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ABSTRACT

Wearable biomechanical sensor signals can be used to precisely recognize human lower ex-
tremity movements based upon gait parameters such as walking speed, which is an increasing-
ly important field with a significant role in biomedical studies. In this study, human walking 
patterns were classified using wearable biomechanical sensors and machine learning and time 
series analysis techniques. Accurate classification of level-ground gait patterns of IMU, digital 
goniometer (GON) and electromyography (EMG) sensor data is of great importance in in-
forming physicians and medical device innovators working in this discipline. For this study, 
an open access dataset recorded from four unilaterally placed IMUs, three GONs and eleven 
EMG sensors in 22 subjects at different walking speeds was used. The sliding time window 
method was used to extract features in the first part of biomedical signal processing. Then, the 
effects of various window lengths and single or multiple sensor models on machine learning 
classification performance are compared. The results of this study showed that the QSVM 
classifier and IMU-based sensor with a window length of 1000 (5s) had the highest classifi-
cation accuracy of 0.954 to classify human gait at different walking speeds based on the pro-
posed method. In addition, it is seen that the classifiers have different classification accuracy 
for the seven sensor models used. QSVM has higher accuracy in gait recognition compared 
to WNN and ESKNN classifiers. In particular, the accuracy (0.961) in the experiment using 
the IMU and GON multiple sensor and QSVM classifier is the highest among other sensor 
combinations and classifiers. When QSVM classification and gait recognition were compared, 
the accuracies were found as IMU (0.954), GON (0.827) and EMG (0.735) sensor models, 
respectively. Then, in dual sensor combination models, the highest accuracy was achieved in 
IMU-GON (0.961), IMU-EMG (0.895) and GON-EMG (0.776) sensor models, respectively. 
Finally, the accuracy of the IMU-GON-EMG model, in which all three sensors are included, is 
0.919. The findings of this study showed that IMU sensor models improved the classification 
performance in level-ground gait pattern recognition, and their use together with GON sensor 
models contributed positively to this performance. It has been found that EMG sensor models 
show lower classification performance compared to IMU sensor modelsg the necessary pre-
cautions were beneficial in terms of protecting the health of the employees.
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INTRODUCTION 

Between 2015 and 2050, the World Health Organization 
(WHO) and United Nations (UN) estimated that the pro-
portion of the global population over 60 years old will 
approximately double from 12% to 22% [1]. In recent years, 
the concept of developing novel methods and technolo-
gies that recognize daily human activities using data from 
wearable biomechanical sensors has gained popularity 
because of an increased older population. This approach 
has emerged because of the potential applications of such 
methods in various fields, including sports science, physical 
therapy, rehabilitation and assistive robotic device design 
[2-4]. 

In this study, we address recent studies that have clas-
sified human lower-extremity movements based on bio-
mechanical sensor data using machine learning (ML) 
algorithms and highlight the benefits and drawbacks of 
these approaches. Initially, we provide a brief overview of 
the biomechanical sensors frequently used to collect infor-
mation on lower-extremity activities in humans. Secondly, 
the sliding time window method and feature extraction 
methods used in human activity recognition studies are 
introduced and then machine learning applications in 
related work are presented. Finally, we focus on previous 
work that makes use of wearable sensor combination in 
studies of human movement recognition.

Wearable biomechanical sensors can be utilized to 
classify multiple movement patterns including walking 
speed (WS) in addition to estimating significant move-
ment metrics such spatiotemporal parameters [5, 6] or 
comparing gait variability between healthy and patholog-
ical gait [7, 8]. Several wearable biomechanical sensors, 
such as accelerometers, gyroscopes, magnetometers, elec-
tromyography (EMG) and goniometers (GON) have been 
employed to record information about human movement 
pattern classification. A common combination of these 
sensors is the inertial measurement unit (IMU), which 
can provide a more comprehensive view of movement 
by tracking both angular and linear motions. Because of 
their mobility, affordability, and ability to supply precise 
measurements of human movement in practical settings, 
IMUs have grown in popularity as tools for gathering bio-
mechanical data [9-11]. The effectiveness of movement 
and muscle activation during lower-limb activity depends 
on how a person maintains their posture. Kinematic data 
are gathered through motion capture cameras and digi-
tal goniometers, which measure joint angles and distance 
[12-14]. 

In terms of multiple movement patterns and gait phases, 
biomechanical study [15] have demonstrated considerable 
biomechanical variances in how human muscles and joints 
work. Based to this context, a wearable system’s perception 
of the human body is its most fundamental capability to 
carry out the assigned task [16, 17], making human move-
ment recognition systems comprehensive and integrated 

systems. The signal processing methods and sensor com-
binations applied must be compatible to clearly recognize 
human movement. Nagaraj et al. applied the EMG signal 
and angular acceleration from motion cameras as input to 
the ANN model for the estimation of the lower extremity 
joint angle of the athletes during exercise and compared it 
with the experimental results measured with a digital goni-
ometer [13]. Lencioni et al. statistically analyzed the human 
movement during straight walking and stair climbing at 
different speeds with the biomechanical parameters calcu-
lated from the force plate, motion capture camera and EMG 
data, and compared the results [15].

A popular time series analysis method for recognizing 
lower extremity activity is the sliding window method. The 
length of the selected window affects how well this method 
recognizes the human movement. While processing takes 
more time when a wider window length is used, recog-
nition success declines because the motion pattern is not 
adequately recognized for narrower window lengths. The 
length of the sliding window was chosen to range from 0.08 
seconds to 2.5 seconds and even 30 seconds in the motion 
recognition tests that have been published in the literature 
[18]. Noor et al. proposed an adaptive method for select-
ing the temporal frame length for activity recognition using 
IMU sensors [19]. Wang et al. evaluated different win-
dow lengths for recognizing human motion patterns and 
observed that pattern recognition was acceptable at lengths 
of 0.5 s and 2.5 s–3.5 s [20].

One of the main challenges in developing such methods 
are selecting appropriate features from sensor data that can 
accurately represent different types of human movements. 
Machine learning algorithms that can easily learn from 
appropriate extracted features by ML engineers and classify 
activities based on them, have been used to overcome this 
challenge [9-11]. Huynh and Tran, in their study on human 
fall detection, proposed to apply frequency domain features 
using FFT (Fast Fourier Transform) of IMU sensor data 
[21]. Shawen et al., in their machine learning classification 
study of Parkinson’s disease detection, suggested using the 
time domain and frequency domain mean, standard devi-
ation, skew, kurtosis features of IMU sensor data [22]. In 
another study, in which continuous-time walking speed 
determination algorithms and sensors for robotic knee 
and ankle prosthesis were evaluated, 8 time series features 
of each gait phase including minimum, maximum, mean, 
standard deviation, start value, end value, signal magnitude 
area, and signal energy has been used [23].

Recent studies have used machine learning algorithms 
including Support Vector Machines (SVM), K-Nearest 
Neighbor (KNN), and Artificial Neural Networks (ANN) 
to classify human lower-extremity movements using infor-
mation gathered from biomechanical sensors [23-26]. 
One study classified ambulatory activities of daily living 
using a SVM algorithm based on information gathered 
from IMU and EMG sensors. The SVM algorithm’s clas-
sification accuracy of 0.943 demonstrates the promise of 
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machine-learning methods [27]. Another study analyzed 
the importance of several sensor types and locations. 
Camargo et al. observed that biomechanical sensors such 
as IMU, GON, and EMG are crucial for classification, goni-
ometers provide the majority of accuracy for estimation of 
stair/ramp, and a single IMU for speed estimation on the 
level ground dramatically reduced the need for all addi-
tional sensor types and locations [28]. In addition, Dong 
et al. have classified the gait phase and pattern with high 
accuracy using multi-channel EMG and IMU sensor data 
and machine learning algorithms [29].

Human movement recognition studies using wearable 
sensor data and machine learning tools are a very popu-
lar new research area. The most difficult issues for many 
applications are the precise classification and prediction 
of human lower-extremity movements. While under-
standing the user experience can improve the adaptability 
of rehabilitation devices to changing environments during 
the design phase, it can also considerably help physicians 
in clinical practice monitor patient activities in-depth. A 
few related works present studies such as fall detection 
[21], classification of patients with balance disorders such 
as Parkinson’s disease [22], the development of robotic 
motion assist devices [23]. Bhakta et al. evaluated the 
machine learning models they developed to readily pre-
dict walking speed on the data of subjects walking on a 
robotic knee-ankle prosthesis. They showed that using 
machine learning models provides high accuracy with low 
error rate, by applying the performance of their proposed 
model in various static walking speeds and dynamic speed 
trials [23].

Wearable biomechanical sensors, whose resolution and 
usage requirements have increased, are still limited in appli-
cation because the algorithms used in human motion pat-
tern recognition systems increase the computational load. 
This study proposes a machine learning approach-based 
method for human gait pattern recognition with features 
extracted from single and multiple combinations of IMU, 
GON and EMG wearable sensor signals. The sliding win-
dows method approach was used in feature extraction and 
the effects of different window sizes on the classification 
performance were examined in the experiments. The pri-
mary aim of our study was to investigate the performance 
of widely used machine learning classifiers to recognize 
human gait pattern of single and multiple wearable biome-
chanical sensor signals. Our objective was to determine the 
appropriate temporal gait features from wearable sensors 
subject to machine learning algorithms:
i)	 build signal processing methods for multiple biome-

chanical sensor channels, 
ii)	 observe sliding window length impacts on human 

movement pattern classification, 
iii)	compare ML classification performance of single and 

multiple wearable sensor models. 

MATERIALS AND METHODS

A graphical representation of the proposed methodol-
ogy is shown in Figure 1. Initially, the open-source dataset 
of Camargo et al. was used in this study, which included 
lower-extremity biomechanical and wearable sensor sig-
nals [30]. Then, biomedical signal processing and feature 
extraction methods are outlined for classifying the data 
from wearable sensors. Finally, machine learning tech-
niques were presented to classify human lower-extremity 
activities.

In this dataset, level-ground locomotion of the human 
lower extremity was performed at three distinct walking 
speeds using data from four IMU, three goniometer, and 
eleven EMG wearable sensors. Demographic information 
of 22 healthy individuals in this dataset is shown in Table 
1. With respect to each subject’s preferred speed, a total of 
thirty repetitions of level-ground walking have been per-
formed at each of three self-selected speeds: fast (F), normal 
(N), and slow (S). Fast, normal, and slow walking speeds 
(mean ± standard deviation) have been calculated using the 
average pelvic velocities of the subjects and were observed 
to be 1.45±0.27 m/s, 1.17±0.21 m/s, and 0.88±0.19 m/s, 
respectively.

The wearable biomechanical sensors have been placed 
unilaterally on the right side of the subjects when data-
set was created. At a sampling frequency of 200 Hz, IMU 

Figure 1. The overall procedure for the classification of hu-
man gait.

Table 1. Demographic information of subjects in this dataset

Gender 3 females and 19 males
Age 21±3.4 years
Height 1.70±0.07 m
Mass 68.3±10.83 kg
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data has been collected from the foot, shank, thigh, and 
trunk sensors along with a 3-axis accelerometer (Accx, 
Accy, and Accz) and 3-axis gyroscope (Gyrox, Gyroy, and 
Gyroz). Goniometer angle data has been collected from 
the ankle in sagittal and frontal planes, the knee in sagit-
tal planes and, the hip in sagittal and frontal planes, at a 
sample frequency of 1000 Hz. EMG data has been recorded 
from Gastrocnemius, Tibialis anterior, Soleus, Vastus 
medialis, Vastus lateralis, Rectus femoris, Biceps femoris, 
Semitendious, Gracilis, Gluteus medius and Right external 
oblique lower extremity muscles with a sampling frequency 
of 1000 Hz. In signal preprocessing, down-sampling method 
was applied to balance the sampling frequency of GON and 
EMG signals with the sampling frequency of IMU, and the 
sampling frequency of all wearable signals used in the study 
was obtained as 200 Hz.

Each wearable sensor data varied in duration and also 
included redundant parts that were at the beginning and 

at the end of the signal without carrying any information. 
For this purpose, wearable biomechanical sensor signal 
processing steps were applied to the signals using MATLAB 
(The MathWorks, 2021b). As shown in Figure 2, raw wear-
able sensor signals to clipped with a 5 second (s) duration 
to standardize signal lengths collected from movement rep-
etitions among different subjects.

Sliding window method, where window size and over-
lap size are the two main factors affecting segmentation 
performance, is very popular in the context of human 
activity recognition and aim to perform the sensor data 
segmentation preprocessing step. The length of the sliding 
time window will affect the movement recognition results. 
If the time window is too large, it may contain information 
from multiple activities, reducing the responsiveness of the 
recognition system and increasing the computational load. 
Conversely, if the time window is too small, some activi-
ties may be split into multiple consecutive windows, the 

(a) (b) (c) (d) (e) (f)

Figure 2. Wearable biomechanical sensors time series signal channels. (a) Foot IMU sensor, (b) Shank IMU sensor, (c) 
Thigh IMU sensor, (d) Trunk IMU sensor, (e) Angles of GON sensor, (f) EMGs of lower extremity muscles.
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recognition task is repeated too often but high recognition 
results are not obtained. As listed in Table 2, the sliding win-
dow algorithm calculates the number of segments (nSeg) 
by first dividing the signal time length (t) by the sliding 
window length (winlen). Each channel here represents the 
wearable sensor degrees of freedom shown in Figure 2. For 
each channel, time series and time-frequency domain fea-
tures of each segment were then computed. These sequen-
tial tasks were processed for all segments in a channel, and 
then the average of the segments was determined. Several 
window lengths of between 100 (0.5s) and 1000 (5s) was 
analyzed using IMU and GON sensor signals in this study. 
In addition, in the study, EMG sensors were also included 
in the experiments to evaluate the motion recognition per-
formance of wearable sensor combinations and the clas-
sification performances of the sensor combinations were 
compared.

The features were extracted from each signal segment 
segmented by the sliding windows method, and the aver-
age of these features obtained from the segments was 
applied as an input to machine learning. While mean, 
maximum (max), standard deviation (std), minimum 
(min), median absolute deviation (mad), interquartile 
range (iqr), and area of under curve (AUC) were used as 
the signal time series features, the time-frequency domain 
features were max, skewness, kurtosis and AUC calculat-
ing Fast Fourier Transform (FFT) of each wearable signal 
channel [21-23]. The degrees of freedom and number of 
extracted features for single and multiple wearable sensors 
are given in Table 3.

The extracted feature matrix and classification proce-
dures compose the two sections of the ML classification 
procedure. Initially, the extracted feature matrices were 
constructed to the type of the wearable sensors based on 

Table 3. Extracted feature matrix of wearable sensor signals for ML models

Sensor combination Number of sensors Degree of freedom of sensors Number of extracted features
IMU 4 24 24*11 = 264
GON 3 5 5*11 = 55
EMG 11 11 11*11 = 121
IMU-GON 9 29 24*11 + 5*11 = 319
IMU-EMG 15 35 24*11 + 11*11 = 385
GON-EMG 9 16 5*11 + 11*11 = 176
IMU-GON-EMG 20 40 24*11 + 5*11 + 11*11 = 440

Table 2. The pseudocode of proposed sliding window feature extraction method

Algorithm Sliding window feature extraction for IMU time series data.
Input: Fs, t, winlen, Wearable_Data
Output: Wearable _labels

1: Calculate nSeg = t / winlen
2: for i from 1 to nFiles
3:  Read Wearable _Data
4:  Store Wearable _ labels[i]= Wearable _Data.fileName for classfication labels
5:  Compute nChn = length(Wearable_Data(i,:))
6:  for j from 1 to nChn
7:  Compute Ct ={cj = Wearable_Data(:,j)}
8:  for k from 1 to nSeg
9:  Set segment ranges idx = k : k + winlen -1

10:  Compute segData = Ct(idx) 
11:  Extract features of segData segfts (:, j, k) = [timeSeriesFts(segData), timeFreqFts(segData)]
12:  Store average of all segments based on features Wearable _labels{i,2} = mean(segfts)
13:  end
14:  end
15: end
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the sliding window length. In this study, there was a total 
of 675 class labels, consisting 225 ‘F’, 221 ‘N’, and 229 ‘S’ 
labels. Then, ML classification section were evaluated 
using MATLAB (The MathWorks, R2021b) Classification 
Learner Toolbox. The classification process was per-
formed using three different ML algorithms, which are 
frequently employed in human movement classifica-
tion problems: Ensemble Subspace K-nearest neighbors 
(ESKNN), Quadratic Support Vector Machine (QSVM) 
and Wide Neural Networks (WNN). The K-Nearest 
Neighbors (KNN) non-hierarchical clustering approach 
detects input data characteristics based on likely simi-
larity with their neighbors. A neighborhood has been set 
to contain k points, and the closest neighbors of a query 
point are determined using a distance metric such as the 
Euclidean distance. Support vector machine (SVM) is a 
supervised classifier that transforms human gait data, 
which is fundamentally nonlinear data, into a higher 
dimensional feature space via different kernel approaches 
including linear, polynomial, and Gaussian RBF. This 
classification is achieved by finding the most appropriate 
separating hyperplane that provides the balance between 
the maximum margin width and the minimum classifi-
cation error between the predicted classes. A multilayer 
feed forward neural network known as an ANN consists 
of a collection of interconnected neurons, with connec-
tions between units occurring solely through hidden 
layers from input to output layers. All ML models were 
analyzed with the training hyper parameters included in 
Table 4 with repeated 10-fold cross-validation to avoid 
over-fitting. 

Performance metrics such as accuracy, receiving 
operating curve-area under curve (ROC-AUC) and con-
fusion matrix are used to determine how well the ana-
lyzed ML classifiers perform on the training, test and 
validation set. When a model correctly classifies posi-
tive and negative classes, the outputs are True Positive 
(TP) and True Negative (TN), respectively. Similarly, 
False Positive (FP) and False Negative (FN) are the mod-
el’s outcomes when the positive and negative classes are 
misclassified, respectively. Classification accuracy is cal-
culated by dividing the sum of the TP and TN by the 
total samples.

RESULTS AND DISCUSSION

The classification accuracies of the ML classifiers using 
different sliding window length based on IMU and GON 
sensor for gait classification are shown in Figure 3(a) and 
in Figure 3(c), respectively. Similarly, AUC-ROC scores of 
ML classifiers using IMU and GON sensor models are rep-
resented in Figure 3(b) and in Figure 3(d). The ML classi-
fication accuracies of IMU-based sensor and GON-based 
sensor were increasing with increased window lengths. The 
highest accuracies were 0.954 for IMU sensor and 0.828 
for goniometer sensor using window length of 1000 (win-
len-1000) and QSVM classifier. Similarly, the ROC-AUC 
score of IMU-based sensor and GON-based sensor were 
gradually increased with increased window lengths. In case 
of QSVM and window lengths of 1000, just as the ROC-
AUC score of IMU-based sensor reached 0.99, the ROC-
AUC score of GON-based sensor reached 0.97.

It can be seen from these graphs that the classifiers have 
different classification accuracy and ROC-AUC score for 
IMU and GON sensor models. QSVM has higher accu-
racy in gait speed recognition compared to other classifiers. 
In particular, the accuracy in the experiment using slid-
ing window length of 1000 based on the IMU sensor and 
QSVM classifier is the highest. In IMU sensor, the accuracy 
was found to be higher than those with the GON sensor. In 
gait recognition with QSVM classifier using IMU sensor, 
winlen-1000 (0.954), winlen-500 (0.913) and winlen-250 
(0.861) models are seen as the models showing the high-
est accuracy. Likewise, ROC-AUC scores were also ranked 
by the accuracy of the models. When the ML classifica-
tion performance were evaluated using wearable sensors, 
the overall (all ML classifiers, sensor types and window 
lengths) accuracies and AUC-ROC scores were 0.954 and 
0.99 for IMU sensor and 0.828 and 0.97 for goniometer sen-
sor, respectively.

The number of samples for each walking speed pre-
dicted by the ML models was shown in the confusion 
matrices in Table 5 and Table 6. The true gait speed labels 
for the samples were also shown in the columns. The paren-
thesized numbers in the lower row of the table showed the 
TP percentage, while the blue cells in the top row of the 
table indicated the TP value for each WS class. The FN 
value for a certain WS class was the total of the values in all 
of the cells in a row except for the blue cell.

Table 4. Machine learning model training hyper parameters.

ESKNN QSVM WNN
Ensemble method: Subspace
Learner type: Nearest neighbors
Number of learners: 30
Subspace dimension: 132

Kernel function: Quadratic
Kernel scale: Automatic
Box constraint level: 1
Multiclass method: One-vs-One
Standardize data: true

Number of fully
connected layers: 1
First layer size: 100
Activation: ReLU
Iteration limit: 1000
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The confusion matrix of the three classifiers using wear-
able IMU and GON sensor models with various sliding 
window lengths for gait recognition is shown respectively, 
in Table 5 and Table 6. In these tables, it can be seen that 
the three classifiers have different recognition accuracy for 
the three walking speeds. QSVM has higher TP for walking 
speed recognition compared to other classifiers. In partic-
ular, the TP value and percentage in the experiment using 
QSVM classifier based on IMU sensor with sliding window 
length of 1000 is the highest. Unlike, the GON sensor has a 
lower TP value and percentage, similar to the comparison 
in classification accuracies. In the experiments, the lowest 
TP value and percentage of the three classifiers is in the N 
speed class. Further, using the IMU model and QSVM clas-
sifier, the highest TP values for each class of walking speed 
were S (218), N (215), and F (211), respectively. While using 
the GON model and QSVM classifier, the highest TP values 

for each class of walking speed were S (186), N (176), and F 
(196), respectively.

The classification accuracies of the three classifiers using 
a sliding window length of 1000 based on EMG and other 
wearable sensor combinations for human gait recognition 
are shown in Figure 4(a) and ROC-AUC scores in Figure 
4(b). It can be seen from these graphs that the classifiers 
have different classification accuracy and ROC-AUC score 
for the five sensor models. QSVM has higher accuracy in 
gait recognition compared to other classifiers. In particular, 
the accuracy in the experiment using the IMU sensor and 
QSVM classifier is the highest among other sensor combi-
nations and classifiers. In combinations with the IMU sen-
sor, the accuracy was found to be higher than those with 
the EMG sensor. In gait recognition with QSVM classifi-
cation, IMU-GON (0.961), IMU-GON-EMG (0.919) and 
IMU-EMG (0.895) models are seen as the models showing 
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Figure 3. Comparison of IMU-based and goniometer-based sensors ML classification performance. (a) Classification 
accuracy of IMU sensor, (b) ROC-AUC score of IMU sensor, (c) Classification accuracy of GON sensor, (d) ROC-AUC 
score of GON sensor.
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the highest accuracy. Similarly, ROC-AUC scores were also 
ranked by the accuracy of the models.

The confusion matrix of the three machine learning 
classifiers using sliding window length of 1000 based on 
a combination of EMG and other wearable sensors for 
walking speed pattern recognition is shown in Table 7. In 
the last rows of Table 5 and Table 6 are shown confusion 
matrices of three classifiers using sliding window length 
of 1000 based on IMU and GON sensor, respectively. In 
these tables, it can be seen that the three classifiers have 
different TP values for the three walking speeds. QSVM 
has higher TP for walking speed recognition compared to 
other algorithms. In particular, the TP value in the exper-
iment using IMU sensor and QSVM classifier is the high-
est among other sensor combinations and recognition 

classifiers. In the experiments, the lowest TP value of the 
three classifiers is in the N speed class. Since it is a gait 
signal of healthy individuals, S speed class is confused 
with N speed class and F speed class is confused with 
N speed class, which is the main reason for the low TP 
value of N speed class. Further, combining the IMU-GON 
model and QSVM classifier, the highest TP values for each 
class of walking speed were S (218), N (213), and F (218), 
respectively.

The confusion matrices and ROC-AUC scores of the 
models were compared with three different classifiers to 
evaluate the human motion classification performance of 
multiple wearable biomechanical sensor combination mod-
els compared to single sensor models with the machine 
learning approach. Initially, the experiments of IMU and 

Table 5. Confusion matrices of ML classifiers using IMU-based sensor
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Figure 4. ML classification performance of multiple wearable sensor combination models. (a) Classification accuracy, (b) 
ROC-AUC score.

Table 6. Confusion matrices of ML classifiers using GON-based sensor.
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GON sensor models in 0.5s, 1s, 1.25s, 2.5s and 5s time 
intervals were carried out in order to evaluate the effect of 
different sliding window lengths on classification perfor-
mance. The classification accuracies and ROC-AUC scores 
of these experimental results, in which the sliding window 
length in the 5s time interval showed high performance in 

human motion recognition, are shown in Figure 3, and the 
confusion matrices are shown in Table 5 and Table 6. Then, 
the EMG sensor model using the sliding window length in 
the 5s time interval was included in the study and the sin-
gle and multiple classification performance of the wearable 
sensor models was analyzed with three different classifiers. 

Table 7. Confusion matrices of ML classifiers of multiple wearable sensor combination models
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The classification accuracies and ROC-AUC scores of the 
EMG sensor model and wearable sensor combination mod-
els are given in Figure 4, and the confusion matrices are 
given in Table 7.

IMU-based sensor with window length of 1000 (5s) 
model has the highest 0.954 classification accuracy for 
classifying human gait at different walking speeds based 
on proposed method. As shown in Figure 3(a) and Figure 
3(c), among the ML models using different sliding win-
dow lengths, window length of 1000 models for all of 
wearable sensors have the highest classification accuracy, 
while GON-based sensor with window length of 100 (0.5s) 
has the lowest classification accuracy. When ML models 
of GON-based sensor with window length of 1000 was 
compared to ML models of IMU-based sensor with win-
dow length of 200 (1s), the classification accuracy of these 
models was observed to be close to each other. IMU sen-
sors showed precise classification performance compared 
to GON sensors even at short window periods. Therefore, 
IMU sensors can be preferred in human lower extremity 
movement pattern recognition studies. 

The sliding time-window analysis have been frequently 
used in human activity recognition. Ma et al. have recog-
nized wheelchair users’ daily activities using DT and KNN 
classifiers and 10-fold cross-validation of fixed and adap-
tive sliding time-window approaches. Although only fixed 
posture activities can produce good outcomes with a fixed 
time window, it has been revealed that fixed posture and 
transition activities are recognized more effectively when 
applying an adaptive sliding window. Both adaptive and 
fixed window approaches have been demonstrated to have 
a 0.90 accuracy rate in recognizing postural activities on 
level-ground [18]. Noor et al. developed a novel adjustable 
sliding window approach for human activity recognition 
based on utilizing a single accelerometer. In this approach, 
the window size is continuously evaluated based on activity 
signal analysis. Comparing the proposed adjustable slid-
ing window approach to existing approaches that use fixed 
windows, the findings of the study revealed that the adjust-
able sliding window approach reached an accuracy rate of 
0.954 in the tests [19].

The classification accuracies of the three classifiers 
using a sliding window length of 1000 based on only IMU 
and other wearable sensor combinations for human gait 
recognition are shown in Table 8, comparatively. It can 
be seen from this table that the classifiers have differ-
ent classification accuracy for the seven sensor models. 
QSVM has higher accuracy in gait recognition compared 
to WNN and ESKNN classifiers. In particular, the accu-
racy (0.961) in the experiment using the IMU and GON 
multiple sensor and QSVM classifier is the highest among 
other sensor combinations and classifiers. When QSVM 
classification and gait recognition were compared, the 
accuracies were found as IMU (0.954), GON (0.827) and 
EMG (0.735) sensor models, respectively. Then, in dual 
sensor combination models, the highest accuracy was 

achieved in IMU-GON (0.961), IMU-EMG (0.895) and 
GON-EMG (0.776) sensor models, respectively. Finally, 
the accuracy of the IMU-GON-EMG model, in which all 
three sensors are included, is 0.919. The findings of this 
study showed that IMU sensor models improved the clas-
sification performance in level-ground gait pattern recog-
nition, and their use together with GON sensor models 
contributed positively to this performance. It has been 
found that EMG sensor models show lower classification 
performance compared to IMU sensor models.

It can be seen that the proposed method gave results that 
were roughly comparable to those of the studies mentioned 
in previous studies, when the wearable sensor combination 
models and only the IMU sensor model are compared in 
human gait pattern recognition. Dong et al. evaluated the 
performance of four algorithms as SVM, ANN, AlexNet 
and LeNet5 in recognizing gait phases and patterns. Their 
experimental results showed that with the model using the 
EMG and IMU signal together, the four algorithms were 
able to achieve a recognition accuracy of 0.977 for gait 
phases and an average recognition accuracy of over 0.992 
for gait patterns. In the model in which they used only the 
IMU sensor with the SVM algorithm, they reached 0.941 
and 0.987 accuracy for gait phases and gait pattern, respec-
tively [29]. With the same dataset we used in the study, 
Camargo et al. performed speed estimation in level-ground 
locomotion using dataset, including EMG, GON, and IMU 
data. Even with a single IMU, it has been demonstrated that 
using an IMU sensor for speed estimation rather than an 
EMG or GON sensor decreases model error. They revealed 
that ML-based SVM models for determining walking speed 
had the lowest classification error rate. Additionally, they 
demonstrated in their study which sensor type is signifi-
cant for various walking area conditions, indicating that 
mechanical sensors like IMU and GON are more signif-
icant for classification than EMG sensors in estimating 
walking speed on level ground [28].

These results point out the possible utility of walking 
speed as biomechanical indicators, from which it can be 

Table 8. Comparison of machine learning models using 
single and multiple wearable sensors.

Sensor combination

Machine Learning Models

ESKNN QSVM WNN
IMU 0.876 0.954 0.917
GON 0.773 0.827 0.828
EMG 0.548 0.735 0.695
IMU-GON 0.836 0.961 0.95
IMU-EMG 0.853 0.895 0.868
GON-EMG 0.776 0.776 0.746
IMU-GON-EMG 0.833 0.919 0.892
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extended using the sliding time-window method and differ-
ent machine learning classifiers proposed in this study. The 
gait recognition approaches in this study include the single 
use of biomechanical sensor models as well as the multiple 
use of their different combination models. Table 8 demon-
strates that the highest classification accuracy is 0.961 and 
0.954, respectively, when the model including IMU and 
GON sensor and the single IMU sensor model are used 
to classify human gait with the QSVM classifier. In addi-
tion, in the classification of gait pattern with the ESKNN 
classifier, the lowest accuracy was found to be 0.548 and 
0.776, respectively, when the EMG sensor model and the 
model including the EMG and GON sensor were used. This 
result can be attributed to the efficiency of the IMU sensor 
model in correctly addressing temporal gait parameters, 
and also that EMG sensor models with machine learning 
approach lag behind IMU and GON sensor models in gait 
recognition.

CONLUSION

Human movement classification studies can readily be 
performed using machine learning algorithms and wear-
able biomechanical sensors. The technique used in this 
study may also make it possible to track stride length and 
walking speed on an individual basis for wearable assistive 
device designs and rehabilitative gait exercise programs. 
Consequently, there is a clear demand for applicable sys-
tems that can accurately categorize human movement and 
analyze biomechanical data. 

In this study, we present a wearable biomechanical sen-
sor-based system for recognizing human walking move-
ment. The proposed approach requires extracting the 
proposed features, namely time domain and frequency 
domain features, by segmenting using the sliding windows 
method from various biomechanical signals based on IMU, 
GON and EMG sensor data. These variables performed 
incredibly well in classifying human movement based on 
walking speeds when applied as inputs for machine learn-
ing classifiers. Furthermore, our experiment findings 
highlighted that the proposed approach was capable of 
distinguishing between healthy human subjects walking at 
three different speeds (Fast, Normal, and Slow) and that the 
IMU sensor and its sensor combination models were able 
to achieve an average accuracy of 0.932 for movement clas-
sification with the QSVM classifier using sliding window 
length of 1000.

The methodology used in this study may be used as 
a model for future significant strategies for the complete 
diagnosis and phase assessment of gait disorders, as well 
as for the identification of gait biomarkers for assistive and 
rehabilitation wearable technologies. The outcomes of this 
study may also help assess the progression of gait disor-
ders by extending machine learning approaches from the 
research area to the realm of biomedicine. Further study, 
the same lower limb biomechanics dataset would be utilized 

to create popular deep learning models like 2D-CNN and 
LSTM to recognize human activities including ramp and 
stair movement.
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