementary steps of the 

Riccati Bernoulli sub-ODE method. Any NLPDE can be 
taken in the following form:

	 	 (3)

where R is a polynomial that consists φ(x, t) and its par-
tial derivatives.

Step 1: In order to acquire the solitary wave solution of 
Equation 1 and Equation 2, we utilize the traveling wave 
transformation,

	 	 (4)

where φ(x, t) = φ(η) is an unknown function to be found, 
k is defined as the width of the traveling wave and v is iden-
tified as the velocity of the soliton. Then, the Equation 3 is 
turned into the following ODE:

	 	 (5)

in which  and so on.

Step 2: Assume that Equation 5 is the solution of the 
Riccati-Bernoulli equation of the form:

	 	 (6)

in which a1, a2, a3 and m are constants. Utilizing from 
the Equation 6, we acquire

	 	 (7)

and

	 	
(8)

The other derivatives of the function φ can be similarly 
acquired. 

Remark 1. Equation 6 is reduced to the Riccati equa-
tion when a1a2 ≠ 0 and m = 0. Additionally, Equation 6 is 
reduced to the Bernoulli equation when a2 ≠ 0, a3 = 0, and 
m ≠ 1. The solutions of Equation 6 are as follows:

Set 1: For m = 1, Equation 6 has the following solution 

	 	 (9)

Set 2: For m ≠ 1, a1 = 0 and a3 = 0, Equation 6 has the 
following solution

	 	 (10)

Set 3: For m ≠ 1, a1 ≠ 0 and a3 = 0, Equation 6 has the 
following solution

	 	
(11)

Set 4: For m ≠ 1, a2 ≠ 0 and , Equation 
6 has the following solution
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	 	 (12)

and

	 	
(13)

Set 5: For m ≠ 1, a2 ≠ 0 and , Equation 
6 has the following solution

	 	 (14)

and

	 	 (15)

Set 6: For m ≠ 1, a2 ≠ 0 and , Equation 
6 has the following solution

	 	
(16)

in which C is a constant.
Step 3: Finally, if φ and its derivatives are substituted 

into Equation 5, we can get a set of algebraic equations con-
sisting of the powers of φ. Assuming the coefficients of each 
power of φ equal to zero, we acquire a system of algebraic 
equations for a1, a2, a3, k and v. When the parameters are 
substituted into Equations 9-16, the traveling wave and 
other solutions of the Equation 3 are acquired.

APPLICATIONS OF THE METHOD TO GOVERN-
ING SYSTEMS

The Maccari’s System
To construct analytical solutions of the system in 

Equation 1, we assume,

	 	
(17)

in which a, b, c and d are constants to be calculated later. 
Substituting Equation 17 into the system in Equation 1, we 
acquire

	 	
(18)

Utilizing the following transformation to reduce the 
Equation 1,

	 	 (19)

in which β is constant, the system in Equation 1 is 
rewritten as,

	 	
(20)

Integrating the fourth equation of the Equation 20 with 
respect to η and assuming the integration constant as zero, 
we acquire

	 	 (21)

Replacing Equation 21 into the other equations of 
Equation 20, we obtain

	 	

(22)

To solve the system in Equation 22, we can give the fol-
lowing relations

	 	 (23)

in which c1 and c2 are constants. Replacing Equation 23 
into the system in Equation 22, we acquire

	 	 (24)

If U and its derivatives are substituted into Equation 24, 
and we take m = 0, then we acquire the following equation

	 	
(25)

If we collect all the coefficients of uj(j = 0, 1, 2, 3) and 
assuming each to equal zero in Equation 25, the following 
system is acquired.

U0 coefficient: 

	 	 (26)

U1 coefficient: 
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	 	 (27)

U2 coefficient: 

	 	 (28)

U3 coefficient: 

	 	 (29)

Solving the system consisting of Equations 26-29, we 
acquire the following families:

Family 1:

	 	
(30)

When substituting parameters in Equation 30 into 
Equation 18, we get the following equations:

	 	
(31)

	 	
(32)

in which 2β - 4a > 0 and a3(1 + c1 + c2) < 0.

	 	
(33)

	 	
(34)

in which 2β - 4a > 0 and a3(1 + c1 + c2) > 0 for proper 
solutions.

	 	
(35)

	 	
(36)

in which 2β - 4a > 0 and a3(1 + c1 + c2) < 0.

	 	
(37)

	 	
(38)

in which 2β - 4a > 0 and a3(1 + c1 + c2) > 0 for proper 
solutions.

	 	
(39)

	 	
(40)

in which 2β - 4a > 0 and a3(1 + c1 + c2) < 0.

	 	
(41)

	 	
(42)

in which 2β - 4a > 0 and a3(1 + c1 + c2) > 0 for proper 
solutions. For the solutions u1,2(x, y, t), v1,2(x, y, t) and 
w1,2(x, y, t), we yield the dark optical solutions,

where . For the solutions u1,3(x, y, t), v1,3(x, y, 
t) and w1,3(x, y, t), we yield the dark optical solutions,

Family 2:

	 	
(43)
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When we substitute parameters in Equation 43 into 

Equation 18, we get the following equations:

	 	
(44)

	 	
(45)

in which c + a2 > 0 and β - 2a > 0 for valid solutions.

	 	
(46)

	 	
(47)

in which c + a2 < 0 and β - 2a > 0 for valid solutions. 

Since v2,3(x, y, t) = c1u2,3(x, y, t) and w2,3(x, y, t) = c2u2,3(x, 

y, t), we acquire the following solutions for the solutions  

u2,3(x, y, t), v2,3(x, y, t) and w2,3(x, y, t).

We acquire the following solutions for the solutions 
u2,3(x, y, t), v2,3(x, y, t) and w2,3(x, y, t).

Family 3:

	 	 (48)

Inserting the parameters in Equation 48 into Equation 
18, we get the following equations:

	 	 (49)

(a)	  (b)

Figure 1. The (a) 3D and (b) 2D graphs of Q(x, y, t) for the solution u3(x, y, t) under c1 = 0.5, c2 = 0.25, a3 = 0.03, β = 0.5, 
a = -0.75, b = 0.02, d = 0.04, C = 3 and y = 0.
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	 	 (50)

	 	 (51)

in which β - 2a > 0 for proper solutions. For the solu-
tions in Equations 49-51, we get

	

The Davey-Stewartson System
To construct new analytical solutions of the system, uti-

lizing the following wave transformation

	 	 (52)

the following reduced ODEs are acquired:

	 	 (53)

	 	 (54)

from the real part and the relation is derived as:

	 	 (55)

Integrating Equation 54, we have

	 	 (56)

Substituting Equation 56 into Equation 53, we have

	 	 (57)

If ϕ and ϕ" are substituted into Equation 57 and setting 
m = 0, then the following equation is produced:

	 	
(58)

Compiling all the coefficients of ϕs (s = 0, 1, 2, 3) and 
assuming each to equal zero in Equation 58, the following 
algebraic system is derived:

ϕ0 coefficient: 

	 	 (59)

ϕ1 coefficient: 

	 	 (60)

ϕ2 coefficient:

	 	 (61)

(a)	  (b)

Figure 2. The 3D graph of (a) Q(x, y, t) and (b) R(x, y, t) for the solution u2,3(x, y, t) under c1 = 1, c2 = 2  c = -2, β = 0.5, a 
= 1, b = 2, d = 0, C = 5, y = 0.
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ϕ3 coefficient:

	 	 (62)

Solving this algebraic system from Equation 59 to 
Equation 62, we obtain the following families. 

Family 1:

	 	
(63)

Substituting parameters in Equation 63 into Equation 
52, we acquire the following soliton solutions

	 	 (64)

	 	
(65)

	 	 (66)

	 	
(67)

where γ(γn2 + γλ2 + r) > 0 for existence of obtained solu-
tions and the following dark soliton solutions:

	 	 (68)

	 	 (69)

where γ(γn2 + γλ2 + r) < 0 for existence of solutions 
U1,3(x, y, t) and V1,3(x, y, t).

Family 2:

	 	 (70)

Substituting parameters in Equation 70 into Equation 
52, we acquire the following soliton solutions:

	 	
(71)

	 	
(72)

	 	
(73)

	 	
(74)

where γ(–ασ + 2µ) < 0 and a3γ > 0 for existence of 
obtained solutions and the following dark soliton solutions:

	 	
(75)

Figure 3. The 3D graph of (a) U1,1(x, y, t) and (b) V1,1(x, y, t) with, r = 1, γ = -0.5, n = 0.5, σ = 0.5, μ = 0.5, α = 1, β = 2, J = 0.
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(76)

where γ(–ασ + 2µ) < 0 and a3γ < 0 for existence of solu-
tions U2,3(x, y, t) and V2,3(x, y, t).

CONCLUSION

In this research article, we have seen that computer 
algebra is a powerful technique to solve all complicated 
problems in mathematical sciences. Using the method, 
we obtained the new exact wave and soliton solutions of 
the complex nonlinear systems Davey-Stewartson and 
Maccari’s systems. All the solutions verify the models in 
this study. We also describe the 2D, and 3D graphs of some 
of the acquired solutions in this study. Some of the reported 
solutions in this paper have important physical meanings, 
for instance, the hyperbolic tangent arises in the calculation 
of magnetic moment and rapidity of special relativity, and 
the hyperbolic cotangent arises in the Langevin function 
for magnetic polarization [32]. All the computations in this 
study are carried out with the aid of Maple. The acquired 
solutions are new in the literature. The proposed method 
can also be used to solve various NLPDEs in mathematical 
physics.
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