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ABSTRACT

In this study, we consider model equations K(m,n) with fractional Caputo time derivatives. By 
applying the Lie group symmetry method, we determine all symmetries for these equations 
and present the reduced symmetric equations for the equation K(m,n) with fractional Capu-
to time derivatives. Furthermore, we obtain the exact solution for K(1,1) with the fractional 
Caputo time derivative and provide graphs depicting the behavior at different orders of the 
fractional time derivative. Additionally, by considering the symmetries of the equation, we 
establish the conservation laws for K(m,m) with the fractional Caputo time derivative.
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INTRODUCTION 

In 1993 Rosenau and Hyman [1] introduced and stud-
ied the Korteweg-de Vries (KdV)–type K(m,n) model dif-
ferential equations with coefficients A0 = 1 and A1 = 1:

(1)

Here and throughout the text, we will denote u(t,x) as a 
function of two variables as u and the partial derivatives of 
u(t,x) as  and so on.

The K(m,n) model differential equation is a generaliza-
tion of the KdV equation, describes the evolution of a weakly 
nonlinear and weakly dispersive wave, and has application 
in solid-state physics and plasma and fluid physics. These 
equations have the characteristic that their  solitary wave 
solutions, for certain values of m and n, have a finite core 

region where they exist and vanish outside of it. For n = m 
there are solitary waves with a speed λ of propagation of the 
waves., the so-called compactons in a form [2]:

(2)

In particular, Rosenau and Hyman found that solitary 
waves can compactify under the influence of nonlinear 
phenomena [1].

Afterward, Charalambous et. al. in [3] studied the sym-
metry properties of equation (1) with constant A0 = ±1 and 
A1 = A1(t) arbitrary nonvanishing function of the variable n, 
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arbitrary constants m,n (n ≠ 0) and investigated symmetries 
of a boundary value problem for K(m,n) model differential 
equation with an arbitrary constant k of a characterises k 
≠ 0,1 and k ≥ ½ mod, for G~ is an invariance group of the 
equation (1) as below:

  

(3)

Kudryashov and Prilipko in [4] introduced a general-
ized form of (1) as a family of nonlinear partial differential 
equations (PDE) of order (2N + 1) and depends on (N + 2) 
parameters denoted by a0,..., aN, m:

  
(4)

By taking into consideration the traveling wave ansatz 
they obtained the periodic wave solution and presented 
exact solutions for K(1,1), K(2,2), K(3,3), and K(4,4) differ-
ential equation.

In [5] Bruzon and Gandarias carried out a classification 
of nonlocal symmetries, which are known potential sym-
metries of K(m,n) model differential equation:

  (5)

with generalized evolution term um. Here um is of con-
siderable interest in mathematical physics.

In addition to the K(m,n) with classical derivatives, 
there was studied time-fractional K(m,n) differential equa-
tion. And the reason is fractional differential equations 
have gained great significance in physics and mathematics. 
The theory of fractional derivatives has appeared in many 
fields of science and likewise has become a meaningful and 
adequate tool for mathematical modelling. The usefulness 
of this type of equation lies in the non-local property of 
fractional derivatives. Proper mathematical modelling of a 
physical phenomenon depends on the moment and the pre-
vious history of time in the form of the memory effect. And 
this physical phenomenon can be constructed using frac-
tional differentiation. Thus, investigating the solutions of 
fractional differential equations is essential to understand-
ing the nonlinear process. By understanding the behaviour 
of these types of equations, researchers can gain insight 
into the complex dynamics of these systems and develop 
better models and simulations for real-world applications. 
The investigation of this type of equation has gained sig-
nificance and recognition over the last decades, especially 
because of the huge number of results tested in various 
seemingly advanced fields of science, applied mathemat-
ics, and engineering. These studies include works in phys-
ics, biology, dielectric polarization, electromagnetic wave, 

electrochemistry, numerical finance, and fluid mechanics 
[6-9].

The Riemann-Liouville fractional derivative [9] is one 
of the fractional derivative operators in fractional calcu-
lus that study fractional integrals and derivatives such as 
Riemann-Liouville, Caputo, Atangana-Baleanu fractional 
derivatives [6], and others [8-10].

Wang and Hashemi [11] studied the time-fractional 
K(m,n) equation:

  (6)

with A0, A1 constant coefficients and :

  
(7)

Riemann-Liouville fractional derivative [9,10] for an 
arbitrary f(t) function with Γ(α) a Gamma function. Here 
they find two symmetry operators by applying the Lie sym-
metry method.

As mentioned earlier in the fractional calculus, there are 
other fractional derivatives like Caputo fractional deriva-
tive [9,10] which is defined as:

  
(8)

Here again, f(t) is an arbitrary function, Γ(α) is a Gamma 
function, and f '(τ) is a derivative of f(t) with respect to t at 
the point τ = t.

In general, the Caputo and the Riemann-Liouville frac-
tional derivatives do not coincide [10]. And there are two 
main differences between the two definitions. The first dis-
tinction is about the initial conditions required in the pro-
cess of solving fractional-order differential equations. The 
initial value for the fractional-order derivative equations 
with the Caputo derivative is the same as the initial value 
for integer-order partial derivative equations. While for the 
Riemann-Liouville derivative, the initial values are frac-
tional order derivatives of the given variables. But the initial 
condition with an integer order in the physical interpreta-
tion is easily solved in real problems. The second distinc-
tion is the requirement for f(t), Caputo derivative requires 
that f(t) is a continuous and k-order differentiable in the 
interval (0,t) function, but Riemann-Liouville derivative 
requires just only the continuousness of the function f(t). 
And in addition to that, the Caputo derivative of a constant 
function is zero as in the case of the integer-order derivative 
[10].
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In this work, we study symmetries and conservation 
laws of nonlinear K(m,n) model equation (1) with Caputo 
time-fractional derivative and variable coefficient:

  (9)

with boundary and initial conditions

  (10)

Here A0(t) is a non-zero and differentiable function, A1 
is a constant, and  is the Caputo fractional derivative. 
The study of fractional differential equations, such as the 
time-fractional K(m,n) differential equation, has theoreti-
cal significance. The nonlocal property of fractional deriv-
atives is useful for the mathematical modelling of physical 
phenomena that depend not only on the current moment 
of time but also on the previous history of time. Thus, solu-
tions of equations of this type can be used to understand 
and analyse nonlinear processes occurring in various fields 
of science and technology. In this way, we give a classifica-
tion of nonlocal symmetries as the infinitesimal operators, 
such that each of them gives us an invariant equation to 
our equation. The classification of nonlocal symmetries of 
the K(m,n) differential equation can provide insight into 
the underlying physical properties of the wave phenomena 
described by these equations. This understanding can be 
useful for the development of new models and techniques 
for solving them. In this work, we present some solutions 
with graphs according to small changes in the values of α. 
So, we show that the solution function grows respectively 
faster or slower concerning x when α decreases or increases. 

In addition, we construct conservation laws for the 
Caputo differential equation with fractional time K(m,m) 
for special cases A0(t) This construction of conservation 
laws in a model differential equation of the KdV-type 
K(m,n) has both theoretical and managerial significance. 
As a theoretical consequence, the following can be noted 
here: conservation laws provide information about the 
invariance properties of an equation, which gives insight 
into its fundamental behaviour and properties. The study 
of conservation laws can lead to the discovery of new solu-
tions such as solitons and compactons, as well as new phys-
ical phenomena that can provide a better understanding 
of the underlying physical processes. And the managerial 
consequences, in turn, can be as follows: K(m,n) equation 
has applications in various fields such as solid-state physics, 
plasma physics, and fluid physics, where conservation laws 
can provide valuable information for designing and opti-
mizing experiments and systems. Solutions to the K(m,n) 
equations can be used to model and analyze physical phe-
nomena such as waves and fluid flows, and conservation 
laws can help predict and control their behavior. Moreover, 

the study of conservation laws can also lead to the devel-
opment of numerical methods and algorithms for solving 
the equation, which can be used for computer simulations. 

The present work has organized as follows. In Section 2, 
we give a brief of literature review. In Section 3, we present 
brief information on the Lie symmetry method and then 
apply it to equation (9) with boundary and initial condi-
tions with different values of m, and n. In Section 4, we con-
struct conservation laws for K(m,n) equations in case m = 
n. And we give a conclusion in Section 5.

Literature Review 
The K(m,n) model differential equation is a partial 

differential equation that is used to model a wide range of 
physical phenomena, including fluid dynamics, heat trans-
fer, and chemical reactions [1, 2]. Based on the literature 
research presented in the introduction, we can draw the 
following summary of the literature review of studies of 
differential equations of the KdV type model K(m,n). The 
K(m,n) model differential equation is a generalization of 
the KdV equation that describes the evolution of a weakly 
nonlinear and weakly dispersive wave and has applications 
in solid-state physics, plasma physics, fluid physics, and 
other areas [1, 2].

Rosenau and Hyman in [1] introduced and studied the 
K(m,n)model differential equations in 1993. They found 
that solitary waves, called compactons, can compactify 
under the influence of nonlinear phenomena when m = n. 
Charalambous and others in [3] investigated the symmetry 
properties of the K(m,n) model differential equation and 
investigated symmetries of a boundary value problem for 
the K(m,n) model differential equation.

Kudryashov and Prilipko in [4] introduced a gener-
alised form of the K(m,n) model differential equation as a 
family of nonlinear PDE and obtained the periodic wave 
solution by taking into consideration the traveling wave 
ansatz. They presented exact solutions for some types of the 
K(m,n) differential equations.

Bruzon and Gandarias carried out a classification of 
nonlocal symmetries, which are known potential symme-
tries of the K(m,n) model differential equation with gener-
alised evolution term um [5].

Furthermore, there have been studies on time-frac-
tional K(m,n) differential equations, as fractional differ-
ential equations have gained significance in physics and 
mathematics [6]. The usefulness of this type of equation 
lies in the nonlocal property of fractional derivatives. 
Investigating the solutions of fractional differential equa-
tions is essential to understanding the nonlinear process, 
and it has gained significance and recognition over the last 
decades, especially because of the large number of results 
tested in various fields of science, applied mathematics, 
and engineering. These studies include works in physics, 
biology, dielectric polarization, electromagnetic wave, elec-
trochemistry, numerical finance, and fluid mechanics (see 
[6, 8-10] and references therein). The Riemann-Liouville 
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fractional derivative is one of the fractional derivative 
operators in fractional calculus that study fractional inte-
grals and derivatives such as Riemann-Liouville, Caputo, 
Atangana-Baleanu fractional derivatives, and the others.

LIE SYMMETRY ANALYSIS OF THE TIME-
FRACTIONAL K(M,N) MODEL EQUATIONS

Lie Symmetry Analysis 
In this section, we give short information about the 

Lie symmetry analysis of fractional PDE. For the first let 
us talk about the conception of Lie group theory [12,13]. 
A Lie group is a group that is also a manifold. Continuous 
symmetry transformations of Lie groups can be described 
as transformations of independent and dependent variables 
that depend on some, possibly infinitesimal, parameter ε 
[12]. So, this infinitesimal transformation of a Riemannian 
space or pseudo-Riemannian space Vn is given with respect 
to the coordinates in the below form:

  (11)

where i = 1, ..., n, xi are the coordinates of a certain point 
in Vn and X−i are the coordinates of its image under the infin-
itesimal transformation, ε is an infinitesimal parameter not 
depending on xi, and Ξi is a displacement vector depending 
on xi, that defines the generators and which is a basis for the 
tangent space of the identity element in the group [12, 13].

If a given object F of the space Vn depends on x ∈ Vn but 
also the infinitesimal parameter ε, then the principal part 
of the object F is F1(x) + ε F(x) in the Taylor expansion of 
series with respect to the (small) infinitesimal parameter ε

  (12)

For our goals, the curves obtained by the infinitesimal 
transformation of surfaces satisfy the isoperimetric rota-
tion equations, if we have omitted the terms containing 
the highest powers of the infinitesimal parameter ε, like ε2, 
ε3,….Thus, in the limit of ε → 0, we can ignore terms of order 
ε2 or higher [12].

Now let’s consider a time-fractional PDE

  (13)

The construction of the symmetry group is determined 
with infinitesimal transformations acting on a space of two 
independent variables (x,t) and dependent variable u in the 
form

  

(14)

where ε > 0 is an infinitesimal group parameter [12]. 
And an infinitesimal generator is

  (15)

which is a generator of the infinitesimal operators for 
the differential equation (13) according to ξ(t, x, u), τ(t, x, 
u) and η(t, x, u). 

In general, a definition of the invariance of the differ-
ential equations that the reader can find in [12,13] can be 
given:

Definition 1: The solution u = v(t, x) of the equation (13) 
is an invariant solution, resulting under the symmetry (14) 
with infinitesimal generator (15) if and only if
• u = v(t, x) satisfies the equation (13),
• u = v(t, x) is an invariance surface under X.

It states that the solution for the equation (13) u = v(t, x) 
is an invariant solution, under the infinitesimal generator 
X with transformation (14) if and only if u = v(t, x) meets 
below two conditions:
• X(u - v(t, x)) = 0 for u = v(t, x), that provides us with

  (16)

• 

Here  and , for 
i = 1, ..., s.

We would also like to note that according to the infin-
itesimal transformation (14) a fractional prolongation 

 mentioned in [14], of the equation (13) with 
 has a form

  (17)

which we define as invariance criteria and use in the fol-
lowing form

  (18)

Here the explicit formulas for the extended infinitesi-
mals , i = 1, ..., s are as
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(19)

where Dx is a total derivative in a form

And  has the following form, which was given by 
Gazizov, Kasatkin, and. Lukashchuk in [14],

  (20)

or

  

(21)

here

   (22)

and

  (23)

is a left-sided operator of fractional integration of order 
β.

The technical steps of the Lie symmetry analysis to 
define Lie symmetries are [13]:

Step 1. Construct the (a, s) th prolongation of the vector 
field X in (18). Here α means, that the equation (13) has a 
fractional derivative of α with 0 < α < 1 order and s is the 
highest order of derivative, that the equation (13) has.

Step 2. Apply the prolonged operator pr(a,s) to equation 
(13). Here condition E = 0 expresses that pr(a,s) vanishes on 
the solution of the equation (13). So, this condition assures 
that X is an infinitesimal symmetry generator of the group 
transformation (14). Hence, u(t, x) is a solution of (13) 
whenever  is one.

Step 3. After expanding the equation in step 2 we get:

  
(24)

where  is some 

expression of . And now, to 

hold the invariance criteria, we equate the multiplier of ε to 
zero and then we equate the coefficients of all functionally 
independent expressions in the remaining derivatives to 
zero. This will lead to a big number of elementary partial 
differential equations of the coefficient’s functions of the 
infinitesimal generator (15). By solving them we obtain ξ(t, 
x, u), τ(t, x, u) and η(t, x, u) and by that we gain the symme-
tries of the equation (13).

The Lie symmetry method for the PDE gives a trans-
formation that leaves invariant the solution manifold of the 
equation. In practice, the method reduces the PDE to equa-
tions with a fewer number of independent variables for the 
PDE with the integer derivatives and fractional derivatives. 
The method provides us with many different types of solu-
tions for the PDE, such as power series solutions, traveling 
wave and soliton solutions, and so on [15-19].

Application the Symmetry Analysis to Caputo 
Time-Fractional K(m,n) Equations and Theoretical 
Implications 

According to the infinitesimal transformation (14), we 
can construct a prolongation formula pr3X for our equation 
(9) in a form

  (25)

here 

By following the mentioned technical steps and plug-
ging the infinitesimal transformations (14) into equation 
(9) we get

  

(26)

By considering definition 1, for the invariance of the 
equation, the factor of ε must be 0, e.i.

  

(27)

In fact, the above proposition is invariance criteria. By 
putting the infinitesimals (19) and (21) into equation (27) 
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and equating the multipliers of each derivative of u to zero, 
we get bellow system of equations:

  (28) 

Let m = n ≠ 1 then from equation (c) we have 

 and from equation (b) we have , 

which gives us ξ = c1x + c2, where c1 and c2 are constants. 

Here and in bellow each ci, i = 1, ..., 4 defines an infini-

tesimal operator in the form (15). Further, we see that, 

 and ξ = c1x + c2 satisfy the equations (d), (e), 
and (f). In another hand, the equation (a) gives us

  (29) 

Thus, for non-zero and differentiable function A0(t) we 
have ξ = c2, η = 0, and τ = 0, since τA'0(t) = -2c1 A0(t) leads 
to c1 = τ = 0, and so η = 0. That means the equation (9) 
with any non-zero function A0(t) has only one symmetry 
according to the infinitesimal operator .

Further, we will consider some special cases of the func-
tion A0(t) that are frequently encountered as coefficients in 
differential equations. For instance, while A0(t) = 1 we have 
c1 = 0 and τtt = 0 with  from equation (g), which 
gives us τ = c3t + c4, , and ξ = c2. And relevant 
operators are in the form:

  (30)

In case A0(t) = tλ, λ ∈ ℝ, λ ≠ 0 we get , 
, and ξ = c1x + c2, with infinitesimal operators

  (31)

And the last case is A0(t) = et. In this instance we have τ = 
-2c1, , and ξ = c1x + c2. Regarding c1 and c2 we have

  (32)

Table 1. The infinitesimal operators.

Arbitrary

1



Sigma J Eng Nat Sci, Vol. 42, No. 3, pp. 885−899, June, 2024 891

The similar calculations for m ≠ n, and m = n = 1 
according to each A0(t) give us the infinitesimal operators 
as in the next table.

According to the above table, we see that for all m and n 
when the coefficient A0(t) is a non-zero differentiable func-
tion, also for m ≠ n with A0(t) = tλ, and A0(t) = et we have 
only one operator that gives us a solution of the equation 
(9) in a form:

  (33)

For other cases of the coefficient A0(t), we have the next 
situations.

Case 1: m ≠ n
For A0(t) = 1, we have extra two operators X1 and X2. X1 

gives us trivial solution u(x, t) = 0, and the operator X1 + 
kX2, k ∈ ℝ gives a characteristic system:

  
(34)

which provides us with a transformation u(t, x) = ϕ(p), 
p = x + kt, with a differentiable function ϕ(p). So, our equa-
tion (9) takes the next form:

  

(35)

Case 2: m = n
For A0(t) = 1, we have a symmetry operator in a general 

form:

  (36)

Let us consider this case for the equation (9) with 
boundary and initial conditions (10). Since the invariance 
of the boundary value problem means invariance of the 
equation with boundary and initial conditions, we have c1 
= c2 = 0. Which gives the invariant criteria for the problem 
(9)-(10) in the next operator form:

  (37)

This operator provides us the transformation 
, here φ(x) a differentiable function. Thus, we 

can obtain below ordinary differential equation (ODE):

  
(38)

and by using (16) we get , or 
, where k1 is an arbitrary constant. By con-

sidering the given transformation and the boundary condi-
tions for the transformation we get below Cauchy problem:

  
(39)

For A0(t) = tλ, there is a general infinitesimal operator 
in a form:

  
(40)

where the invariance of the boundary and initial condi-
tions gives us c4 = 0 and

  
(41)

Thus, we have , k2 ∈ ℝ. It means that 

(9)-(10) invariant under   

with ,  transformation with 

the differentiable function Ψ(z), and have below Cauchy 

problem:

  

(42)

Here Bi, i = 1,2...,9 are coefficients in the following 
forms:

  

(43)
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Case 3: m = n = 1
In this case, we have  and 

for A0(t) = 1 there are three infinitesimal operators:

  (44)

Here X1  and X3 give us next characteristic system:

  (45)

which gives a transformation u(t, x) = ek4xϑ(t) with a dif-
ferentiable function ϑ(t). Thus, our equation via the trans-
formation is reduced to fractional ODE:

  
(46)

Hereby, simplifying the above expression, we have:

  
(47)

with a solution in a form:

  (48)

Here  is a Mittag-Leffler func-
tion like the exponential function in fractional analysis. 
Therefore, for our equation in the case m = n = 1 and A0(t) 
= 1, the solution is:

  (49)

Since 0 < α < 1, the solution (49) has a singularity at t = 
0, which we can observe in the graphs below as jumps. We 
can plot the solution as a surface plot, but we need to use a 
log scale for the t-axis to visualize the singularity properly. 
Alternatively, we can plot the solution as a contour plot or 
a heatmap, which will show us how the solution changes 
over time and space but without the jumps. While α = 1 
singularity is disappeared, and the solution function takes 
the form of the exponential function. 

In Figure 1, we depict the exact solution of the fractional 
K(1,1) equation described by the Caputo fractional deriva-
tive in the space coordinates and the time, when A1, k2, and 
α take some values. The first graph (Figure 1) shows the 
case of A1 = 2, k2 = 1, and α = 0.7. We choose such α as a 
starting point and make small changes to the values of α and 
observe the changes to the graphs. It is noticeable that the 
function grows respectively faster or slower with respect to 
x when α decreases or increases. As mentioned, since 0 < α 
< 1, the solution has a singularity at t = 0, which appears as a 
jump in the graph. The magnitude of the jump will depend 

on the value of α, with larger values of α leading to larger 
jumps. As t increases, the singularity smooths out, and the 
solution approaches the exponential function ek4x as t goes 
to infinity. The rate at which the singularity disappears, and 
the solution approaches the exponential function will also 
depend on the value of α.

Moreover, for α = 1 the solution (49) will take a form 
 or

  (50)

and can be shown as in Figure 2 As we see, the singular-
ity here has been removed.

In Figure 3, we show some graphs of solution (49), for 
different values of α and particular x = 2 with k4 = 1, A1 
= 2. As we can see from the graph, the solution exhibits 
jump near t = 0 for all values of α, the order of fractional 
derivative. As α increases, the jumps become smaller and 
occur at later times. When α = 1, the singularity disappears 
and the solution takes the form of the exponential function 

, which is smooth for all t > 0. Note that 
the behaviour of the solution also depends on the choice 
of parameters k4 and A1. In the given example, k4 = 1 and 
A1 = 2, which can affect the location and magnitude of the 
jumps.

For the case A0(t) = t-2α/3 there is a general infinitesimal 
operator as below:

  (51)

According to the invariance of the equation with the 
boundary and initial conditions, we get a function q(t) = 
d1td2, with d1, d2 ∈ ℝ+. So, our boundary and initial value 
problem:

  

(52)

transforms to a problem with an invariant differential 
equation to our equation under transformation u(t, x) = 
x3/k5ρ(s), k5 is an arbitrary nonzero constant, s = x-3/αt here 
ρ(s) = ρ is a differentiable function of s:

  (53)

here Ci, i = 1,2...,6 are coefficients as below:
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(a) The solution with A1 = 2, k4 = 1, and α = 0.7. (b) The solution with A1 = 2, k4 = 1, and α = 0.75.

 
(c) The solution with A1 = 2, k4 = 1 andα = 0.8. (d) The solution with A1 = 2, k4 = 1, and α = 0.85.

 
(e) The solution with A1 = 2, k4 = 1, and α = 0.9. (f) The solution with A1 = 2, k4 = 1, and α = 0.95.

Figure 1. The solution of fractional K(1,1) equation.
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(54)

Thus, here we derive the symmetries of the Lie group 

of the equation and use these symmetries to obtain invari-

ant solutions. Along with this, we present graphs of the 

obtained solutions and analyse them. We also get reduced 

equations that are simpler than the original equation but 
contain the same information.

CONSERVATION LAWS OF CAPUTO TIME-
FRACTIONAL K(M,M) EQUATIONS

Conservation Laws
Knowledge of the conservation laws for PDE gives us an 

idea of the conserved physical quantities and can be used 
in the development of stable numerical methods. There are 
several methods to study the conservation laws, such as 
partial Noether’s approach via Noether’s theorem [20] that 

Figure 2. The solution to classical K(1,1); here A1 = 2, k4 = 1 and α = 1.

Figure 3. The graphics of K(1,1) for various values of fractional order α with x = 2.
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establishes a connection between conservation laws and 
symmetries of differential equations like:
• If there is symmetry under space translations, then there 

exists a conservation of linear momentum. For example, 
 operator.

• If there is symmetry under time translations, then there 
exists a conservation of energy. For example,  
operator.

• If symmetry under rotations exists, a conservation of 
angular momentum exists. The infinitesimal operator 
here can be in the form of the cross-product of spatial 
variables.

• If there is symmetry under boosts (moving coordi-
nates), then there exists a linear motion of the centre of 
mass. For example,  operator.

• If there is a symmetry under scaling, then there exists 
a scaling dimension, which represents how the energy 
of the system scales with changes in length scale. For 
example,  operator.
Emmy Noether formulated three fundamental theo-

rems for analysis and physics. The first theorem states that 
there is a one-to-one correspondence between the symme-
try groups of a variational problem and the conservation 
laws of its Euler–Lagrange equations [20]. The second theo-
rem says that an infinite-dimensional variational symmetry 
group depending on an arbitrary function corresponds to a 
non-trivial differential relation between its Euler–Lagrange 
equations. And the third is the introduction of higher-order 
generalized symmetries, which will later play a fundamen-
tal role in the discovery and classification of integrable sys-
tems and solitons [20].

Mathematically, Noether’s theorem can be expressed as:

  (55)

Where C j is the Noether current, which is a conserved 
quantity associated with a particular continuous symme-
try of the system, ∂j is a partial derivative with respect to 
variable j. The index j runs over the space and time coor-
dinates. The equation above states that the divergence of 
the Noether current is zero, which implies that the total 
amount of the conserved quantity is conserved over time.

That is to find the conservation law by using Noether’s 
theorem, which states that every continuous symmetry of a 
system leads to a corresponding conservation law we need 
do next [12].

Suppose we have a PDE of the form:

  (56)

To find the conservation law associated with a contin-
uous symmetry of this system, we first identify the infini-
tesimal generator X of the symmetry. Next, we compute the 
Lagrangian density of the system. This is a function that 
describes the dynamics of the system and is given by:

  (57)

Using the generator X, we can construct a conserved 
current C = (Ct, Cx) where Ct is the charge density, and C x 
is the flux density. The charge density is given by:

  (58)

and the flux density is given by:

  (59)

Here WJ depends on u, x, t and derivatives of u with 
respect to x, t.

The conservation laws for a (1+1) dimensional PDE are 
given by the conservation of the conserved current C. This 
implies that the integral of the charge density Ct over a spa-
tial domain remains constant in time:

  (60)

Similarly, the integral of the flux density C x over a spa-
tial domain remains constant in time:

  (61)

Another method is the multiplier approach and 
Ibragimov’s method. Since these three methods do not 
apply to nonlinear PDEs that do not admit a Lagrangian, 
Ibragimov’s method was proposed to overcome these dif-
ficulties [21, 22].

In this section, we construct the conservation laws for 
the time-fractional nonlinear K(m,n) model equations (9) 
with m = n, while for m ≠ n the conservation laws can be 
built similarly. For the formation, we will use Ibragimov’s 
theorem [21, 22] which was applied to fractional differen-
tial equations by Gazizov and Lukachshuk [23, 24]. The 
theorem is based on that, the author by taking the formal 
Lagrangian uses the variational analysis and symmetries to 
give formulas for constructing the conservation laws.

So, we search Ct = Ct (t, x, u, ux,...) and Cx = Cx (t, x, u, 
ux,...) conservation laws for (9) on all its solutions if it satis-
fies the following conservation equation Dt(Ct) + Dx(Cx)  = 
0, by using the theory of Ibragimov [21, 22]. For the first, let 
a formal Lagrangian function the equation (9) has a form:

  (62)

where v = v(t, x) is a new dependent variable and

  (63)
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By the definition, given in [12, 21], the Euler–Lagrange 
operator  with respect to u is

  (64)

where  is an adjoint operator for , which has 
the form: 

  (65)

where  is the right-sided operator of fractional 
integration of order (n - α) defined in Eq. (23). In our case 
n = 1 and 0 < α < 1. So, by applying the Euler–Lagrange 
operator to the formal Lagrangian L we have:

  
(66)

Here

  
(67)

  (68)

  

(69)

  
(70)

  

(71)

And after the summation of the above derivatives and 
simplifying we get an adjoint equation of equation (9) in 
the form:

  (72

We say that the nonlinear time-fractional K(m,m) model 
equation is nonlinearly self-adjoint if the adjoint equation 

(19) is satisfied for all solution u(t, x) of equation (9) with a 
substitution v = φ(t, x, u) and φ(t, x, u) ≠ 0 [23]. This sub-
stitution allows us to use the formal Lagrangian as usual 
classical Lagrangian and obtain the conservation laws.

Thus, x and t-components conservation laws for the 
equation (9) have the form:

  
(73)

  

(74)

here  and for n - 1 < α < n , J is 
integral in a form:

  
(75)

Construction of the Conservation Laws of Caputo Time-
Fractional K(m,m) Equations

Now we can construct C x and C t for our equation (9) 
with the infinitesimal generators. In the obtained conserva-
tion laws in the form of expressions below J (ux, vt)is inte-
gral as in Eq. (75) with n = 1, A1 is arbitrary constant, m ≠ 
1, λ ≠ 0. 

For the non-zero and differentiable function A0(t) we 
have symmetry under space translation with W = ux, so 
here we get a conservation of linear momentum and

  (76)

  

(77)

For A0(t) = 1 we get W1 = ux, W2 = ut, and 
. Here we get again conservation of lin-

ear momentum, and energy and there is a scaling dimen-
sion, which represents how the energy of the system scales 
with changes in length scale. This scaling dimension is 
related to the scaling behaviour of the system under the res-
caling of the space and time coordinates. So, we can obtain 
the following conservation laws:

  (78)
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(79)

  
(80)

  

(81)

  
(82)

  

(83)

For A0(t) = tλ we have W1 = ux and 
, according to which we can 

get conservation of linear momentum and the next conser-
vation laws

  (84)

  

(85)

  

(86)

  

(87)

In case A0(t) = et we obtain W1 = ux and 
, which gives us the conserva-

tion of linear momentum and following conservation laws:

  (88)

  

(90)

  

(91)

  

(92)

Thus, here we can see that the conservation laws depend 
on the fractional orders of the equation and the coefficients 
and have explicit formulas for the conserved quantities.

CONCLUSION 

In this paper, we give the Lie group analysis of Caputo 
time-fractional K(m,n) equations and obtain the infini-
tesimal operators. Each infinitesimal operator gives us an 
invariant equation to our equation. So here, by using sym-
metries, we present some solutions with graphs according 
to small changes in the values of α. Thus, we show that the 
solution function grows respectively faster or slower con-
cerning x when α decreases or increases. Here, we would 



Sigma J Eng Nat Sci, Vol. 42, No. 3, pp. 885−899, June, 2024898

like to note that the solution to the K(1,1) fractional dif-
ferential equation with α ∈ (0,1) has a singularity at t = 0, 
which is removed for α = 1. Moreover, for α = 1 solution 
takes the form of the exponential function, which the graph 
given. Also, we construct conservation laws of the Caputo 
time-fractional K(m,m) differential equation for the special 
cases of the function A0(t). We present that the conserva-
tion laws depend on the fractional orders of the equation 
and the coefficients and provide explicit formulas for the 
conserved quantities. 

As a limitation of our work, we can point out the lack of 
experimental data to support our conclusions.

Our potential directions for future research on K(m,m) 
fractional differential equations will be focused on studying 
the nonlocal properties of fractional K(m,m) differential 
equations and their effects on the dynamics of the system, 
which can significantly affect its behaviour. Moreover, the 
question of the study of multidimensional K(m,m) fractional 
differential equations is also still open. These equations allow 
studying of complex systems in higher dimensions.
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