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ABSTRACT

As is well known, the quantity of labeled samples determines the success of a convolutional 
neural network (CNN). However, creating the labeled dataset is a difficult and time-consum-
ing process. In contrast, unlabeled data is cheap and easy to access. Semi-supervised methods 
incorporate unlabeled data into the training process, which allows the model to learn from 
unlabeled data as well. We propose a semi-supervised method based on the ensemble ap-
proach and the pseudo-labeling method. By balancing the unlabeled dataset with the labeled 
dataset during training, both the decision diversity between base-learner models and the in-
dividual success of base-learner models are high in our proposed training strategy. We show 
that using multiple CNN models can result in both higher success and a more robust model 
than training a single CNN model. For inference, we propose using both stacking and voting 
methodologies. We have shown that the most successful algorithm for the stacking approach 
is the Support Vector Machine (SVM). In experiments, we use the STL-10 dataset to evaluate 
models, and we increased accuracy by 15.9% over training using only labeled data. Since we 
propose a training method based on cross-entropy loss, it can be implemented combined with 
state-of-the-art algorithms.
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INTRODUCTION

With the developments in artificial intelligence, many 
applications in the field of image and signal processing have 
reached the human level, especially studies using convolu-
tional neural networks [1-3]. The publication of large data 
sets has a great impact on the emergence of these successful 
studies. Computer vision research has gained momentum, 
particularly after the public release of the ImageNet dataset. 
The ImageNet [4] dataset, which contains millions of image 

samples for 1000 classes, has been the basis for many stud-
ies, and it has been shown that very successful models can 
be produced with convolutional neural networks in the case 
of a very large number of samples.

Today, deep learning methods are applied in a wide 
variety of fields, such as medical image analysis [5], object 
classification [1], word recognition [6], etc. Almost all 
state-of-the-art models in deep learning applications are 
trained using massive amounts of data. However, in many 
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real-world applications, annotated datasets containing mil-
lions of images are not possible. 

Generating annotated datasets is generally expensive, 
time-consuming, and hard. In particular, it requires data 
labeling by experts in special fields such as medical image 
analysis. For these reasons, sufficient data cannot always be 
obtained in task-specific studies [7]. However, unlabeled 
data can be obtained in large numbers and much more eas-
ily than labeled data. Due to the small amount of labeled 
data and the large amount of unlabeled data, unlabeled data 
was also tried to be included in the training process.

In supervised learning, the model is trained using 
only labeled data. The limitation of supervised learning 
approaches is that they can only learn from labeled datasets. 
If the labeled dataset is very small and does not accurately 
represent the data distribution, generalization performance 
may be poor. 

Semi-supervised learning (SSL) techniques that include 
both unlabeled and labeled samples in the training process 
have been developed. By including large numbers of unla-
beled data in the training, the generalization performance of 
the model can be increased with a small number of labeled 
data. Since the labeled dataset can only represent a part of 
the real-world data distribution, the generalization perfor-
mance of the model trained with only the labeled dataset is 
low. As shown in Figure 1, including the unlabeled dataset 
in the training leads to more accurate generalization.

There are some assumptions to include unlabeled data 
in the training process [8, 9]. The smoothness assumption 
implies that samples that are close to each other in the fea-
ture space should be in the same class. The low-density 
assumption accepts that the decision line should be located 
where the sample density is low, and the manifold assump-
tion assumes that samples belonging to the same class with 
a high-dimensional input space will converge on each other 
when converted to a lower-dimensional subspace.

State-of-the-art techniques in several challenges are 
based on the ensemble learning approach [6, 10-12]. 
Ensemble learning is a machine learning approach that 
aims to achieve better results by combining multiple base 
learner models that attempt to solve the same problem[13]. 
By combining the base learner decisions, the ensemble 
model will be more successful if the base learner decisions 
are more diverse and accurate [14]. In fact, accuracy and 
diversity are two opposing qualities of base learners. In 
general, when accuracy is high, diversity is low, and vice 
versa when diversity is high. The ensemble model performs 
the best when the two factors are optimum. For this rea-
son, while training base learner models, diversity should be 
considered as well as accuracy.

The pseudo-labeling strategy [15] is used in the 
majority of current semi-supervised learning research. 
Interpolation Consistency Training [16] (ICT), MixMatch 
[17], ReMixMatch [18], DivideMix [19], FixMatch [20], etc. 
studies are generally aimed at applying the regularization 
methods they recommend for samples with a confidence 

score above 95%. However, the success of the methods 
decreases if successful pseudo-labels are not produced. As a 
result, the focus of this study was on generating more suc-
cessful pseudo-labels.

Our motivation is to apply the ensemble learning meth-
odology in the pseudo-labeling approach, which is the most 
fundamental method in semi-supervised learning research, 
to add more accurate pseudo-labels in training in each 
iteration and to improve model performance by utilizing 
less labeled data. We compared the proposed algorithm to 
research in the literature that apply more than one model 
and produce more successful pseudo-labels for a more fair 
comparison.

In this study, we propose iterative ensemble pseudo-la-
beling for convolutional neural networks that produce 
more successful pseudo-labels using the ensemble method. 
We created an approach that makes CNN models more tol-
erant of changes and more successful on the test set using 
a minimal number of labeled data. This technique, which 
applies with all image dataset, reduces the requirement for 

Figure 1.Supervised and Semi-Supervised Learning Deci-
sion Boundary Comparison (a) Supervised Learning, (b) 
Semi-Supervised Learning.
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a labeled dataset in order to produce a robust convolutional 
neural network model. 

We demonstrated that the base-learner models’ deci-
sions should be combined with voting to produce pseudo-la-
bels at the end of each iteration, and that the base-learner 
models should be combined with the SVM algorithm at the 
end of training. We have shown that the proposed method 
is robust to operations and noises such as horizontal flip, 
vertical flip rotation, random crop, erasing, and Gaussian 
blur. To our knowledge, it is the first study to consider deci-
sion diversity among base-learner models when training 
base learner models in studies combining ensemble convo-
lutional neural networks and semi-supervised learning.

The remainder of this paper is organized as follows. We 
detailed the method we proposed in the Methodology sec-
tion, the dataset and model we used in the Experimental 
Setup section, the results we obtained, and their compar-
ison with previous research in the Results section. Finally, 
the ablations are in the Ablation Study section.

Related Work
Pseudo-Labeling [15] is a fundamental semi-supervised 

learning strategy that employs generated labels obtained 
from model predictions. During the fine-tuning phase, the 
network is trained with both labeled and unlabeled data at 
the same time, and unlabeled samples are labeled with the 
class having the highest predicted probability. Training the 
model with a pseudo-labeled sample pushes the decision 
boundary to low-density areas. It forces the model to pro-
duce predictions with high confidence. This is referred to as 
Entropy Regularization [21]. 

The fundamental problem of pseudo-labeling tech-
niques is that they are prone to confirmation bias by gen-
erating high confidence scores for samples that the model 
mistakenly predicts [22]. Training the model using incor-
rectly generated pseudo-labels reduces its success.

The Noisy Student [23] method is an improvement of 
the pseudo-label method. Initially, student model training 
is performed using labeled data. Pseudo labels are created 
for unlabeled samples using the student model, and a model 
that is the same or larger than the student model is trained 
with labeled and unlabeled samples. It is tried to increase 
the success of the pseudo-label by applying augmentation 
to the dataset and applying the dropout and stochastic 
depth regularization methods for the student model.

π Model [24] method is based on consistency regular-
ization. An input image is given to the model by applying 
two random augmentations, and it is trained to produce the 
same result on these two inputs. To reduce the prediction 
difference between augmented images, a loss function such 
as L1 or L2 loss is used. Input images can be labeled or unla-
beled. In this way, the robustness of the model is improved.

As in π Model, there is a training strategy in the Mean 
Teacher [25] method to give the same result to different 
augmented variants of the same input. The point where 
the Mean Teacher method differs is that instead of getting 

results from the same model, it makes predictions using 
the weights obtained using the exponential moving average 
of the same model. With exponential moving average, the 
model produces more accurate pseudo labels, which makes 
it more successful.

In the Co-training [26] method, two models are trained 
for labeled samples using two different distributions of a 
dataset. By combining the decisions of the models, pseu-
do-labels are produced for the unlabeled samples, and pseu-
do-labeled data is included in the training set. The training 
process continues iteratively until there is no change. Since 
the initial models are trained with labeled datasets from dif-
ferent distributions, decision diversity between models will 
be high, and they will produce more accurate pseudo-labels.

Tri-training [27] is a method that involves training three 
models at the same time. Three classification models col-
laborate to generate pseudo-labels for unlabeled data. For 
each model, the training process begins with a subset of the 
labeled dataset. After the three models have been trained, 
pseudo-label generation is performed on the unlabeled 
samples. If two models determine the same decision for 
the unlabeled sample, the sample is added to the training 
set of the other model with the pseudo-label. The training 
process continues until the decision of the model remains 
the same.

Tri-training with disagreement [28] is an improved 
version of the tri-training method. The models’ training 
is maintained by only using samples whose decisions dif-
fer from those of the other models. As a result of having a 
more dominating training set for weak points, the model 
is expected to provide more successful results on the test 
set. At the same time, since it is more data-efficient than 
tri-training, the training time is reduced.

Ghosh et al. [29] begin the training process for the 
three models with subsets of the labeled dataset, as in the 
tri-training technique. It then combines the three models’ 
decisions to generate pseudo-labels for all unlabeled sam-
ples. By combining the samples selected from the unlabeled 
dataset and the labeled dataset, the training of the models 
is continued by performing subsampling for this new data-
set. Since different subsets of the labeled dataset are used in 
each iteration, the models eventually see all of the labeled 
samples. As a result, the decision diversity between the 
models is not considered.

The pseudo-labeling strategy is used in the large major-
ity of semi-supervised learning research. The research’s 
principal purpose is to develop more successful pseu-
do-labels. The reason is that a more successful model can 
be obtained by using more successfully generated pseu-
do-labels. In Tri-training, Tri-training with disagreement, 
and Ghosh et al. [29] studies, it has been suggested to use 
ensemble methods in order to produce more successful 
pseudo-labels. While Tri-training and Tri-training with 
disagreement provide decision diversity by using random 
subsets and random initialization, decision diversity comes 
from using different models in Ghosh et al. [29] However, 
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when the training is finished in these studies, the diversity 
among the decisions of the base learner models diminishes 
due to the iterative process. In our study, based on the bal-
ance of the labeled and unlabeled dataset, we have created a 
training model that will both preserve the diversity of deci-
sions between base learner models and increase the success 
of the ensemble model. In this way, we achieved more suc-
cessful results than other studies.

MATERIALS AND METHODS

In semi-supervised learning, training data consists of 
two parts. Assume D = {DL , DU} is the total of training data 
and  denotes labeled training 
dataset with inputs xi ϵ ℝD, where xi, D, NL  represent an 
input sample, input dimension, and the size of the labeled 
training dataset, respectively, and yi symbolizes the target 
class label yi ϵ {1,2,...,C}  where C is the number of classes. 
Similarly, the unlabeled training dataset is denoted by 

. 
Pseudo labeling is the technique of predicting labels for 

unlabeled data using a model that is trained with labeled 
data. Pseudo-labeling can be represented as: 

  (1)

where  is pseudo-label of a sample of 
, and P(.) is proposed pseudo-labeling 

technique. To clarify, the basic goal of pseudo-labeling is to 
 to convert to , and  must accurately 

match the ground-truth label for model performance. As a 
solution, we propose applying iterative and ensemble tech-
nique to produce pseudo-labels for the unlabeled dataset. 

In the iterative approach, instead of creating a pseudo-la-
bel for the entire unlabeled dataset, the number of K samples 
with the lowest entropy [30] value of the probability distribu-
tions obtained by combining the decisions of the base learner 
models was selected. The number of K is increased by K in 
the next iteration to obtain a larger number of training sam-
ples. At each new iteration, a pseudo-label is obtained for 
the entire unlabeled dataset. This ensures that a few incor-
rectly labeled selected samples are more likely to be correctly 
labeled. In this way, the training set includes more reliable 
pseudo-labels and agreed-upon samples.

In the first iteration, a randomly selected subset of 
the labeled dataset is used to train each base learner. The 
selected labeled dataset is in the training set of the base 
learner until the last iteration. Let  is selected subset of 
labeled dataset,

  (2)

where , , and NRL is number 
of base-learner. In order to increase the diversity between 
the decisions of the base learner models, the training is 

performed with the labeled subset of training data that did 
not fully overlap with each other. After each base-learner 
has been trained with the provided training dataset, the 
pseudo-label generation process is performed.

To produce pseudo-labels by combining the decisions 
of the base learner models, the probability vectors are pro-
duced by base-learner models for each unlabeled sample. 
For an unlabeled example, probability vector of the ensem-
ble model:

  
(3)

where  denotes the probability vector of a base learner. 
At each iteration, the probability vectors of the ensemble 
model are obtained for the entire unlabeled dataset and 
the entropy value of each probability vector is calculated. 
Entropy value of sample : 

  
(4)

where  is probability of class c. The Nselect unlabeled 
samples with the lowest entropy value are selected and a 
sample of  labelled with . As a result, 
the new iteration has more reliable pseudo-labels and 
agreed-upon samples thanks to ensemble model.

To train a base-learner with labeled and unlabeled 
dataset, the training dataset contains the same number of 
labeled and unlabeled data. Assume the training dataset 
for base-learner i in iteration J is  with 
seleted unlabeled dataset , where  is augmented 
labeled dataset which contains duplicated samples of  
to obtain . Since the same unlabeled data-
set is used for all base-learners in iteration J, randomly 
selected labeled dataset samples ( ) are duplicated, and 
added to the training dataset in order to ensure decision 
diversity among the base-learner models. All train steps 
are given in Algorithm 1.

In terms of optimization, it is costly to randomly ini-
tialize the base learner model while progressing to the new 
iteration. However, if the models are continued with the 

Figure 2. Learning Rate Scheduler.
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Algorithm 1. Base Learner Models Training

Input: DL as the labeled training dataset, DU as unlabeled dataset, Niter as number of iteration, Nselect how many samples will be 
selected in the first iteration

Output: ArrBL as an array of base learner models

Figure 3. Method Inference Structure.
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parameters that generated the pseudo-labels, it is hard to 
move to a more optimized point in the parameter space. To 
solve this dilemma, we propose to use the triangular learn-
ing rate scheduler approach [31], which reduces the maxi-
mum learning rate at the end of two epochs to the midpoint 
between the minimum learning rate and the previous max-
imum learning rate (Figure 2).

In inference, we apply two approaches shown in Figure 
3. First, feature vectors are obtained from all base learner 
models for the input image. If it is desired to infer with 
the voting approach, the softmax function is applied to 
the feature vectors. The obtained probability distributions 
are summed and the most dominant class is returned as 
the estimation. With the addition of probability vectors, 
base learner models that produce high-score predictions 
become dominant. If it is desired to infer with the stack-
ing approach, the feature vectors concatenation operation 
is applied. The resulting new feature vector is given to a 
trained machine learning method and expected to produce 
a class prediction. In this study, the SVM algorithm was 
chosen as the machine learning model.

 As in the pseudo-label producing process, the proba-
bility vectors obtained from the base learner are summed 
in the voting process, and the class with the highest prob-
ability in the obtained probability vector is returned as the 
result. In the stacking process, a feature vector is obtained 
by concatenating the feature vectors obtained from the base 
learner models without applying the softmax function. Let 
is Ki the feature vector which is output of i. base learner 
model,

  (5)

where  is the probability vector of ensemble model. 
With the help of the Support Vector Machine(SVM) [32] 
algorithm, the concatenated feature vector is returned to 
the probability vector. The SVM model is trained with the 
entire set of labeled training data DL. In this way, the SVM 
model learns the response produced by the base learner 
models for samples that have never been used in the train-
ing of the base learner models, and the model becomes 
more robust. 

As the number of iterations increases, the diversity 
among the base learner decisions decreases, so the prob-
ability vectors obtained in voting are similar to each other, 
but even though the decisions in stacking are similar, the 
success of the ensemble is preserved at lower decision 
diversity as different feature vectors are produced. This sit-
uation is examined in detail in Ablation Section. 

EXPERIMENTAL SETUP

Dataset
We preferred to verify the proposed method on the 

STL-10 dataset [33]. Because, in addition tobeing one of the 

most popular datasets in semi-supervised learning studies 
[18, 17, 20, 16], it is one of the few datasets created specifi-
cally for this field.

The STL-10 dataset contains 96x96 RGB images for 10 
classes (airplane, bird, car, cat, deer, dog, horse, monkey, 
ship, truck). It has 500 training samples and 800 test sam-
ples for each class, with a total of 5,000 training and 8,000 
test samples. Apart from this, there are 100,000 unlabeled 
samples. The unlabeled dataset has a different domain than 
the labeled dataset and class distribution of the unlabeled 
dataset is unbalanced. For this reason, it is more difficult to 
achieve high successes compared to other datasets.

Base Learner Model Training Setup
Dense Convolutional Network [34] (DenseNet) model 

was used as the base learner model. DenseNet has several 
advantages over other models. DenseNet minimizes the 
gradient vanishing problem, enables feature reuse, and 
significantly reduces the number of parameters [34]. The 
obtained feature vectors are generated by concatenating all 
layers before the current connection, rather than by sum-
ming in DenseNet architecture.

In this study, 10 DenseNet121 base learner models with 
7.6M parameters were used. In this way, the study’s scalabil-
ity was ensured. TheAdamW [35] optimization technique 
is utilized, with the beta values are 0.9 and 0.999 and the 
weight decay parameter of 0.01. The maximum and mini-
mum learning rates are 0.1 and 0.0001, respectively. In the 
first iteration, each base learner is trained 40 epochs, in all 
other iterations 20 epochs are trained.

Machine Learning Models Training Setup
The outputs of the base learner model are transformed 

into a feature vector in the stacking approach to obtain 
class predictions from the machine learning model. The 
machine learning models used here are Decision tree [36], 
random forest [37], K-NN [38] Multi-layer perceptron and 
SVM algorithms. 

In the Decision tree algorithm, Gini is used as the mea-
surement metric. Each node is set to split into two nodes 
and no pruning is applied. In the random forest algorithm, 
the number of trees in the forest is set to 100. The Gini met-
ric is also used in this algorithm. In the K-NN algorithm, 
the decision is made according to the distance to the 5 near-
est neighbors. In the multi-layer perceptron algorithm, the 
hidden layer size is set to 100. ReLU was used as the activa-
tion function. In SVM algorithm, the radial basis function 
kernel is used and the regularization parameter is set to 1. 

Related Works Training Setup 
For a fair comparison, the same configuration in our 

proposed study was used for the tri-training and tri-train-
ing with disagreement methods. Densenet121 was used as 
base learner models. The AdamW optimizer is used, with 
the beta values are 0.9 and 0.999 and the weight decay 
parameter of 0.01. The triangular learning rate scheduler 
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approach was used. For Ghosh et al. [29], the results they 
reported in their study were used. 

RESULTS AND DISCUSSION

In this section, the results of the proposed method for 
the classification task are examined. In terms of robustness 
and accuracy, the study was assessed from two perspectives. 
As can be seen in Table 1, a maximum success of 81.163% 
was achieved.

To compare the effectiveness of the suggested method, 
a single CNN model was trained with all training data and 
the same training structure. The only difference between 
the single model and the base learner models is that the 
entire labeled dataset is used in the training of the single 
model, while subsets of the labeled dataset are used in the 
base learners. The remaining hyperparameters, such as iter-
ation number, epoch number, optimizer, and learning rate, 
are all set to the same value. In this way, it was compared 
with the approach of training a model using the entire 
training dataset, which is widely used in the literature.

It can be shown that the success of single model is 
higher than the success of mean base learner in Figure 4. 
The reason for this can be explained by the higher number 
of labeled samples used in the single model. As the number 
of iterations increases, the information exchange between 
base learner models increases (a pseudo-label is produced 
at the end of each iteration by the joint decision of the base 
learners), and the mean base learner success and the suc-
cess of the single model converge. At the same time, as it 
progresses towards the final iterations, the success of the 
voting ensemble model converges on the mean success of 

the base learner and the success of the single model. This 
is due to the fact that as the number of iterations increases, 
the diversity of decisions among the base learner models 
decreases. This brings the success of the voting ensemble 
model closer to the success of the base learner models. 
However, in the stacking method using the SVM algo-
rithm, the success of the ensemble continues to increase at 
the same rate since the stacking method produces a feature 
vector from the base learner models rather than a probabil-
ity vector. Although each base learner model makes simi-
lar decisions for similar samples, since the labeled dataset 
used in their training does not overlap, they make these 

Table 2. Metrics on STL-10 Dataset

Accuracy (%) Precision(%) Recall(%) F1(%)
Tri-training 76.788 77.603 76.787 76.811
Tri-training with disagreement 77.150 77.317 77.150 77.164
Ghosh et al. [29], 2021 78.88 - - -
Ours 81.163 81.739 81.162 81.077

Table 1. STL-10: Model Accuracy (%)

  Single Model Base-Learner best (mean±std) SVM Voting
0. iter 66.725 66.25(65.26±0.73) 70.300 70.650
1. iter 73.237 73.29(72.69±0.31) 75.487 75.150
2. iter 76.775 76.35(75.89±0.22) 78.238 77.913
3. iter 77.375 77.66(77.37±0.22) 79.150 79.138
4. iter 78.687 78.79(78.38±0.25) 80.025 79.588
5. iter 79.100 79.21(78.95±0.15) 80.625 79.888
6. iter 79.825 79.64(79.28±0.20) 80.850 80.050
7. iter 79.950 79.79(79.48±0.17) 81.163 79.963

Figure 4. Model Accuracy Comparison.
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decisions using different spatial features. This situation is 
explained in detail in Ablation Section.

Table 2 compares the accuracy of the method we sug-
gest to other methodologies. It shows that the method we 
proposed is ~2% more accurate than the closest one. At the 
same time, the most successful results were obtained for 
precision, recall, and F1.

It has been proposed in the Tri-training, Tritraining with 
disagreement, and Ghosh et al. [29] research to use ensem-
ble approaches to develop more successful pseudo-labels. 
While tri-training and tritraining with disagreement pro-
vide decision diversity via the use of random subsets and 
random initialization, Ghosh et al. [29] provide decision 
diversity through the use of different models. Based on the 
balance of the labeled and unlabeled datasets, we designed 
a training model that would retain the diversity of decisions 
amongst base learner models while increasing the perfor-
mance of the ensemble model. We were able to get better 
findings than other studies in this manner.

When cumulatively labeled data is combined with unla-
beled data, the amount of unlabeled data in the training set 

increases and becomes dominant. Since the same unlabeled 
dataset is used in the training set of each base learner, the 
decision diversity of base learners will decrease. As a result, 
the success of the ensemble will also decrease. To avoid this, 
in our study, the labeled sub-dataset selected for each base 
learner is balanced with the added unlabeled dataset by 
bootstrapping. The balancing method ensures that decision 
diversity among base learner models remains constant and 
that the ensemble model’s success keeps rising.

Another achievement of this study is that a more robust 
model was obtained compared to the single model training 
approach commonly used in the literature. In Table 4, the 
outputs of the base learner models and the ensemble model 
outputs are given for a sample input. Each base learner 
model can be considered a single model in this case.

While all base learner models and ensemble models 
produce accurate results in the initial test picture, it can be 
observed that the base learner decisions have changed as a 
result of the image manipulations, but the ensemble model 
continues to produce correct results. Especially as a result 
of vertical flip operation, although 4 out of 10 base learners 

Table 3. Machine Learning Models Metrics on STL-10 Dataset

  Accuracy Precision Recall F1
Decision Tree 79.038 80.127 79.038 79.100
Multi-layer Perceptron 80.450 80.971 80.450 80.374
K-Neighbors 80.612 81.562 80.612 80.528
Random Forest 80.950 81.278 80.950 80.937
SVM 81.163 81.739 81.162 81.077

Table 4. Base Learners and Ensemble Model Outputs

Original Horizontal Flip Vertical Flip Rotation Random Crop Erasing Gaussian Blur
Base 
Learners

1 cat cat bird horse monkey bird Cat
2 cat monkey bird bird monkey cat Monkey
3 cat cat bird dog dog cat Monkey
4 cat monkey cat dog cat bird Cat
5 cat monkey bird cat cat bird Cat
6 cat cat monkey cat cat cat Cat
7 cat monkey cat cat monkey cat Cat
8 cat cat monkey ship monkey cat Cat
9 cat cat monkey cat cat bird Monkey
10 cat monkey cat cat cat cat Monkey
Ensemble 
(Voting)

cat cat cat cat cat cat Cat
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give the result ’bird’, the ensemble model gives the correct 
result. This is because, instead of each model casting a sin-
gle vote, the voting procedure assigns a vote to each class 
in proportion to the probability value. In this way, even if 
the class with the highest probability value for the decision 
of 4 base learners is wrong, when all base learner decisions 
are combined, the minority but high probability value base 
learner decisions dominate and the ensemble model is cor-
rectly classified.

ABLATION STUDY

In this section, we will provide a better understanding 
of the fact that our proposed method is more successful 
than the other approachs. We show why stacking is more 
effective than voting and why the proposed method is more 
robust.

Stacking Vs Voting
The class distributions of the concatenated feature vector 

for stacking are seen to be more discrete sets in the feature 
space than the feature vector obtained by summing prob-
ability vectors for voting in Figure 5. Giving the softmax 
function the feature vectors generated by each base learner 
model causes information loss in voting. Since the feature 
vector obtained from each base learner model is processed 
within itself, the softmax function cannot capture a rela-
tionship between base learner models. However, when we 
concatenate the feature vectors instead of giving them to 
the softmax function, the feature vectors given in Figure 5a 
are obtained. The samples represented by the concatenated 
feature vector are more separable from each other by using 
decision lines in the feature space. 

The concatenation approach’s challenge is to find the 
class probability value corresponding to the obtained fea-
ture vector values. To transform a feature vector to a prob-
ability vector, the SVM algorithm is used. In this way, base 

learner model decisions are combined without losing infor-
mation. The SVM algorithm, which is trained using the 
entire training dataset, learns the results produced by the 
base learner models for samples from different distribu-
tions and produces ensemble result by weighing the results 
of base learner models. As shown in Table 3, Decision tree 
[36], random forest [37], K-NN [38], Multi-layer percep-
tron algorithms have also been tried, but the SVM algo-
rithm is the most successful among them.

Effects of First Iteration Result
One of the biggest factors affecting the success of the 

ensemble is the accuracy obtained in the 0th iteration. The 
0th iteration is when base learner models are trained using 
only a subset of the labeled dataset. With the base learner 
models trained in this iteration, the first pseudo-labels were 
obtained. The success of the first iteration’s pseudo labels 
(whether correctly labeled or not) is directly related to the 
success of the 0th iteration. Because a more successful model 
generates more successful pseudo labels, the model with the 
most success in the 0th iteration is also the model with the 
most success at the end of the 1st iteration. The same can be 
said for the 2nd and 3rd, the 3rd and 4th, and so on. For this 
reason, the success of the 0th iteration is directly related to 
the success of the model obtained in the last iteration. This 
is clearly seen in Figure 6. The only distinction between 
training the two models is that one of the first epoch num-
bers is 40 and the other is 20. While the success difference 
between the two models in the 0th iteration starts as 2%, the 
difference continues as the iteration progresses.

Diversity of Decisions
Convolution is not an invariance process [40, 41]. As a 

result of operations such as rotation, translation, illumina-
tion, it produces different results for the same input image. 
However, the model is expected to produce the same result 
for a transformed input sample. To accomplish this, various 

Figure 5. Ensemble Model Feature Visualization Using t-SNE [39] for Test Samples (a) Concatenation of Feature Vectors 
(Stacking), (b) Sum of Probability Distributions (Voting).
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augment states of the training samples are added to the 
training set during model training. The model gereralizes 
for the domain of the dataset in which it was trained. But in 
the real world, the model cannot generalize to all cases as 
the dataset contains subdomains. However, in our proposed 
method, since each base learner model is trained for differ-
ent subsets of the labeled training set, they can generalize 
more effectively the domain of the subset on which they 
have been trained. Base learner models trained with train 
datasets that are not exactly the same (containing differ-
ent train samples as well as different augmented versions) 

produce different feature vectors for the same test sample. 
Base learner models that make decisions based on different 
features in the same test sample; for example, one cannot 
decide (producing very close probabilities or producing 
false results with high confidence) for the processed sam-
ples such as rotation, but another can. The accuracy and 
robustness of the ensemble model is increased by choosing 
the base learner model that produces the correct result for 
the test sample given in the joint decision-making phase. 
In this way, base learner models trained with different train 
samples produce different feature vectors for the same input 
image and thus behave more robustly to operations such as 
rotation and translation.

Using GradCAM [42] the feature vector of the same 
layer (denseblock4) was drawn on the input image for 10 
base learners. As can be seen in Figure 7, each base learner 
generates different feature vectors for the same input.

In the proposed training algorithm, pseudo-labeled sam-
ples are generated at the end of each iteration as a result of 
the joint decision of all base learner models, and each of the 
base learner model is then trained with the combination of 
labeled samples and pseudo-labeled samples. Pseudo-labeled 
samples generated by joint decision and included in training 
improve the success of base learner models while reducing 
decision variety. Kappa [43] calculates the degree of agree-
ment between two decisions. A high kappa value indicates 
that the two decisions are similar, whereas a low number indi-
cates that the two decisions are unlike each other. The kappa 
value between the two baselearner models and the average 
errors are represented as points on the kappa-error graph. 
The Kappa-Error graph is given in Figure 8. The average 

Figure 6. Mean Accuracy of Base Learner Models Trained 
with Different Epoch Numbers in Iteration 0.

Figure 7. GradCAM : Input Images Feature Maps.
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kappa value among base learners increases as the number of 
iterations increases, as shown in the Kappa-Error graph. As 
decision variety declines, the decisions produced for the test 
samples begin to overlap, and because all base learner mod-
els make similar decisions, combining the decisions does not 
significantly boost the success of the ensemble model over 
the performance of the base learner model.

Limitations
In the ensemble learning approach, each base learner 

model must be trained independently from other models. 
For this reason, in each iteration, training is carried out 
as much as the number of base learner models. The base 
learner model multiplied by the quantity of iterations rep-
resents the total performance of training operations.

In our experiments, we progressed 8 iterations with the 
10 base learner model. This means that 80 training were car-
ried out. It can be said that it requires 80 times more process-
ing power than a single model training. However, this value 
depends on the number of base learners and the number of 
iterations. It is seen in Table 1 that more successful results 
can be obtained from the single model with fewer iterations.

Future Works
In this study, it has been investigated that more success-

ful pseudo-labels can be obtained by using ensemble CNN 
and it is compared with the studies that only examine this. 
Based on this study, consistency regularization techniques 
such as Mixup and ensemble CNN approach should be 
combined in future studies. In this way, successful pseu-
do-labels, which are the prerequisites of consistency regu-
larization techniques, are produced and it is predicted that 
higher success will be achieved.

A solution to the imbalance class distribution problem 
can be produced by training base learner models with a 
class specificity. For this reason, experiments with imbal-
ance datasets have been added to future studies.

CONCLUSION

In this study, we propose iterative ensemble pseudo-la-
beling for convolutional neural networks to improve model 
success and robustness. We show that an ensemble model, 
which is created by training more than one CNN model, 
can produce a more successful and robust model. The cen-
tral idea is to improve the ensemble model’s robustness and 
success with fewer data by producing more accurate pseudo 
labels while preserving the diversity of decisions among 
base learner models. As the number of iterations increases, 
the diversity of decisions decreases as the information 
exchange between base learner models increases. However, 
since each base learner model is trained with different sub-
sets of the labeled dataset, they generate different feature 
vectors, ensuring the ensemble’s success with the stacking 
method. In experiments, we evaluate models using the 
STL-10 dataset and achieve an accuracy of 81.16 percent.
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