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ABSTRACT

Electroencephalogram (EEG): It is used to diagnose, monitor, and manage neurophysiolog-
ical disorders related to epilepsy and sleep disorders. The definition of sleep and wakeful-
ness in polysomnography is also made with the EEG technique. The relationship between 
depression and sleep disturbances has been examined in many epidemiological and clinical 
studies. Clinical observations and studies suggest that the changes in sleep structure in de-
pression are sensitive, even specific. This study aims to research the structural differences in 
sleep EEGs of healthy subjects and subjects with depressive disorder between their non-rap-
id eye movement (NREM), non-rapid eye movement (N2), and rapid eye movement (REM) 
stages by using the Itakura Distance Measure. In comparison between the N2 and REM 
epochs of the healthy subjects, the distance is short. In the comparison between N2 and 
REM epochs of depressed subjects with each other and healthy subjects, the distance has 
been found to be large. The study indicates that the sleep EEG of the patients differs in the 
N2 stage as much as it does in REM.
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INTRODUCTION

Sleep is a physiologic, periodic resting state of the body 
in which the eyes are closed and sensational functions are 
diminished. Rather than an inactive phase of the body, 
sleep is a dynamic process and has many functions that help 
to sustain homeostasis and reconstruct the body and the 
central nervous system. Sleep is the primary function of the 
brain and plays an essential role in an individual’s perfor-
mance, learning ability, and physical movement. 

Humans spend around one-third of their lives sleep-
ing, and conditions such as insomnia and obstructive 
sleep apnea are frequent and can severely affect physical 
health. 50–70 million people suffer from sleep disorders in 
the United States. In addition, more than 90% of patients 
with depressive disorders suffer from sleep disorders. Sleep 
apnea is estimated to be common in 2–4% of adults and 
1–3% of children. Approximately 33% of the world’s popu-
lation suffers from insomnia symptoms [1].

Changes in EEG may carry important clinical infor-
mation. Accurate detection and characterization of such 
EEGs can be valuable for the clinical assessment of the neu-
rological condition. The scoring of sleep is an important 
step in the investigation of sleep structure, the classifica-
tion of diseases, and the selection of appropriate treatment 
applications.

There are four sleep stages: one for rapid eye move-
ment (REM) sleep and three for non-REM (NREM) sleep. 
These stages are determined based on an analysis of brain 
activity during sleep, which shows distinct patterns that 
characterize each stage. The classification of sleep stages 
was updated in 2007 by the American Academy of Sleep 
Medicine (AASM). Before that, most experts referred to 
five sleep stages, but today, the AASM›s definitions of the 
four stages represent the consensus understanding of the 
sleep cycle [1].

The human body goes through two stages of sleep: (1) 
rapid eye movement (REM) and (2) non-rapid eye move-
ment (NREM) sleep; This sleep is further divided into three 
stages, N1-N3. Sleep quality and the time spent in each 
sleep stage may vary due to depression, aging, traumatic 
brain injuries, medications.

N1 (Stage 1), light sleep (5%): This is the lightest stage of 
sleep and begins with more than 50% of alpha waves being 
replaced by low-amplitude mixed waves. 

N2 (Stage 2), Deeper Sleep (45%): This stage is charac-
terized by the presence of sleep spindles, K-complexes, or 
both. Stage 2 sleep lasts approximately 25 minutes in the 
first cycle and becomes longer with each successive cycle, 
eventually accounting for approximately 45% of total sleep.

N3 (Stage 3), Deepest Non-REM Sleep (25%): This is 
considered the deepest stage of sleep and is characterized 
by signals with much lower frequencies and higher ampli-
tudes, known as delta waves. This stage is the most difficult 
to wake up from.

REM (25%): REM is associated with dreaming and is 
not considered a restful sleep phase. Although the EEG 
resembles that of an awake person, the skeletal muscles are 
atonic and inactive, except for the respiratory muscles of 
the eyes and diaphragm, which remain active. This phase 
usually begins 90 minutes after falling asleep, and each 
REM cycle extends throughout the night. The first period 
usually lasts 10 minutes, and the last period lasts about an 
hour. REM is when dreaming occurs [2].

Depression is a common mood disorder that might 
cause a persistent feeling of sadness, a loss of interest, and 
impairments of memory and concentration. Depressed 
patients normally experience cognitive impairment and 
suffer long and severe emotional depression. In severe 
cases, some patients will experience paranoia and illusions. 
As a result, diagnosing depression in its early curable stages 
is critical and may save a patient’s life [3]. 

The symptoms of depression appear mostly as behav-
ioral ones. Normally, the help of psychiatrists or counsel-
ors is sought for diagnosis and treatment. Identification of 
depression in its early stages is crucial to preventing it from 
reaching a severe and irreversible state. The electroenceph-
alogram (EEG) may be used as a tool for making an objec-
tive diagnosis of depression [4].

EEG is widely used in brain function studies. Recently, 
many studies [5, 7, 8] have demonstrated the relationship 
between depression and EEG. Many studies [7, 9, 10, 11, 12, 
14] showed asymmetries in the EEG of depressed patients 
over the frontal cortex. Moreover, the EEG showed signif-
icant differences between healthy subjects and depressed 
patients in many research studies [6, 14, 15, 16].

Research on the human brain is being carried out inten-
sively to understand the mechanisms underlying depres-
sion. The most commonly used diagnosis of depression is 
a scale-based interview with a psychologist or psychiatrist. 
Current depression detection methods are labor intensive 
and results depend on the doctor’s experience. As a result, 
many patients with depression are not accurately diagnosed 
and do not receive optimal treatment. Therefore, finding 
appropriate and effective methods for detecting depression 
is an important research topic. With the latest advances in 
technology, the use of physiological data for the diagnosis 
of mental disorders opens a new avenue for an objective 
and accurate tool for detecting depression. Among all kinds 
of physiological data, electroencephalogram (EEG) reflects 
emotional human brain activity in real time [3]. 

In Article 4, recent studies on computer-aided diagno-
sis (CAD) of depression using EEG signals are presented. 
Chaos theory and nonlinear dynamical methods are used 
to extract the bispectrum, power spectrum, phase entro-
pies, wavelet energy and entropy, correlation dimension, 
fractal dimension, largest Lyapunov entropy, and approx-
imate entropy [4].

Ahmadlou et al. [17] investigated EEGs obtained from 
patients with major depressive disorder using wavelet-chaos 
methodology.
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Puthankattil et al. [18] extracted relative wavelet energy 
parameters from the discrete wavelet transform (DWT) 
coefficients and used ANN to classify the EEG signal into 
normal and depressed classes. Ahmadlou et al. [19] pre-
sented a novel nonlinear method for the analysis of brain 
dynamics. 

Faust et al. [20] present a depression diagnosis support 
system using entropies extracted from the wavelet packet 
decomposition coefficients of the EEG signal. 

Bachmann et al. [21] compared the linear and nonlin-
ear methods for depression detection based on EEG signals. 
Even though a number of papers have been published using 
nonlinear methods, there are other nonlinear methods [21–
46] that are worth exploring for the EEG-based diagnosis of 
depression.

Sleep disturbances are common in depression. It has 
been estimated that more than 90% of patients with major 
depressive disorder have concurrent sleep problems [47]–
[49]. Sleep problems may manifest as insomnia, hyper-
somnia, early morning awakenings, frightening dreams, or 
excessive sleepiness in the daytime in depressive patients 
[50]. Soehner et al. have found that the presence of insom-
nia is associated with more severe depression [51]. It has 
been observed that chronic sleep disturbances are associ-
ated with the recurrence of depressive episodes and suicide 
[52–53]. In polysomnographic examinations, it is observed 
that more time is needed to fall asleep, there is a short-
ened REM latency and a longer duration of the first REM 
period, there is increased REM intensity during sleep, there 
is less slow-wave sleep, and there is increased wakefulness 
during sleep in depressive patients [54]–[55]. Armitage et 
al. [56] have reported that there was a difference in terms 
of wave amounts of fast and slow frequencies between the 
sleep EEGs of depressed and healthy subjects [54]. Röschke 
reported that there were differences in theta and beta activ-
ity during an NREM sleep period [57].

Figure 1 shows sample normal (a) and depression (b) 
EEG data.

A number of studies have used autoregressive (AR) 
models to detect changes in the EEG signal [58–60]. Based 
on the AR model parameters, Itakura distance has been 
used for automatic sleep stage classification effectively [58]. 
The Itakura distance measure used for such quantification 
requires the same order for the AR models in all EEG seg-
ments. In their pilot study, Estrada et al. investigated EEG 
and EOG signals acquired from 10 sleep apnea patients 
undergoing overnight polysomnography and used the 
Itakura distance to classify sleep stages [58].

To our knowledge, no previous study has investigated 
the structural differences of sleep EEGs with the Itakura 
Distance between depressive patients and healthy subjects. 
In this preliminary study, we aimed to clarify more spe-
cific points in EEG signals by comparing signals between 
depressive patients and healthy subjects. To do this, EEG 
signals from every different sleep stage are isolated and 
compared with each other. This study aims to research the 
structural differences between healthy subjects and sub-
jects with depressive disorder by using the Itakura Distance 
Measure.

MATERIALS AND METHODS

A- Subjects:  The study group consists of two male 
subjects (H1 and H2) (ages 23–24) with major depres-
sive disorder and two male subjects (D1 and D2) (ages 
23) without any psychiatric complaints or findings who 
were under polysomnographic examination in the Sleep 
Research Center of Gülhane Training and Research 
Hospital Department of Psychiatry. The subjects were not 
on any medication. In sleep records, a polysomnographer 
named Somnostar Alpha is used. The polysomnographer 
uses a 0.5–35 Hz filter and takes samples at 200 Hz (low-Hz 

Figure 1. Sample normal and depression EEG data.
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filter [Hz]: 0.5; high-Hz filter [Hz]: 35; sampling rate: 200 
Hz). The EEG record obtained from the polysomnogra-
pher is evaluated using Matlab software (The Mathworks, 
Massachusetts, USA).

B- Polysomnographic examination:  In polysomno-
graphic records, two EEGs (C3 and A2, C4 and A1), two 
EOGs (left and right), two EMGs (mental or submental 
and tibial muscular), and an ECG are used. EEG records 
were evaluated and scored by a psychiatrist. The first night 
is regarded as adaptation night. Each polysomnographic 
examination is scored in epochs lasting 30 seconds, which 
consist of 6000 spots. 1 The Itakura distance was calculated 
by using the epoch corresponding to the first N1 of H1 and 
the epoch corresponding to the first N1 of H2. Later, the 
calculation of the Itakura distance was done by comparing 
the second corresponding N1 epoch of H1 with the sec-
ond N1 epoch of H2. The calculated Itakura distances were 
graphed and interpreted visually. This idea was used sepa-
rately for all other phases, and the Itakura distances were 
calculated for each phase and presented in a graphic form. 
Epochs with artifacts were not evaluated. The C3-A2 record 
taken on the second night is used for sleep EEG data.

C- Statistical method: In parametric modeling, a math-
ematical model is fitted to a sampled signal in order to study 
a time series. The AR modeling technique can be formu-
lated either in the frequency domain as a spectral matching 
problem or in the time domain as a linear prediction prob-
lem. The code written in MATLAB was developed to cal-
culate the Itakura distance by the researchers in the study.

Statistical Analysis
There are two methods to quantify the differences 

between the two waveforms. The first of these is a spectral 
distance measure, which measures the difference between 
the power spectra of two waveforms. The second method 
is called the Itakura distance measure, which measures 
the distance between the AR parameter vectors of the two 
waveforms. This method has been successfully applied in 
speech processing applications to measure the distance 
between two speech utterances modeled as AR processes 
[61]. A more extensive account of these and other distance 
measures can be found in [62].

Itakura distance measure
Let the AR model of a segment of baseline EEG be given 

by:

  (1)

and that of a segment of EEG during the experiment be 
given by:

  (2)

Here, we assume that the optimal order for both seg-
ments of EEG is p. Let the optimal AR parameter vector in 

each case be given by,  and 
, respectively. The Itakura distance measure to test how far 
β is from optimality if it is used to model x(t) is defined as,

  
(3)

[61] where Rx is the autocorrelation matrix of x(t) at 
given by:

  

(4)

The individual elements of the above matrix denote the 
autocorrelation of x(t) at different lags, and they can be esti-
mated as follows:

  
(5)

Similarly, the AR parameter vector α can be tested to 
see how well models work y(t) by defining another Itakura 
distance measure given by

  
(6)

A symmetric distance measure can then be defined by 
combining the above two distance measures as follows:

  
(7)

[61-63].
In this study, each sleep EEG epoch was modeled with 

the AR(4) model, and the parameters were estimated based 
on that (optimal AR model order determination using the 
Akaike Information Criterion (AIC)).

 The parameters in the AR model were considered to be 
the parameters that changed over time and were estimated 
by the Kalman filter. Using a time-varying autoregressive 
model, we take advantage of the fact that the EEG signals 
are not always the same. The time-varying coefficient of 
the AR model is estimated using the Kalman filter (see 
Appendix).

Two healthy subjects and two subjects with depres-
sion have been studied. Each epoch is compared with the 
same-numbered epoch of the other patient. Using the 
Itakura Distance Measure, it is determined whether there 
is a structural difference between epochs or not. Itakura 
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Distance Measure uses AR (4), which is one of the time-se-
ries models, and the autocorrelations in each epoch.

According to this distance measure, the comparison of 
REM epochs for H1 and H2 is shown in Figure 2.

The comparison of the N2 epochs of H1 and H2 is 
shown in Figure 3.

The comparison of REM epochs for D1 and H1 is shown 
in Figure 4.

The comparison of the N2 epochs of D1 and H1 is 
shown in Figure 5.

The comparison of the N2 epochs of D1 and H2 is 
shown in Figure 6.

The comparison of N2 epochs in D1 and D2 is shown 
in Figure 7.

Figure 3. The comparison between period 2 epochs of the 
healthy subjects H1 and H2.

Figure 2. The comparison between the REM epochs of sub-
jects H1 and H2.

Figure 4. The comparison between the REM epochs of sub-
ject number one with depressive disorder and the healthy 
subject number one.

Figure 5. The comparison between period 2 epochs of sub-
ject number one with depressive disorder and the healthy 
subject number one.
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RESULTS AND DISCUSSION 

The current study found that the distance was short 
when the N2 and REM epochs of the healthy subjects were 
compared, respectively (Figure 2 and Figure 3). This result 
shows that these two wave models are structurally similar 
to each other. The distance has been found to be large when 
the N2 and REM epochs of depressive subjects are com-
pared with those of healthy subjects (Figures 4 and Figures 
5). This result shows that the EEG signals of the subjects in 

the two groups are structurally different from each other. It 
is known that sleep disturbances are common in depression 
patients. It is accepted that approximately 5% of the total 
sleep time is N1, 50% is N2, and 20% is N3 and N4 sleep. 
The remaining 25% is REM sleep. Since N2 and REM stages 
comprise 65–80% of total sleep, they provide important 
clues in understanding the quality of sleep.

The findings obtained in our study are compatible with 
the literature. Polysomnographic studies in sleep studies 
have shown that depressed patients require more time to 
fall asleep, have a shorter REM latency and a longer first 
REM period, increased REM intensity in sleep, decreased 
slow-wave sleep, and increased wakefulness during sleep 
[54][55]. Armitage et al. [56] found a difference in the 
amount of waves of fast and slow frequencies between the 
sleep EEGs of depressed and healthy subjects [54]. Röschke 
reported differences in theta and beta activity during a 
NREM sleep period [57].

Patients with depression show characteristic sleep-EEG 
changes [72], including:

(i) Impaired sleep continuity
(ii) Disinhibition of REM sleep: shortened REM latency 

or sleep-onset REM periods
(iii) Changes in non-REM sleep (decreased stage N2)

CONCLUSION

The study indicates that the sleep EEGs of the depressed 
patients differ in N2 and REM stages from those of healthy 
subjects with the use of the Itakura Distance Measure. This 
method may be used as an indicator to assist psychiatrists in 
sleep research and clinical diagnosis. By combining this infor-
mation with clinical findings, it may be easier for the psychi-
atrist to make a diagnosis based on objective numerical data.

The major limitation of this study is its small sample 
size. Further studies with larger sample sizes may reveal 
structural differences more accurately. This can be an 
important resource for researchers and psychiatrists eval-
uating patients in the clinical setting in terms of making 
objective decisions based on quantitative data. 
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Appendix

Let y be the one-channel EEG signal. We suppose that an AR can describe the EEG. The AR model has found many 
applications in EEG analysis, although EEG is a non-stationary signal [64]–[68]. The AR model is given as:

 

where p is the order of the model. Since the EEG is a non-stationary signal, we let the AR parameter vary with time.

 

or in vector notation

where  is a px1 vector and . The vector θ(t) contains the AR 
parameters and varies in time:

where w(t) is Gaussian noise with zero mean and covariance R1(t). This describes an AR model for the EEG signal 
with a time-varying coefficient in state-space form. To estimate those coefficients, we use the KF. Consider the dynamical 
linear model given as:

where θ(t) is a px1 state vector at time t, y(t) is an observation at time t, and w(t) and v(t) are the states and observation 
noise which are assumed white and Gaussian, respectively. The KF is given with the following equations:

 

where K(t) Kalman gain [69-71]. 


