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ABSTRACT

In this study, we introduce a matrix variate skew Laplace distribution as a variance-mean mix-
ture of the matrix variate normal and the scale inverse gamma distribution. The proposed 
distribution is a generalization of the multivariate skew Laplace distribution studied by [1]. 
We explore some distributional properties of the proposed distribution such as the probability 
density function and the characteristic function. Also, we study the estimation of the parame-
ters and give an EM algorithm to obtain the estimates of the parameters. Then, we give a small 
simulation study to illustrate the performance of the proposed EM algorithm for finding the 
estimates.
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INTRODUCTION

Scale mixtures of normal distribution play a very 
important role to analyze data that have heavier tails than 
the normal distribution. The assumption of a scale mixture 
of the normal distribution is that the variance is not fixed 
for all members of the population. But, in some situations, 
in addition to non-constant variance problems, mean and 
variance can be related. These types of problems can be seen 
in financial data. To overcome such phenomena, Barndorff-
Nielsen et al. proposed the normal variance-mean mixture 
distributions [2, 3]. The class of generalized hyperbolic 
(GH) distribution proposed by Barndorff-Nielsen, which 
is obtained as the variance mean a mixture of normal and 
the generalized inverse Gaussian distribution (GIG), is a 
widely known class of variance-mean mixture distribution 
[2, 3]. Recently, Gallaugher and McNicholas proposed skew 

matrix variate distributions using the variance-mean mix-
ture approach [4].

The multivariate Laplace distribution is frequently used 
for the cases that have heavier tails than the multivariate 
normal tails. The multivariate Laplace distribution can be 
obtained as a scale mixture of multivariate normal dis-
tribution [5,6]. However, since the multivariate Laplace 
distribution is a member of the elliptical symmetric dis-
tribution family, it cannot be able to model skewness. To 
model skew data, Kozubowski and Podgorski proposed 
asymmetric multivariate Laplace distribution [7]. As an 
alternative to their asymmetric Laplace distribution, Arslan 
introduced multivariate skew Laplace distribution as the 
variance-mean mixture of multivariate normal distribution 
and the inverse gamma distribution [1]. The multivariate 
skew Laplace distribution given in Arslan has a simpler 
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form than the asymmetric Laplace given by Kozubowski 
and Podgorski [1, 7]. Therefore, it is more applicable than 
the asymmetric Laplace distribution. One can see the paper 
by Arslan and Fang et al. for more details about these two 
skew versions of the Laplace distribution [1, 8].

Concerning the matrix variate case, Sanchez-Manzano 
et al. proposed the matrix variate power exponential dis-
tribution, and the matrix variate Laplace distribution is a 
special case of this family [9]. This matrix variate gener-
alization of the Laplace distribution is an extension of the 
multivariate symmetric Laplace distribution. Recently, 
Yurchenko introduced matrix variate asymmetric Laplace 
and matrix variate generalized asymmetric Laplace distri-
butions which are the matrix variate extensions of multi-
variate asymmetric Laplace and generalized asymmetric 
Laplace distributions [10]. After the work of the Yurchenko, 
Kozubowski et al. extend the matrix variate generalized 
asymmetric Laplace distribution using the matrix variate 
Gamma distribution as a mixing distribution instead of the 
univariate gamma distribution [11]. 

In this study, we give a matrix variate generalization of 
the multivariate skew Laplace distribution given in Arslan 
using the variance-mean mixture of the matrix variate nor-
mal distribution [1]. We give an explicit form of the den-
sity function and study some of its distributional properties 
such as characteristic function. The main aim of this paper 
is to propose an alternative matrix variate skew distribution 
to other matrix variate skew distributions which are previ-
ously proposed in the literature [4, 12, 13].

The paper is organized as follows. In Section 2, we give 
the definition of matrix variate skew Laplace distribution 
and study some of its properties. In Section 3, we give a 
parameter estimation procedure based on the EM algo-
rithm and in Section 4, we give a small simulation study 
and the paper is finalized with a conclusion.

Matrix Variate Skew Laplace Distribution: Definition 
and Properties

In this section, we give the probability density function 
(pdf), characteristic function (cf), and some distributional 
properties of the proposed distribution. 

Proposition 1 Let Z have a matrix variate nor-

mal distribution with the parameters M = 0, Σ = In, Ψ = 

Ip   and V independent of Z have a 

inverse Gamma distribution with the parameters  

. Then the random matrix

  (1)

in Rn×p has a matrix variate skew Laplace distribution 
(MVSL) with the density function

  

(2)

where  and tr(.) is a trace 
function. Here, M ∈ Rn×p is a location matrix, Υ ∈ Rn×p is 
a skewness parameter, Σ and Ψ are variance-covariance 
matrices of size n × n and p × p respectively.

Proof Since Z and V are independent, we can write the 
joint density function as follows

Using the transformation 
, we obtain joint density function of X and V as

and the density function of X is given by

Since , the 

pdf of X can be obtained as follows

Definition 1  A random matrix X ∈ Rn×p is said to have 
a n × p - dimensional matrix variate skew Laplace distribu-
tion  if it has the density function 
given in Eq. (2).

Proposition 2 The conditional distribution of X given V 
is . 

Proof  The pdf of random matrix Z is

  (3)

when we use the transformation 

 with the Jacobian 

, we achieve following pdf for 

X given V
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So, we can see that the conditional distribution of X 
given V is the matrix variate normal distribution.

Proposition 3 Let  then the 
characteristic function of X turn out to be

Proof Since we know the conditional distribution of X 
given V = v, we obtain the characteristic function of X as 
follows

If  then

  
(4)

Using this moment, we can easily find the expectation 
the variance-covariance of  which is stated in the 
following proposition. 

Proposition 4 Let  then expec-
tation and variance-covariance of X is given as follows.

Theorem 1 Let  and Y = A 
+ BXC where A is n × p constant matrix, B and C are pos-
itive definite n × n and p × p matrices, respectively, then 

.
Proof Using the characteristic function of matrix variate 

skew Laplace distribution, we obtain the following result

Parameter Estimation
In this section, we will give parameter estimation of the 

matrix variate skew Laplace distribution. Let X1, X2, ..., Xl ∈ 
Rn×p i.i.d. data matrices. Assume that these data come from a 
matrix variate skew Laplace distribution with the unknown 
parameters M, Σ, Ψ, and Υ. We will use the maximum like-
lihood estimation method to obtain the ML estimators of 
the unknown parameters. To get ML estimators, we have to 
maximize the following log-likelihood function

We can directly obtain the estimators of the parameters 
using the above log-likelihood function. However, using the 
normal variance-mean mixture representation of X will give 
us great advantages to obtain estimators via the EM algorithm.

Let Xi and Vi observed and missing values, respectively, and 
(Xi, Vi) as complete data. The joint density function of X and V 
is given in Proposition 1. So, for i = 1,2, ..., n, we can find the 
log-likelihood function for the complete data (Xi, Vi) as follows 

In the complete data log-likelihood function, since 
there are some terms in the complete data log-likelihood 
function that do not include unknown parameters, we can 
ignore them. Ignoring the irrelevant terms and taking the 
conditional expectation of complete data log-likelihood 
function given X and the current estimates of the parame-
ters, we reach the following function to be maximized to get 
the estimates for the parameters
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where  and  are 
the conditional expectation of Vi and Vi

-1, respectively, given 
the observed data and current estimates of the parameters. To 
obtain these conditional expectations, we have to obtain the 
conditional distribution of V given X. Doing some straight-
forward algebra, the density function of the conditional dis-
tribution of V given X can be obtained as follows. Note that 
this conditional distribution is the inverse Gaussian distri-
bution with the parameters  and 

. 

Using this conditional distribution, the conditional 
expectations given above become as 

  
(6)

  

(7)

for 
i = 1,2, ..., l. When we rewrite the Q function using wi 

and ui, we get 

  

(8)

When we take the derivatives of this objective function 
with respect to the parameters  Σ, Ψ and Υ and setting to 
zero, we obtain the following estimators

  
(9)

  
(10)

  
(11)

  (12)

Where ave(.) denote the average over i = 1,2, ..., l and 
.

We can give the general description of the ECM algo-
rithm as follows:

1) Initialization: Parameters M, Υ, Σ, and Ψ and are ini-
tialized and set k = 0.

2) E Step: Update wi and ui as follows:

  

(13)

  
(14)

3) First CM Step: Parameter Υ is updated as follows:

  

(15)

4) Second CM Step: Updates M parameter as follows:

  
(16)

5) Third CM Step: Σ parameter updates as follows:

  
(17)

6) Fourth CM Step: Update Ψ parameter:

  
(18)

7) Fifth CM Step: Check the convergence: If conver-
gence is not achieved, set t = t +1and return step 2.

Simulation
In this section, we conduct two simulation studies 

to illustrate the performance of the proposed estimation 
method. We use the variance-mean mixture representation 
given in Eq. 1 to generate data. For Case I, M and Υ matri-
ces are taken as follows. Also, to eliminate the identifiability 
issue, we take the diagonal elements of Σ and Ψ matrices as 
1. The same idea is used in [4].
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For Case II, We take M and Υ as follows

In both simulation, Σ and Ψ matrices are taken as 
follows

In both simulations, we take sample sizes as l = 50, 
100, 200 and 400. The simulation is replicated 500 times. 
We compute the mean Euclidean distance to show the 

performance of the estimators. In all simulations, the stop-
ping rule ε is taken as 10-10. Mean Euclidean distance are 
computed as follows.

Simulation results are given in Tables 1-8. In tables, we 
give estimated matrices, the mean Euclidean distance and the 
mean iteration number. For all simulations, when the sample 
size is getting bigger, the mean Euclidean distance, and the 
mean iteration number are getting smaller. These results imply 
that the proposed estimation procedure is working accurately.

Table 2. Estimated matrices, mean Euclidean distances and mean iteration number for n=100 in Case I

Estimated matrix Mean Euclidean distance Mean iteration number

346.324

Table 1. Estimated matrices, mean Euclidean distances and mean iteration number for n=50 in Case I

Estimated matrix Mean Euclidean distance Mean iteration number

359.97
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Table 5. Estimated matrices, mean Euclidean distances and mean iteration number for n=50 in Case II

Estimated matrix Mean Euclidean distance Mean iteration number

284.432

Table 3. Estimated matrices, mean Euclidean distances and mean iteration number for n=200 in Case I

Estimated matrix Mean Euclidean distance Mean iteration number

337.884

Table 4. Estimated matrices, mean Euclidean distances and mean iteration number for n=400 in Case I

Estimated matrix Mean Euclidean distance Mean iteration number

333.956
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Table 7. Estimated matrices, mean Euclidean distances and mean iteration number for n=200 in Case II

Estimated matrix Mean Euclidean distance Mean iteration number

263.048

Table 8. Estimated matrices, mean Euclidean distances and mean iteration number for n=400 in Case II

Estimated matrix Mean Euclidean distance Mean iteration number

258.862

Table 6. Estimated matrices, mean Euclidean distances and mean iteration number for n=100 in Case II

Estimated matrix Mean Euclidean distance Mean iteration number

266.340
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CONCLUSION 

We have introduced a new matrix variate distribution 
using the variance-mean mixture approach. Also, we have 
given some distributional properties of the newly proposed 
distribution and proposed an estimation procedure based 
on the EM algorithm. Then, we have conducted a small 
simulation study to show the performance of the proposed 
algorithm. This distribution has been used as an alterna-
tive distribution to model matrix variate skew data. As we 
compare the proposed distribution with the previously pro-
posed distribution, the newly proposed distribution has a 
simpler form than the other matrix variate Laplace distri-
bution given in the literature.
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