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ABSTRACT

In this work, we investigate a symmetry reduction of the recently discovered (3 + 1)-dimensional 
equation of the Monge-Ampère type. This equation forms a bi-Hamiltonian system using Magri’s 
theorem when expressed in the two-component form. We select a particular linear combination 
of the Lie point symmetries belonging to this system to conduct symmetry reduction, resulting 
in a new (2 + 1)-dimensional system in two-component form. Lagrangian and first Hamiltonian 
densities are then calculated. We employ Dirac’s theory of constraints to obtain symplectic and 
first Hamiltonian operators. Subsequently, we transform the symmetry condition of the reduced 
system into a skew-factorized form to determine the recursion operator. Applying the recursion 
operator to the first Hamiltonian operator yields the second Hamiltonian operator. We demon-
strate that the reduced system is a bi-Hamiltonian integrable system in the sense of Magri. Lie 
point symmetries of the reduced system are identified. Finally, we calculate integrals of motion 
using the inverse Noether theorem and prove that they have the total divergence form.
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INTRODUCTION

Evolutionary Hirota type equations in (3 + 1)-dimen-
sions have the form:

(1)

where 𝑢 is an unknown that depends on the coordinates 
(𝑧1, 𝑧2, 𝑧3, 𝑡) and 𝑓, 𝑔 are smooth functions of 𝑢𝑖𝑗 (𝑖, 𝑗 = 
1,2,3,𝑡). The subscripts 𝑖, 𝑗 of 𝑢 denote partial derivatives 
with respect to the designated variables, such as 𝑢𝑡2 = 𝜕2 𝑢 
⁄ 𝜕𝑡𝜕𝑧2, 𝑢𝑡2 = 𝜕2𝑢/𝜕𝑡𝜕𝑧2. In [1], these types of equations 

were studied extensively and a general equation of the form 
(1) that possesses a Lagrangian had been derived. All such
equations have the Monge-Ampère form, where the only
nonlinear terms consist of minors of the Hessian matrix of
𝑢. In this paper, it is sufficient for our purposes to restrict
ourselves to a particular case of such an equation, namely:

(2)
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Here, 𝑎11, 𝑐4, 𝑐5, 𝑐8 and 𝑐10 are arbitrary constants. 
This equation, denoted as System-I , is expressed in the two 
component form:

	 	
(3)

where 𝑎11 and the condition 𝑐10𝑐8 = 𝑐5𝑐9 is imposed. 
[1,2]. The operator:

	 	 (4)

is introduced for brevity, where 𝐷𝑖 denotes the total 
derivative with respect to 𝑧𝑖. The explicit form of (3) is 
given as:

	 	
(5)

In [1, 2], the bi-Hamiltonian structure of (5) was dis-
covered, demonstrating that this system is integrable in the 
sense of Magri [3,4]. In four dimensions, the evolutionary 
Hirota-type equations (1) exhibit the symplectic Monge- 
Ampère property, as demonstrated in former studies [5,6]. 
These equations find applications in various fields, particu-
larly in gravitational physics. For instance, they are relevant 
to Plebanski’s so called heavenly equations which simplify 
the complex Einstein field equations governing self-dual 
gravitational fields [7].

In this study, we find out if the two-component system (3) 
could be reduced into a (2 + 1)-dimensional bi-Hamiltonian 
system. We perform the reduction using the method previ-
ously applied in [8,9,10]. We choose a specific linear com-
bination of symmetries that is critical to the success of the 
reduction. Upon obtaining the (2 + 1)-dimensional system 
in two-component form, we employ the method used before 
in [11-16] to construct the bi-Hamiltonian system. In order 
to obtain the first Hamiltonian structure, we use Dirac’s con-
straint analysis [17]. The skew-factorized form of the sym-
metry condition is reduced from the (3 + 1)-dimensional 
system [1] to obtain the recursion operator. The second 
Hamiltonian operator is obtained by applying the recursion 
operator to the first. Magri’s theorem [3,4] is then employed 
to determine whether the (2 + 1)-dimensional system forms 
a bi-Hamiltonian system, indicating its integrability.

Completely integrable systems are intriguing because 
they present many symmetries and conserved densities in 
their solutions, although finding them is often challeng-
ing. We employ tools of Lie symmetry analysis to conduct 
symmetry reduction and discover first integrals. Recent 
papers such as [18-20] have used this powerful approach, 
where the authors have adopted power series expansion to 
find exact solutions of some nonlinear equations. In addi-
tion to well-known analytical methods like Darboux [21], 

Bäcklund transformations [22] and the recently discovered 
Kudryashov method [23], as well as the generalized auxil-
iary equation technique [24]; numerical methods also play 
a crucial role in this research field. Historically, the well-
known KdV equation was initially solved through a numer-
ical study [25]. Recently, new numerical approaches, such 
as the Fractional Iteration Algorithm [26] and Variational 
Iterational Algorithm [27] have been employed to obtain 
exact solutions for some nonlinear evolution equations. 
In this paper, we adopt Dirac constraint analysis which is 
very powerful in handling variational problems when the 
Lagrangian density is linear in velocity. However, in any 
other case, such as when the Lagrangian density is qua-
dratic in velocity, this approach is not applicable. Magri 
made valuable contributions to the field of Hamiltonian 
systems by proving a theorem stating that evolutionary sys-
tems may have a multi-Hamiltonian structure. The Magri 
theorem, along with Dirac constraint analysis, has paved 
the way for discovering new integrable Hamiltonian sys-
tems, as evidenced in [28-33]. Besides the theoretical realm 
of science, Hamiltonian systems find utility in applied engi-
neering problems as demonstrated in [34].

This paper is organized as follows: In section 2, we 
define the symmetries of the system (3) and conduct sym-
metry reduction to obtain the reduced system in two-com-
ponent form. In section 3, we verify that the system is 
in Euler-Lagrange form and determine the degenerate 
Lagrangian density belonging to the system. Starting from 
the degenerate Lagrangian density, we construct the first 
Hamiltonian structure of the reduced system. In section 
4, we obtain the recursion operator using the skew-factor-
ized method for the symmetry condition. In section 5, we 
compose the recursion operator with the first Hamiltonian 
operator to get the second Hamiltonian operator. Then, we 
apply Magri’s Theorem to establish the second Hamiltonian 
structure of the reduced system. In section 6, we identify 
Lie point symmetries and obtain the Lie Algebra of the 
reduced system. We determine the symmetry characteris-
tics and apply these results in Noether’s Theorem to iden-
tify new conserved densities of the system. Once we obtain 
the new conserved densities, we validate their legitimacy by 
casting them into total divergence form. 

SYMMETRY REDUCTION AND THE (2 + 1) 
-DIMENSIONAL SYSTEM

In [2], the generators of point symmetries for (3) were 
identified as follows;

	 	
(6)

where 𝑎, 𝑏, 𝑐 and 𝑒 are arbitrary smooth functions, and 
𝜁 is defined as 𝜁 = 𝑐5𝑧1 − 𝑐8𝑧2. Given these symmetries, we 
choose the particular combination:
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	 	 (7)

and get the symmetry:

	 	 (8)

Equation (8) leads to the characteristic equation:

	 	 (9)

[35]. Integrating both sides of the first two equations 
given in (9) results in an invariant 𝑍1 as follows:

	 	 (10)

Likewise, integrating both sides of the last two equa-
tions given in (9) leads to an invariant 𝑍2 as follows: 

	 	 (11)

Therefore, the invariants of 𝑋 determined by its charac-
teristic equation (9) are:

	 	 (12)

Consequently, the total derivatives undergo a transfor-
mation expressed as:

	 	 (13) 

In equation (2), by replacing the derivatives with expres-
sions from (13) and renaming variables:

	 	 (14)

we obtain the new (2 + 1)-dimensional evolutionary 
equation:

	 	
(15)

where 𝑎 =  𝑐5 − 𝑐8, 𝑏 =  𝑐5 − 𝑐4, 𝑐 =  𝑐10 − 𝑐9 are 
arbitrary constants and ∆= 𝑢22 − 𝑢12. Equation (15) is 
represented in the two component form:

	 	
(16)

 

The superscript 𝑟 indicates that the relevant parameter is 
for the reduced (2 + 1)-dimensional system. Two equations 
presented in (16) compose the new (2 + 1)-dimensional 
system. 

FIRST HAMILTONIAN STRUCTURE OF THE 
(2 + 1)-DIMENSIONAL REDUCED SYSTEM 

 Lagrangian density is the starting point for construct-
ing the Hamiltonian structure of the new system. Thus, it 
is essential to verify that the reduced equation (15) is an 

Euler-Lagrange equation. Euler-Lagrange equations must 
satisfy the Helmholtz condition [35]. We verify that (15) 
possesses a Lagrangian density by checking the Helmholtz 
condition. Homotopy formula enables us to obtain the 
Lagrangian density. We present the result of our calculation 
after skipping the total derivative terms as follows:

	 	
(17)

Euler-Lagrange equation using this result yields the 
reduced equation (15) which is in one component form. 
However, we want to obtain 𝐿𝑟 in two component form so 
that we can proceed with Dirac constraint analysis. The 
transformation 𝑢𝑡 = 𝑣 is applied to appropriate terms of (17) 
so that Euler-Lagrange equation with the new Lagrangian 
density results in the reduced system (16). Skipping total 
derivative terms, we present the new Lagrangian density as:

	 	
(18)

Subsequently, we obtain canonical momenta associated 
with the coordinates 𝑢 and 𝑣 as follows:

	 	
(19)

With the results obtained so far, the first Hamiltonian 
density  follows directly using the Legendre transforma-
tion, which in our case is expressed in the following way:

	 	 (20)

Substituting, (16),(18) and (19) into (20), we obtain:

	 	 (21)

Next, we aim to find the symplectic operator 𝐾𝑟. 
Lagrangian density (18) is degenerate because it is linear in 
velocity. Consequently, it is not possible to express veloci-
ties as a function of momenta and vice versa, as evident in 
(19). Dirac successfully developed a theory to analyze such 
cases [17]. Guided by his work, we define the second-class 
constraints in terms of canonical momenta (19) as:

	 	
(22)

 so that  and  are set. The symplectic ope-
rator is defined in terms of these constraints as:
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(23)

similarly as in [1, 11, 33, 36]. The Poisson Bracket of 
two constraints is denoted as , where the following 
relations hold:

	 	
(24)

Here,  is the discrete Dirac Delta function and 𝛿(𝑧 − 
𝑧′) is the continuous Dirac Delta function. Moreover, we set 
𝛱1 = 𝛱𝑢, 𝛱2 = 𝛱𝑣, 𝑢2 = 𝑣 and 𝑧 =  (𝑧1, 𝑧2). Using (22) 
and (24), we can express, for instance, the  element of 
the symplectic matrix as:

	 	 (25)

Making use of the Dirac Delta function properties, (25) 
results in:

	 	 (26)

Through similar but lengthy calculations, we obtain  
in the skew-symmetric form:

	 	
(27)

Since the Poisson Bracket operation is anti-symmetric, 
 is easily found as: 

	 	
(28)

and using the property given in (24),  is given as 
follows:

	 	 (29)

With these results, we obtain the symplectic matrix:

	 	 (30)

where  is given in (27). The differential 2-form asso-
ciated with 𝐾𝑟 is given in the form:

	 	 (31)

Here, the summation is taken over the repeated sub-
scripts, while Ʌ denotes the wedge product. Checking the 
closeness condition:

	 	 (32)

of the differential 2-form (31) in a similar manner as 
done before in [1], reveals that the closeness condition (32) 

is satisfied. Therefore, the 𝐾𝑟 matrix is a symplectic opera-
tor and its inverse which is given as:

	 	 (33)

is a Hamiltonian operator [37]. With the use of (30) and 
(33), we get:

	 	
(34)

where  in skew-symmetric form is given by:

	 	
(35)

Here,  denotes the first Hamiltonin operator of the 
reduced system. The first Hamiltonian structure of the sys-
tem is identified by the matrix equation:

	 	 (36)

where 𝛿𝑢 and 𝛿𝑣 are variational derivatives with respect 
to 𝑢 and 𝑣, respectively. By substituting equations (16), (21) 
and (34) into (36) and performing the calculations, we find 
out that equation (36) holds for the (2 + 1)−dimensio-
nal system. Therefore, the reduced system (16) exhibits a 
Hamiltonian structure just like the original system (3). 𝐿𝑟, 
𝐻𝑟, 𝐾𝑟 and 𝐽𝑟 are obtained with identical results through 
direct reduction from the corresponding parameters 𝐿, 𝐻1, 
𝐾, 𝐽0 given in [1] using the transformations (13).

SYMMETRY CONDITION IN A SKEW-FACTORIZED 
FORM

 We define two Lie equations:

	 	 (37)

where 𝜏 is the group parameter; 𝜑 and 𝜓 are symmetry 
characteristics. The symmetry condition of an equation is its 
differential compatibility with the Lie equations, and it is 
given as:

	 	 (38) 

The symmetry condition of the reduced equation (15) is 
expressed in the following form:

	 	 (39) 

where the operator defined in (4) is used for brevity. If 
the symmetry condition can be converted to the skew-fac-
torized form:

	 	 (40)
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while the commutator relations:

	 	 (41)

are satisfied, Lax pairs and the recursion operator can 
be obtained. The operators are obtained by reduction from 
equation (6.6) given in [1] as follows:

	 	
(42)

The commutator relations (41) are satisfied with these 
results. Lax pair is defined by:

	 	 (43)

where λ is the spectral parameter. This pair yields the 
following results in our case with the use of (42):

	 	
(44)

We have checked that the commutator condition:

	 	 (45)

holds. Bringing the symmetry condition into the 
skew-factorized form (40) also enables us to write the 
recursion relations for symmetries as:

	 	 (46)

Using (42) in (46) and noting the relation:

	 ,	 (47)

we transform the two equations in (46) into the matrix form:

	 	
(48)

wherefrom we obtain the recursion operator as

	 	
(49)

Here  is given by:

	 	
(50)

Direct reduction from R given in [1] results in the same 
𝑅𝑟 (49).

SECOND HAMILTONIAN STRUCTURE OF THE 
(2 + 1)-DIMENSIONAL REDUCED SYSTEM

 The second Hamiltonian operator  is obtained by 
applying the recursion operator to the first Hamilton ope-
rator as expressed by the equation:

	 	 (51)

The matrix element  of the operator  is obtai-
ned through the matrix multiplication (51), utilizing the 
properties: 

	 	
(52)

of the operator 𝐿𝑖𝑗(𝑘) given in (4). This leads to the 
expression:

	 	 (53)

which results in:

	 	 (54)

The equation for  is given by:

	 	

(55)

resulting in:

	 	 (56)

utilizing the properties (52). For , the equation is 
given by:

	 	 (57)

which simplifies to:

	 	 (58)

For , the equation is given by:

	 	

(59)

 

resulting in:

	 	
(60)

which is in skew-symmetric form. Equations (54), (56), 
(58) and (60) constitute the matrix representation of the 
second Hamiltonian operator obtained as:

	 	
(61)
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where  is given in (60). Similar to previous para-
meters, direct reduction from 𝐽1 given in [1] results in the 
same  (61).

The Hamiltonian operators  and  form a 
Hamiltonian pair if their linear combination  
is also a Hamiltonian operator. In this case, the linear com-
bination is obliged to satisfy skew symmetry and the Jacobi 
Identity properties as it is stated by Definition 7.1 in Olver’s 
book [35]. It is easy to see that skew symmetry is satisfied 
since both  and  are obviously skew symmetric, i.e, 𝐽† 
= −𝐽 holds for both, where † denotes the adjoint operator. 
On the other hand, checking the Jacobi Identity condition 
is a complicated task. However, Theorem 7.8 suggested by 
Olver in his book simplifies this task. Therefore, we use 
Olver’s method in a similar fashion that is demonstrated in 
[14] and conclude that Jacobi Identity is satisfied.

According to Magri’s theorem [3, 4], an evolutionary 
system is integrable if it satisfies the following equation: 

	 	 (62)

That is, the (2 + 1)-dimensional system forms a bi-Ha-
miltonian structure if a second Hamiltonian density  
satisfies (62). 

The second Hamiltonian density 𝐻0 of the (3 + 
1)-dimensional system is given by (4.1.6) in [2]. Applying 
the transformations (13), we derive  for the (2 + 
1)-dimensional system as:

	 	 (63)

where  By substituting equations (16), 

(61) and (63) into the matrix equation (62), we confirm 
that the equation holds. Hence, we have shown that the (2 + 
1)-dimensional system admits a bi-Hamiltonian structure, 
analogous to the (3 + 1)-dimensional case.

NOETHER’S THEOREM AND INTEGRALS OF 
MOTION

 Using the software package REDUCE 1, point symme-
tries of the new (2 + 1)-dimensional system (16) are iden-
tified as follows:

	 	

(64)

In the framework of Lie theory, point symmetries act 
as symmetry generators if they form a Lie algebra. We con-
struct a table illustrating the Lie algebra structure of the 
point symmetries (64). The intersection of the 𝑖𝑡ℎ row and 
the 𝑗𝑡ℎ column in this table shows the result of the commu-
tator operation [𝑋𝑖, 𝑋𝑗].

For convenience, the following notation is used in the table:

	 	

(65)

For each symmetry generator X, corresponding sym-
metry characteristics provide the independent variables 
that remain untransformed under the symmetry transfor-
mation. In [35], symmetry generators are defined in the 
following general form:

	 	 (66)

and the corresponding characteristics are defined in the 
form:

	 	 (67) 

These equations are expressed using the Einstein sum-
mation convention. In the case of (2 + 1) −dimensional 

Table 1. Commutators of point symmetry generators of reduced system

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 0 X1
(1,4,6) 0 X1 0 X10 0 0 0

X2 0 0 0 0 0 0 -X7 -X8 -X9 -X10

X3 -X1
(1,4,6) 0 0 X2

(1,4,6) 0 0 X1
(7,9) X2

(7,9) X3
(7,9) 0

X4 0 0 -X2
(1,4,6) 0 X4 0 0 0 X10 0

X5 -X1 0 0 -X4 0 -X6 X7 X8 X9 0
X6 0 0 0 0 X6 0 0 X10 0 0
X7 -X10 X7 -X1

(7,9) 0 -X7 0 0 0 0 0
X8 0 X8 -X2

(7,9) 0 -X8 -X10 0 0 0 0
X9 0 X9 -X3

(7,9) -X10 -X9 0 0 0 0 0
X10 0 X10 0 0 0 0 0 0 0 0
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system, indices 𝑖 take values: 𝑖 =  1,2,3. Additionally, we 
have two dependent variables 𝑢 and 𝑣, so indices 𝛼 take 
values: 𝛼 = 1, 2. Accordingly, we define:

	 	
(68)

For every generator 𝑋, we obtain two characteristics, 
namely 𝜑 and 𝜓, which are related to the transformations of 
𝑢 and 𝑣 respectively. Using (68) in the equations (66), (67) 
and replacing 𝑢𝑡 by 𝑣, 𝑣𝑡 by 𝑞 according to (16), we find the 
characteristics pair (𝜑𝑖, 𝜓𝑖) of each generator 𝑋𝑖 (𝑖 =  1, 2, 
… ,10) as the following:

	 	

(69)

These symmetry characteristics provide a path to find new 
integrals of motion conserved by the flow of (16). By substitut-
ing the time variable “𝑡” with the group parameter “𝜏”, we can 
employ the Lie equations provided in (37). Upon substituting 
these Lie equations into the matrix equation (36), we get:

	 	
(70)

This represents the Noether theorem in Hamiltonian 
form, providing the conserved density 𝐻𝑟 corresponding to 
the given symmetry. Remarking that the first Hamiltonian 
operator (33) is the inverse of the symplectic operator, we 
arrange the matrix equation (70) into the inverse Noether 
theorem, taking the following form:

	 	 (71)

We write this matrix equation for each characteristics 
pair (𝜑𝑖, 𝜓𝑖) that we obtained in (69) as:

	 	 (72)

Solving this equation, we determine the conserved densi-
ties, i.e., first integrals  corresponding to all variational point 
symmetry generators 𝑋𝑖 with characteristics (𝜑𝑖, 𝜓𝑖) as follows:

	 	

(73)

We observe that the first integrals , ,  fail to exist. 
Therefore, the corresponding generators 𝑋2, 𝑋3, 𝑋5 do not 
count as variational symmetries. We check the time deriva-
tive of every density given in (73) along the flow (16) and 
obtain all the variational symmetries in total divergence 
form respectively as follows:

	 	

(74)

We have successfully expressed the first integrals (73) 
in total divergence form (74). Thus, we can conclude that 
these integrals are indeed the constants of motion for the 
flow governed by the system (16). In essence, total diver-
gences provide an independent check that the correspond-
ing functionals 𝐻𝑟 are indeed integrals of motion subject to 
suitable boundary conditions.

CONCLUSION

We studied a symmetry reduction of the recently dis-
covered (3 + 1)-dimensional equation of the Monge-
Ampere type. Our goal was to explore if it is possible to 
obtain a new (2 + 1)-dimensional bi-Hamiltonian system 
by applying symmetry reduction to a particular case of 
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the (3 + 1)-dimensional equation. We used point symme-
try generators of the system and proceeded by choosing 
a special combination of the symmetries. We determined 
the transformation of total derivatives under this particular 
symmetry, then performed the reduction accordingly. We 
obtained all the parameters 𝐿𝑟, , 𝐾𝑟, , Rr,  and  of 
the reduced (2 + 1)-dimensional system. Two component 
representation made it possible to obtain the Hamiltonian 
operator through Dirac constraint analysis. Being able to 
find the second Hamiltonian function , we state that the 
reduced system maintains the bi-Hamiltonian structure 
of the original system. We confirmed that all parameters 
and operators could also be obtained by direct reduction 
from the original system, e.g., 𝐿, 𝐻1, 𝐾, 𝐽0, 𝑅, 𝐽1, 𝐻0 with the 
same symmetry choice. We identified the symmetry gen-
erators of the reduced (2 + 1)-dimensional system, along 
with their corresponding characteristic pairs (𝜑, 𝜓). By 
the Noether theorem, we revealed seven new integrals of 
motion that define the conserved densities of the system. 
We also proved that the time derivatives of all variational 
symmetries are total divergences. 

Thus, we presented a new method for obtaining (2 + 
1)-dimensional bi-Hamiltonian systems starting from (3 
+ 1)-dimensional bi-Hamiltonian systems. We have illus-
trated the involved procedure by an explicit example, 
producing a new bi-Hamiltonian system. We expect the 
suggested procedure to be a useful supplement to other 
techniques for generating (2 + 1)-dimensional bi-Hamilto-
nian systems.
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