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ABSTRACT

Many companies prefer to use third party logistics firms to deliver their goods and as such 
planning the return of the vehicles to the depot is not required. This is called open vehicle 
routing problem (OVRP). In literature, the OVRP is handled with minimum distance as ob-
jective function like vehicle routing problem. But in the real world, the objective function 
achieves minimum many costs like standard routing cost, stopping by cost and the deviation 
cost. The standard routes are previously defined under free market conditions by third party 
logistic firms. The deviation from the standard route is required to arrive cities which are not 
on the standard route. The stop by cost occurs on the delivery points. In this paper mentioned 
three costs are considered in the objective function while many papers consider only distance 
related costs in the literature. This paper proposes a new mathematical model for the OVRP. In 
the constraints, the last points of the routes are researched in detail. The standard route costs 
are determined by considering the last point of the route. Because of the NP-hard structure 
of the OVRP, the proposed mathematical model is solved with a hybrid metaheuristic called 
Civilized Genetic Algorithm (CGA). CGA is developed by hybridizing a modified genetic 
algorithm and a local search algorithm. The application of this study is implemented for the 
delivery routing of a combi boiler producer in Turkey. The third party logistic firms may use 
this proposed model and the solution approach for the real life applications.
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INTRODUCTION

In the classical vehicle routing problem (VRP), which 
is a well-known NP-hard problem introduced by Dantzig 

and Ramser [1] to find the optimal routes of vehicles, all 

customers are served by homogeneous fleet of vehicles each 

of which has a fixed capacity. Due to the NP-hard problem, 
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several heuristic algorithms and metaheuristic algorithms 
have been proposed to solve these problems, such as genetic 
algorithm (Ornbuki et al. [2], Awad et al. [3]), tabu search 
algorithm (Cordeau et al. [4], Brandão et al. [5]), simulated 
annealing algorithm (Baños et al. [6]), ant colony algorithm 
(Kahar and Zobaa [7]), ant colony optimization and fire-
fly algorithm (Goel and Maini [8]), and monarch butterfly 
algorithm (Yi et al. [9]). 

For many VRPs, each customer demand is served by a 
single vehicle. The routes start and end at a single depot. 
The objective function is finding the best set of routes 
which minimize the total routing cost or the total distance 
traveled. Nowadays, companies prefer to get their transport 
jobs done by another third party professional logistic firm 
and they are not concerned with the return of the vehicles, 
which is called Open Vehicle Routing Problem (OVRP). 
The OVRP is an important variant of the VRP. The main 
difference of this specific VRP from the classical VRP is that 
vehicles in use do not return to the starting point. Based on 
graph theory, each route in the VRP is a Hamiltonian cycle 
and each route in the OVRP is a Hamiltonian path.

Schrage [10] defines open and close trips as a real life 
routing problem, which is a variant of the VRP. Defining 
OVRP for the first time, Sarıklis and Powel [11] stated that 
the aim is to minimize the total travel and vehicle operating 
costs starting from the depot and the vehicles do not have 
to return to the depot after serving all customers. In liter-
ature, there are many applications of OVRP. For instance, 
newspaper home deliveries or school buses do not return 
to the starting point. Some companies, which do not have 
their own fleet, outsource the delivering services to the 
third party logistics firms.

Although there are many papers analyzing different 
solution methods in the literature, the majority does not 
differ in the mathematical modeling of OVRP. They con-
sider the travelling costs as a total cost of transportation. 
Several researchers have focused on the solution of OVRP 
with heuristic and metaheuristic algorithms since OVRP is 
an NP hard problem. Sariklis and Powell [11] used a mini-
mum spanning tree method with penalty procedure based 
on cluster first route second strategy. Brandao [5] solved 
OVRP with maximum route length constraints with tabu 
search. Fu et al. [12] studied a tabu search algorithm using 
a new initial solution method called farthest first heuristic. 
Tarantillis et al. [13] proposed an OVRP with multi-de-
pot using an algorithm called list based threshold, which 
is considered the solution method. They proposed a single 
parameter metaheuristic for the solution of the problem. 
Repouissis et al. [14] studied an OVRP with time windows. 
They used a greedy look-ahead route construction heuristic 
algorithm as a solution method. Pisinger and Ropke [15] 
used adaptive large neighborhood search to solve OVRP. Li 
et al. [16] reviewed OVRP algorithms in the literature and 
adapted their own record-to-record travel algorithm for the 
OVRP. Pessoa et al. [17] introduced a branch-cut-and-price 
algorithm to solve capacitated OVRP. Derigs and Reuter 

[18] implemented the attribute-based hill climber heu-
ristic to the OVRP. Flezsar et al. [19] proposed a variable 
neighborhood search algorithm for the OVRP. Zachariadis 
and Kiranoudis [20] proposed a local search metaheuris-
tic which examines wide solution neighborhoods for the 
OVRP. They studied the problem with two different objec-
tive configurations. First objective configuration minimizes 
total number of vehicles primarily and total travelling cost 
secondarily, the second objective configuration minimiz-
esonly the total travelling cost. Cao and Lai [21] researched 
OVRP with fuzzy demands. Stochastic simulation and 
improved differential evolution algorithm were used to 
solve the problem. MirHassani and Abolghasemi [22] used 
particle swarm optimization method. Li et al. [23] studied 
the heterogeneous fixed fleet OVRP in which customers 
were fulfilled by a fleet of fixed number of vehicles with 
different capacities. They proposed a multistart adaptive 
memory programming metaheuristic algorithm. Marinakis 
and Marinaki [24] studied a bumble bee mating optimiza-
tion algorithm for OVRP. They analyzed the objective func-
tion as a hierarchical objective. First, the number of vehicles 
was minimized and then total distance travelled was min-
imized. Şevkli and Güler [25] proposed a variable neigh-
borhood search based algorithm to solve OVRP. They also 
improved the results of the real- world company’s solutions. 
Soto et al. [26] studied OVRP with multiple depots and 
developed a general multiple neighborhood search hybrid-
ized with a tabu search strategy. Brandao [27] studied an 
OVRP with time windows by using iterated local search 
algorithm. Hashemi and et al. [28] studied the another 
variation of open and VRP a combination of the multi-trip 
with time windows. Dasdemir et al. [29] studied a real life 
OVRP with overbooking, multiple objectives and unknown 
initial pickup points. Dutta et al. [30] proposed a model for 
OVRP which considers two conflicting realistic objectives: 
minimizing the operating costs and minimizing the car-
bon emission due to fuel consumption by the service vehi-
cles. To solve the multi-objective problem Strength Pareto 
Evolutionary Algorithm (SPEA2) and Non-dominated 
Sorting-based Genetic Algorithm (NSGA-II) was studied. 
Sun et al. [31] presented an effective memetic algorithm 
for an open vehicle routing problem under uncertain travel 
times. Yu et al. [32] proposed a learning whale optimi-
zation algorithm for the two-dimensional loading open 
vehicle routing problem with time window to minimize 
the total distance. Hosseinabadi et al. [33] proposed a new 
meta-heuristic algorithm for OVRP. Ruiz et al. [34] pro-
posed two mixed-integer formulations for the OVRP with 
split deliveries. They also used a cutting-plane method to 
improve the optimization performance.

Obviously, OVRP has been widely studied by many 
researchers, considering different characteristics but sim-
ilar objectives to minimize the total travelling cost or 
total travelled distance in the literature. However, there 
are few papers with different objectives, such as minimiz-
ing the total number of used vehicles (MirHassani and 
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Abolghasemi [22]; Brandao [5]; Brandao [27]; Marinakis 
and Marinaki [24], Lopez-Sanchez et. al. [35]); minimiz-
ing overcapacity and over duration penalty (Tarantilis et 
al. [13]), and minimizing the cost of fuel emissions as a 
green OVRP (Niu et. al. [36], Li et al. [37]). Niu et al. [36] 
considered the objective function for optimizing the fuel 
emissions cost and solved a hybrid tabu search algorithm 
involving several neighborhood search strategies. Also, 
Vincent et al. [38] proposed OVRP with cross-docking. 
They proposed mixed integer mathematical model with the 
objective of minimizing total transportation cost incurred 
in the pickup and delivery process.

In competitive environment, third party logistic firms 
defined several standard routes and transportation prices. 
The standard price affects not only the distance cost but also 
competitors based on the rules of free market. We refer to 
this cost in this paper as “standard routing cost”. If deliver-
ing points are on the standard route, the third party logistic 
firms demand extra cost for leaving the highway, entering 
the city and turning back to highway, which is called “stop 
by cost”. In addition, if the delivering points are out of these 
routes, third party logistic firms apply the extra cost, called 
“deviation cost” for the fuel cost of extra distance. To the 
best of our knowledge, there is no study in the literature 
for modelling the above mentioned real life costs by now. 
Therefore, the main motivation of this study is to consider 
real life costs besides distance cost, and use this model in 
transportation operations carried out by third party logistic 
firms. 

The main contributions of this paper are:
•	 To give an opportunity using the defined standard 

routes by logistic firms,
•	 To simulate the real life costs for OVRP,
•	 The real life costs include extra payments such as using 

highway, entering-exiting the customer city, deviation 
cost from the standard route.

•	 To apply this model by changing parameters without 
any modification, because this model reflects the prac-
tical life.
In this study, we present a mathematical model and an 

improved solution for a real life OVRP. The real life costs 
considered in this study belong to a combi boiler produc-
er’s logistic company in Eskisehir-Turkey. The company 
hires vehicles from third party logistic companies and route 
them for delivering their goods. What has motivated us to 
conduct this study is the absence of a mathematical model 
and a solution for real life costs which are standard routing 
cost, stop by cost, and deviation cost, which are explained 
in detail. In this paper, mentioned costs are modelled with 
a novel mathematical model and solved with a new hybrid 
metaheuristic called CGA., GA is modified and improved 
by preventing the incest relationships among individu-
als in the population. CGA is a hybridization of a modi-
fied genetic algorithm and a local search algorithm. CGA’s 
results are proved to be moderately superior to HGA’s. 

The limitations of this study are: CPU times (3746) and 
city numbers (199). The problem parameters handled in 
this study can also be used for other types of VRPs such as: 
capacitated VRP, split-delivery VRP, VRP with time win-
dows etc.

The rest of the paper is organized as follows: The 
components of proposed OVRP with real life costs are 
described below. The notation and mathematical model for 
OVRP with real costs are given. The improved genetic algo-
rithm-CGA is explained. The computational experiments 
are given and the solutions of real life OVRP via CGA are 
presented. The conclusion is provided in the last Section. 

MATERIALS AND METHODS

In many cases, manufacturing companies prefer the 
delivery of their finished products done by professional third 
party logistic firms. These manufacturing companies’ logistic 
departments make the delivery plan of their products with-
out having their own fleet but hiring one. They hire vehi-
cles from a co-operating logistic firm and are not concerned 
about the return of the vehicles to the depot. This transporta-
tion form is called OVRP and it is the most proper model for 
the companies whose main task is not transportation.

In this study, OVRP with real costs in objective func-
tion is proposed. In real life, the cost includes not only the 
distance fuel cost but also several extra costs in free market 
condition. The studied problem is different from the classi-
cal OVRP due to the costs in the objective function. In the 
objective function, there are three types of costs which are 
referred to as standard routing cost, stop-by cost, and devi-
ation cost. These three costs are described in detailed in the 
following sub-sections.

Standard Routing Cost
For a manufacturing company without a fleet of its own, 

vehicle hiring cost is the standard price for hiring a vehicle 
and it is defined by a third party logistic firm. Third party 
logistic firms tend to have standard routes for travelling 
from an origin (depot) to the city of the customer by follow-
ing a sequence of cities, unless the origin and the customer’s 
city is adjacent as in real life. Prices for different standard 
routes are defined according to free market conditions. 
Consequently, a manufacturing company willing to hire 
a vehicle has to comply with one of these predetermined 
routes and standard price, ri, such that ri is the standard 
price of a vehicle following a path beginning from the depot 
and stopping at i. The ri price shows the basic hiring vehicle 
cost including fuel, driver cost, tollgates, etc., from depot 
to the end point of the route. Naturally, the manufacturing 
companies’ delivery plan may start from an origin and end 
at a customer’s city i. However, there still may be other cus-
tomer’s city on the standard route and/or out of the route 
but near the standard route related to ri. In this case, the real 
route differs from the standard route between depot and i, , 
and other costs emerge, which are called “stop-by cost” and 
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“deviation cost”. These costs are going to be discussed in 
detail in the following sub-sections. 

In the objective function, this cost is described by the 
following equation: 

	 	
(1)

where, xijk shows the decision variable that if the vehicle 
k travels from city i to city j, it takes 1 otherwise 0. Also, 
yik represents other decision variable which if the vehicle 
k travels to customer’s city i, it takes 1 otherwise 0. This 
means that if the customer’ city i is the last point of the 
route, the vehicle will not travel to another customer’s city j. 
In this case, yik = 1, xijk = 0. The standard routing cost of the 
customer i (ri) will be the cost of the route that ends with 
customer’s city i. If the customer’s city i is not the last point 
of the route, the vehicle will travel to another customer’s 
city j. In this case, yik = 1, xijk = 1. To find the standard cost 
of route, it is necessary to find the end city on route since 
the standard cost is defined according to the end city on 
route in competitive marketing conditions. What poses a 
challenge here is to find the end customer, as they define 
the standard route’s cost.

Stop-by Cost
Total travelling cost also includes stop-by cost. This cost 

arises from entering-exiting the customer city other than 
the final city on the route. It means leaving the highway, 
entering the city, traveling to the customer city, and return-
ing to the highway. The final node’s stop by cost is excluded. 
The reason is that the hiring cost actually includes the cost 
of the final node and the cost of hiring a vehicle contains 
loading goods at 0 and unloading at j, and the cost of trav-
elling to the final node j itself.

In the classical vehicle routing problem, when taking a 
route, there is no difference between following a particu-
lar path directly to the final customer city and going to the 
final customer city, by stopping-by at delivery points which 
are on the same particular route. However, in real life, those 
two cases do not have the same costs due to travelling to the 
exact location of the delivery point (rather than passing-by 
from that city’s highway) and extra time spent going through 
potential traffic. Passing-by a node and stopping-by a node 
are not the same things because of the consequences of 
departing the highway. Thus, logistic firms demand a price 
of stopping-by if there are delivery points between 0 and j. In 
this study, the stop-by cost is described by Eq.2, and added to 
the objective function of the proposed model:

	 	
(2)

where yik decision variable takes 1 value if vehicle k trav-
els to i, otherwise takes 0 value; vk  decision variable takes 1 

value if vehicle k is used for travel, otherwise takes 0; stopcost 
is a constant value for stopping to any customer city.

Deviation Cost
The deviation cost is the emerging cost in a route starting 

from 0 and stopping at j, when a vehicle is does not follow the 
standard route between 0 and j. In this case, a route between 
0 and j contains customer cities which are not included in 
the third party logistic firm’s standard route. Therefore, the 
vehicle following the route has to travel extra distances since 
the standard routes are most commonly the shortest ones. In 
rare cases, due to the condition of the road, the fastest route 
can be chosen instead of the shortest in real life.

When the hired vehicle needs to deliver the goods to a 
customer city that is not on the standard route but close to 
it, there will be a deviation from the standard route (Figure 
1). This deviation has an extra cost and should be added to 
the hiring cost in order to attain the total travelling cost. 
It is simply calculated by subtracting the total distance of 
the standard route from the actual distance travelled by the 
hired vehicle. This difference is multiplied by the fuel cost 
per extra kilometer, which is a parameter defined by the 
logistic firm. In the objective function, this cost is described 
in the constraint set with the Eq. 3:

	 	
(3)

where, addition to below descriptions, dij represents the 
parameter that is the distance (kilometer) from customer i 
to j and fuelcost is the constant value that shows fuel cost per 
kilometer.

MATHEMATICAL MODEL FOR OVRP WITH REAL 
COSTS

In this study, standard routing cost is determined by 
considering the last customer city on the route. While com-
posing the mathematical model of the problem, we added 

Figure 1. Representation of the Deviation Cost from Stan-
dard Route.
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a parameter ri which indicates the cost of travelling from 
depot to the last point of the route. Every customer city 
has its own standard routing cost. However, standard rout-
ing cost is not a unique or constant standard routing cost 
for every city. For instance, in a competitive environment, 
while the cost of travelling from depot to city A is $100, 
the cost of travelling from depot to city B is $150. If a route 
ends with city A, the standard routing cost will be $100 in 
that route. Similarly, if a route ends with city B, the standard 
routing cost will be $150 in that route. The number of cities 
stopped on the route should be one less than the sum of the 
number of cities on the route because there is no stopping 
cost for the last city. Stop by cost is handled as a constant 
(stopcost) in the model. If there is a deviation from the stan-
dard route, the fuel cost (fuelcost) based on distance is added 
to objective function. 

The mathematical model of the studied problem is 
given below:

Sets
i, j: customer city (i, j = 0, …, N); 0 is depot location. 
k: vehicles (k = 1,2, …, K)

Decision variables

where xijk is a binary decision variable that takes the 
value 1 if j is visited immediately after i by vehicle k, other-
wise takes 0; yik is also binary decision variable which takes 
the value 1 if i is visited by vehicle k, otherwise 0; and vk  is 
a binary decision variable as well, which takes 1 if vehicle 
k is used. 

αi, αj: positive variables used for subtour elimination
Parameters
qi: demand of customer i
dij: distance from customer i to j
cap: capacity of vehicles 
stopcost: entry cost of vehicle to any customer city
fuelcost: fuel cost per kilometer
ri cost of travelling from depot to the last point of that 

route 

	 	

(4)

subject to:

	 	
(5)

	 	
(6)

	 	
(7)

	 	
(8)

	 	
(9)

	 	
(10)

where the first constraint (Eq.5) states that every cus-
tomer demand must be satisfied, the second constraint 
(Eq.6) guarantees that the capacity of the vehicle cannot be 
exceeded. In this model, homogeneous fleet is used, so all 
vehicles have the same capacity. The third constraint (Eq.7) 
is the classical vehicle flow constraint defined in literature. 
The fourth constraint (Eq.8) is an open vehicle routing con-
straint which means that a vehicle does not have to return 
to the depot. The fifth constraint (Eq.9) indicates that if 
vehicle k is used, this vehicle travels from depot to any cus-
tomer j. The sixth constraint (Eq.10) is the subtour elimina-
tion constraint [39].

SOLUTION METHODOLOGY

The use of metaheuristic algorithms for solving the 
OVRP is very common in the literature due to the NP-hard 
structure of the problem. They may not guarantee opti-
mal solutions, but they provide sufficiently good solutions 
for the optimization problems. Well known metaheuristic 
algorithms are genetic algorithms, tabu search algorithm, 
simulated annealing algorithm, and hybrid algorithms, etc. 
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In this paper, the proposed model which includes the 
real life costs was analyzed in GAMS software for solving the 
small sized problems. The OVRP was solved with GAMS 
v24.8.2 software BARON v16.12.7 solver for five and ten 
demand points. The distance matrix, standard route costs 
and demands are given in Table 1-2 for five demand points, 
and Table 3-4 for ten demand points. The distance matrix 

represents the kilometers from depot “0” and to each other. 
Standard route costs show the competitive price ($) from 
depot to demand points. The vehicle capacity is 20, stop by 
cost is $36, and fuel cost per kilometer is $ 1.5 in these prob-
lems. The results are given in Table 5. This model is also 
tried for 15 demand points. GAMS runs for eight hours, 
then it is stopped because of the non-efficient solution time. 

For the large sized problems, we have developed 
Civilized Genetic Algorithm (CGA) based on Hybrid 
Genetic Algorithm (HGA) described by Liu et al. [40]. 
We propose CGA by modifying HGA with prevention of 
incest relationship between individuals. We use test to show 
the efficiency of CGA. The short introduction of Genetic 
Algorithm is given below. HGA, which is the improved form 
of Genetic Algorithm, is briefly given. Also, the proposed 
CGA is introduced below in detail. The test problem results 

Table 5. The Results of Model for Five, Ten, and Fifteen 
Demand Points with GAMS

n Minimum costs CPU Time (s)
5 4116.5 0.20
10 9075.5 3.78
15 stopped >28800.00

Table 4. Standard Route Costs and Demands for Ten De-
mand Points

Demand Points Standard Cost Demand
0 0 0
1 672 11
2 1146 6
3 1932 8
4 1222 7
5 980 7
6 1114 5
7 2068 4
8 1766 9
9 1802 12
10 1540 10

Table 3. Distance Matrix for Ten Demand Points

0 1 2 3 4 5 6 7 8 9 10
0 0 336 573 966 611 490 557 1034 883 901 770
1 336 0 909 646 632 755 893 755 1219 1237 1059
2 573 909 0 1310 589 256 292 1237 346 328 212
3 966 646 1310 0 738 1054 1429 397 1642 1571 1360
4 611 632 589 738 0 333 825 696 931 833 622
5 490 755 256 1054 333 0 544 981 598 535 315
6 557 893 292 1429 825 544 0 1466 342 505 476
7 1034 755 1237 397 696 981 1466 0 1579 1464 1253
8 883 1219 346 1642 931 598 342 1579 0 296 520
9 901 1237 328 1571 833 535 505 1464 296 0 246
10 770 1059 212 1360 622 315 476 1253 520 246 0

Table 1. Distance Matrix for Five Demand Points

0 1 2 3 4 5
0 0 336 573 966 611 490
1 336 0 909 646 632 755
2 573 909 0 1310 589 256
3 966 646 1310 0 738 1054
4 611 632 589 738 0 333
5 490 755 256 1054 333 0

Table 2. Standard Route Costs and Demands Five Demand Points

Demand Points Standard Cost Demand
0 0 0
1 672 11
2 1146 6
3 1932 8
4 1222 7
5 980 7
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of CGA are compared with HGA and Simulated Annealing 
Algorithm and discussed. After that, the proposed CGA is 
implemented to the real life problem. The solutions for the 
real life problem are given in the computational part.

Genetic Algorithm
Genetic algorithm was first described by Holland [41] 

in the literature. Genetic algorithms inspired biological 
evolution process, are generally successful in the area of 
complex solution spaces. Genetic algorithm is a popula-
tion-based metaheuristic, so the algorithm searches from 
different points not from a single point of the solution 
space. When the structure of the problem is analyzed, 
chromosome representation of the genetic algorithm is 
taken as permutation. The fitness function measures how 
the solutions get better. If the fitness function is organized 
well, the algorithm is very effective. Mutation and crossover 
parameters also greatly affect the performance of the algo-
rithm. This algorithm mimics a natural selection method 
in nature. Algorithm starts with a random generation of 
initial solutions. Each solution represents the individuals of 
the population. 

For example, consider the traveling salesman problem 
with 10 customer cities. The optimal solution is 3-2-10-
8-4-7-1-6-9-5. This is found by calculating the minimum 
total travelling distance between customer cities. The total 
travelling distance is the fitness function of an individual 
(chromosome). Each chromosome is separately created by 
genes, which are customer cities. This algorithm is based on 
gene changing by applying some operations between differ-
ent individuals. These operations are selection, crossover, 
mutation, and swap operations. Operations work iteratively 
and generates better populations. Algorithm finishes when 
the maximum iteration number is reached. The flow of the 
genetic algorithm is given in Figure 2. There are three oper-
ations of genetic algorithm: selection, crossover, and muta-
tion. These are introduced shortly as follows:

Selection Method
In the nature, it is more probabilistic that strong indi-

viduals transfer more genes to new populations. Weak 
individuals may continue their life, but they probably 
cannot transfer genes to new populations. While each 
individual in the population is a candidate for transfer-
ring genes to new generations in natural life, it is a sys-
tematic case where strong individuals are more likely to 
be selected.

In the genetic algorithm, selection is the process of 
selecting individuals from one population to transfer their 
genes to the next generation. When making this selection, 
individuals’ probability of being selected is determined 
by using the fitness function value of the individuals. 
Therefore, it is very important to determine the fitness 
function well. The fitness function will take a value that 
represents the quality of a result.

Although there are several different methods for deter-
mining the probability of individuals being selected, the 
most popular methods are the tournament method and the 
roulette wheel method. In the tournament method, two of 
the randomly selected individuals will be competed to win 
the competition with a large number of matched function 
values ​​(up to the number of individuals to be selected) and 
the winning individuals will be selected. Roulette wheel is 
a more widely used method. In roulette wheel method, the 
fitness function of each individual is fi, the probability of 
selecting each individual is Pi. Pi is determined by the Eq. 
(11) as follows:

	 	
(11)

This selection is done by n times. As can be seen, pro-
cedures which are similar to natural selection process, have 
the possibility of being selected, but are more advantageous 
for strong individuals.

Crossover Operation
It is the procedure in which the selected individu-

als are crossed to generate children. The expectation is 
that individuals form stronger individuals by the cross-
ing process. A representation of crossover is very easy 
as seen in Figure 3. For the crossing process, each pair 
of matching chromosomes is randomly cut off, and 
the genes are mutually exchanged after the batch. This 
operator is a 1-point crossover operator. The two-point 
crossover operator likewise divides the chromosomes 
from two different random points and the middle part 
of the chromosomes are changed. Crossing occurs with 
a specific probability. In this way, it is considered that 
there may not be children of the two matching individu-
als. There are many different crossover operators. Which 
one or ones will be used is very important for the effi-
ciency of the algorithm.Figure 2. Genetic Algorithm’s Flow Chart.
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Mutation Operation
Mutations occur very rarely in nature. Mutation can 

be explained as the deterioration and differentiation of 
some genes due to some external factors. Also, mutation is 
rarely seen in the genetic algorithm. This procedure plays 
an important role in the search for different regions. In the 
mutation procedure, each gene has the possibility of dete-
rioration. Deterioration means a binary representation 
which can be considered as a result of the conversion of the 
result from 1 to 0 or the random displacement of two genes 
in a permutation display. That is, a result in the form of 1-0-
0-1-0-1-0-0-1 turns into 1-0-0-1-0-0-0-0-1 in the event of a 
mutation in the sixth gene. Although the likelihood of this 
event is very low, occasional mutations occur because there 
is this possibility for each gene in each individual. Since 
there are many iterations in the algorithm, mutation occurs 
occasionally. The probability of mutation of a gene (Pm) is 
another important parameter to be determined.

After the selection of individuals for crossover opera-
tion, a new population pool is generated. This pool includes 
old individuals and new individuals who are born with a 
crossover. The decision to be made is which individuals will 
create the new generation. This means that some individu-
als have to die. The tendency of strong individuals to sur-
vive and the tendency of weak individuals to disappear is 
obvious. Different displacement strategies may be involved. 
The most common strategies used are generational dis-
placement and fixed displacement strategies. Correct 
determination of this strategy is the most critical issue in 
terms of the effectiveness of the algorithm. In generational 
displacement, children systematically replace with parents. 
In fixed displacement, n individuals are transferred to the 
new generation each time in the pool where children and 
other individuals are located. Since the basic logic of the 
algorithm is the survival of the stronger one, the selection 
method that must be created here must be dependent on 
the fitness function values. Running the roulette wheel in 
such a way to select the individuals to be transferred to 
the new generation is a good example of the displacement 

procedure. The remaining unselected individuals are 
removed from the population and their role in the algo-
rithm is terminated.

Many studies improved GA during search process. 
Katoch et al. [42] gave a review on GA. They summarized 
used operators in encoding, schemes, crossover, mutation, 
and selection steps of GA. In selection step, roulette wheel, 
rank, boltzmann, tournament, and stochastic univer-
sal sampling are well-known selection techniques (Jebari 
[43]). In crossover step, the famous operators are single/
two/k-point, uniform, partially matched, order, prece-
dence preserving crossover, shuffle, reduced surrogate and 
cycle (Soon et al. [44]). In mutation step, the well-known 
mutation operators are displacement, simple inversion, and 
scramble mutation (Jebari [43]). Although various variants 
of GA introduced in literature, the most attractive improve-
ments are Hybrid GAs. Sampling capability is mainly devel-
oped area. While El-Mihoub et al. [45] introduced the effect 
of probability of local search on the population size of GA, 
Espinoza et al. [46] presented self-adaptive hybrid GA for 
evaluating the effect of reducing the population size. Hedar 
and Fukushima [47] used simplex crossover, and Tan et al. 
[48] used simulated annealing instead of standard mutation 
operator. Guo et al. introduced [49] GA with column gen-
eration used to create initial solutions for GA. Luo et al. [50] 
proposed an algorithm combining GA and variable neigh-
borhood search where solution space is decomposed into 
small multi-neighborhood spaces, and then search in each 
neighborhood space by GA in turn.

In this study, a new hybrid metaheuristic prevents the 
incest relationships among individuals in the population. 
CGA’s results are showed that it is to be superior to HGA’s. 

Hybrid Genetic Algorithm
In this study, we modified HGA, which is described by 

Liu et al. [40]. Our modified algorithm is called “Civilized 
Genetic Algorithm”. The HGA steps are given as follows:

Step 1. Generate initial population (with 30 chromosomes).
Step 2. Select 2 individuals by the tournament method.
Step 3. Crossover the selected individuals (Pcrossover = 1).
Step 4. Select one of the crossovered individuals ran-

domly and apply local search to its solution (Pmutation = 0.25) 
for the approximation of the result that the individual rep-
resents. Updated result is included in the population as a 
mutated new individual. 

Step 5. Evaluate the fitness functions for all individuals. 
Select an individual with a poor value of fitness function 
randomly. Swap this individual with the new individual.

Step 6. Apply selection, crossover, mutation, and swap 
operations until the stopping criteria.

In the HGA, a comparatively small sized population 
is analyzed. The population is considered with 30 chro-
mosomes. First three chromosomes of a population with 
30 chromosomes are generated by using three different 
heuristics, and the rest of the chromosomes are generated 
randomly for diversification. Fitness function values ​​of 

Figure 3. Crossover Operation
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individuals in the population are different in order to pre-
vent loss of diversity feature in the algorithm. If there are 
individuals with the same fitness function value at the stage 
of starting the population, one of them is extracted from the 
population and another individual is randomly included in 
the population. This procedure is continued until the fit-
ness function values ​​of the individuals in the population are 
completely different from each other. At the displacement 
stage of the algorithm, the individuals who will participate 
in the population have different fitness function values 
from other individuals in the population. 

The permutation encoding was chosen for the chromo-
some representation. In permutation encoding, every chro-
mosome is a string of numbers, which represents a number 
in a sequence. The representation of a chromosome is car-
ried out by ordering the numbers of the demand points in 
which order the vehicles will travel to these points (with-
out any depot location). The result of this chromosome is 
obtained by placing the depot location at the relevant places 
of the order of demand points by considering the capac-
ity constraints. Selection strategy is based on the tourna-
ment method. Three chromosomes are randomly selected 
to evaluate as a parent. Chromosome with the best fitness 
function value is taken from these three chromosomes as 
the first parent. The same procedure is done for the second 
parent among the remaining two chromosomes. Selected 
chromosomes are directly crossovered by using ordered 
crossover operator with the certain probability (Pcrossover = 
1). After the crossover step, two new individuals are gen-
erated. One of the individuals is selected randomly for the 
mutation and the other one takes place outside of the popu-
lation. Mutation is done by the probability of 0.25 (Pmutation 
= 0.25) and a new result is obtained.

Instead of the classical mutation operators, local search 
procedures are used in the algorithm to be applied to the 
result obtained by 1-1 change (swap), 1-0 change (insert), 
and 2-opt movements are applied on the basis of “accepting 
the first development movement”. Whenever an improve-
ment is made, the local search procedure returns to the 
beginning. After the accepted movement, the correspond-
ing result is updated. 1-1 exchange is analyzed in the neigh-
borhood of this result. If there is no improvement, 1-0 
exchange is analyzed. If there is still no improvement, 2-opt 
exchange is made in the neighborhood of the result. When 
there is no movement to improve the result, the result rep-
resents a local best and the mutation procedure ends. If the 
fitness function value of the solution obtained is different 
from the other individuals’ fitness function values in the 
population and is greater than the worst fitness function 
value in the population, the chromosome which represents 
the resulting solution is chosen to be taken into the pop-
ulation, otherwise it is discarded in order not to enter the 
population at all. 

The next stage continues with the local best result 
obtained. Depot location is removed from this local best 
result, and the result is converted into a chromosome. 

After this procedure, the result is added to the population 
again. In the displacement stage, individuals in the pop-
ulation are sorted in the descending order according to 
the fitness function value, and chromosomes are divided 
equally into two groups. A single individual from the group 
with the worse fitness function value (16th chromosome 
and after) is selected to be excluded from the population. 
Instead of that, new individuals are created with crossover 
and mutation operators, and the population size remains 
constant. The selection, crossover, mutation, and displace-
ment phases are repeated until a termination criterion is 
achieved. When the terminating criterion of the algorithm 
is provided, the chromosome with the best fitness function 
value in the population is the best result obtained.

Proposed Civilized Genetic Algorithm
In this study, HGA is improved in two ways: preven-

tion of incest relationships to strengthen diversity and two 
newly added crossover operators. Firstly, CGA’s initial pop-
ulation is seeded with two individuals, which are generated 
via heuristic methods; nearest neighborhood and savings 
algorithm. The rest of the population is generated ran-
domly. For diversification purposes, chromosomes with the 
same fitness function values are not accepted as suggested 
by HGA. Selection, crossover, and mutation procedures are 
implemented as described in HGA algorithm, except incest 
prevention method in selection procedure and two newly 
added crossover operators in CGA. Proposed incest pre-
vention method and two newly added crossover operators 
are explained below in detail.

Prevention of Incest Relationships
In developed societies, it is known that individuals 

do not prefer consanguineous marriages. The reason for 
this is the possibility of the emergence of poorly-featured 
genes (genes that may be associated with various diseases 
or abnormal syndromes), similar to the possibility of these 
bad characteristics occurring in children of blood-bind-
ing parents during the crossover. Genetic algorithms also 
show a similar situation if the similar bad characteristics are 
paired. In a genetic algorithm with permutation chromo-
some structures, individuals with blood binding are likely 
to have similar gene sequences, even if they have different 
fitness function values. 

In this case, the matching of chromosomes with simi-
lar gene sequences is not good in terms of investigating the 
different regions of the search space. Particularly, it is seen 
that the diversity of the search is weakened if the relatively 
good chromosomes (with incest relationship), which have 
bad sequences, are repeated and transformed to new gener-
ations. Liu et al. [40] proposed the hybrid genetic algorithm 
in the deep-rooted localization of the movement feature. 
Diversity is ensured by the fact that individuals in the pop-
ulation have different fitness function values. It is clear 
that this mechanism makes individuals different from each 
other. However, this mechanism does not have a feature 
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which analyzes the similarity of these different genes. In 
order to eliminate this deficiency, the blood ties of indi-
viduals were kept in memory in the IGA, recommended 
within the scope of this study, and the mating of individuals 
with blood ties was prevented.

The memory structure allows each individual to have 
six children (the number of children kept in memory is 
a parameter and can be chosen differently) and two par-
ents can be involved. Since one of the two new individuals 
are sent out of the population after the crossover opera-
tion in the algorithm steps, the fraternal relations are not 
kept in memory. Thanks to this structure, the matching of 

individuals with similar genes is prevented and the diversity 
of the algorithm is strengthened.

Newly added crossover operators
In the research of Liu et al. [40], ordered crossover 

operator is used in the hybrid genetic algorithm only. This 
operator is very effective fat genetic algorithms with per-
mutation representation. In this paper, two new crossover 
operators are used additionally: partially mapped crossover 
and 2-point crossover. In the proposed civilized genetic 
algorithm, these three crossover operators are used ran-
domly to create different options on chromosomes, so they 
offer solution search space to have a stronger structure. 

Figure 4. Proposed Civilized Genetic Algorithm Flowchart.
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The flowchart of the developed algorithm is given below 
in Figure 4.

RESULTS ON COMPUTATIONAL EXPERIMENTS

In literature review, we encountered no appropriate test 
samples for the mathematical model proposed in this paper. 
In tables below, the objective of the sample problems is to 
minimize the total distance travelled. In these sample prob-
lems, routes originating from the depot ends in the depot. 
These well-known vehicle routing test problems are chosen 
to test the performance of the proposed algorithm. To make 
a just comparison, only for testing purposes, proposed algo-
rithm’s objective function is modified as minimizing the 
total distance, and the algorithm is made suitable to solve 
classical vehicle routing problems, in which routes originate 
from the depot and ending in the depot. According to the 
results, proposed algorithm could obtain the best known 
solutions for the majority of the test problems and improve 
the best known solutions in two instances. These results 
indicate that the proposed algorithm works effectively. 
After the algorithm is proved to have a good performance, 
it is altered to its original form regarding the constraints 
and the objective function defined in this study.

The proposed civilized genetic algorithm (CGA), 
a hybrid genetic algorithm (LJG-HGA) studied by Liu 
et al. [40], and classical simulated annealing algorithm 
(SA) were coded in Visual Studio 6.0 for the purposes of 
benchmarking.

Since there are not enough number of test instances in 
the literature for open vehicle routing problems, we decided 
to do the benchmarking of the algorithms on the most 
studied capacitated vehicle routing problems. The bench-
marking is done between simulated annealing algorithm, 
the metaheuristic proposed by Liu et al. [40] (LJG-HGA), 
and this study’s proposal, Civilized Genetic Algorithm 
(CGA). To do the benchmarking, two sets of test instances 
are selected. A set of 27 test problems (Set A) by Augerat et 
al. [51] (Table 6) and a set of 7 problems (Table 7), which 
does not include the loading time and time limit of the 
routes, out of 14 test problems by Christofides et al. [52] 
were utilized.

LJG-HGA and CGA were implemented with 10 dif-
ferent parameters for each test problem while simulated 
annealing was tried three times with different parameters 
for each test problem, due to the dramatic increase in CPU 
time. The comparisons are demonstrated in Table 6 and 
Table 7. 

The superiorities that the proposed CGA have over LJG-
HGA and SA:

In terms of the best solutions found:
•	 In 15 instances, CGA performed better than LJG-HGA 

in terms of the best solution the algorithm could obtain. 
Similarly, in 14 instances, CGA found better best solu-
tions compared to SA. 

•	 In 18 instances, best solutions did not differ between 
CGA and LJG-HGA. 

•	 The number of test problems, in which the best solu-
tions were identical, were 11 in comparison to CGA and 
SA. 

•	 However, in one instance out of 34, LJG-HGA could 
obtain a better best solution than CGA and SA gener-
ated a better best solution than CGA in another instance. 
In terms of average of the outcomes achieved:

•	 In 20 of 34 test problems, CGA outperformed LJG-HGA 
by means of the average outcome of the solutions after 
10 times of running for each algorithm in each instance. 

•	 In 10 test problems, the average did not differ for CGA 
and LJG-HGA.

•	 However, in four instances, LJH-HGA surpassed CGA 
in terms of the average. 

•	 In all test problems except one, CGA’s average was better 
than the SA. 
In terms of improvements made:

•	 Both LJG-HGA and CGA improved the best known 
solution for the same two test instances while SA could 
improve one test instance’s best known solution. In both 
of the test problems, for which the best known solution 
could be improved, CGA’s improvement was better than 
the LJG-HGA. In A-n62-k8, where one of the instances 
the improvement took place, CGA improved the best 
known solution by %2.01, and in A-n80-k10, CGA’s 
improvement was %1.42.
In terms of CPU time:
In 24 instances, CGA generated its best solution faster 

than the LJG-HGA. In terms of CPU time, LJG-HGA out-
performed others in eight instances. SA was significantly 
slower than both LJG-HGA and CGA in all circumstances.
•	 In average, CGA’s CPU times are less than SA’s by 47.6%, 

and less than LJG-HGA’s by 29.4%. 
•	 The CPU times for CGA were six seconds for 38 nodes 

in A-n38-k5; 34 seconds for 55 nodes in A-n55-k9; 331 
seconds for 80 nodes in A-n80-k10; and 3746 seconds 
for 199 nodes in vrpnc5. These CPU times are accept-
able for the solution of the problem. CGA’s performance 
was better than the others when compared with respect 
to CPU times, as well. 
Overall, CGA’s performance was found to be superior 

to LJG-HGA and SA in either finding better best solutions 
and in terms of averages, or the CPU time spent while find-
ing solutions. In two test problems, best known solution is 
improved. It is observed that CGA performs better in rel-
atively bigger scale problems. For the instances which has 
more complex solution spaces, the proposed algorithm, 
CGA, performs relatively slow in acceptable limits. Next 
section describes the results of the test problems.

RESULTS AND DISCUSSION

Following the demonstration of the efficiency of pro-
posed CGA in the previous section, the real life problem 
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in Turkey, which is considered real life parameters, is pre-
sented in Table 8 in this section. Demand points are the 
cities in Turkey. Depot one of the combi boiler producer 
is in Eskisehir. This problem is solved with proposed CGA 
and results are given in Table 9 where the costs according to 
both minimum total distance and minimum total real life 
costs are there for presenting the difference between them. 

The model introduced in this paper, with 26 demand 
points and one depot, was solved via proposed CGA algo-
rithm. The vehicle capacity is 50, stop by cost is $30, and fuel 
cost per kilometer is $ 0.25 in these problems. Five routes 
were determined by two models. The routes are given in 
Table 10. Although the distance in the introduced model is 
longer than the model which consider the minimum total 
distance, the total cost of introduced model is less than the 
other. This is because prices of standard routes are deter-
mined under competitive conditions.Ta
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Table 8. The Standard Costs and 26 Demands of Points

Demand Points Standard Costs ($) Demands (pallet)

Eskişehir (Depot) 0 0

Ankara 490 10

Sivas 1450 15

Erzurum 2350 25

Adana 1400 25

Kilis 1990 12

Amasya 1200 10

Samsun 1370 7

Erzincan 1960 6

Manisa 820 11

İzmir 875 22

Aydın 915 7

Konya 720 9

Antalya 880 13

Çankırı 800 4

Çorum 1050 3

Tokat 1350 2

Kahramanmaraş 1800 6

Gaziantep 1940 11

Afyonkarahisar 370 8

Burdur 700 5

Ordu 1460 3

Giresun 1610 4

Gümüşhane 1800 3

Bayburt 1880 2

Kütahya 200 5

Uşak 640 7
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CONCLUSIONS

Many VRPs have been considered in the literature and 
some OVPRs have also been studied, which consider the 
minimum distance as an objective function. However, in real 
life OVRP, there are different costs namely standard route 
cost, stop by cost, and deviation costs. When we examined 
the OVRP of combi boiler producer’s goods in Eskisehir, we 
saw that the cost was based not only on the distance but also 
on the competitive price of other third party logistics firms. 
Some standard routes and prices are defined for main cities 
by considering highway and costs, road conditions, etc. If 
there are delivery points except these standard routes, the 
deviation cost is added to the cost. Also, if there are stop 
points on the standard route, stop by costs are occurred. 
Our motivation is to set a mathematical model and solve 
this problem for companies that hire vehicles from third 
party logistic firms and to route them by considering these 
real life costs. Moreover, no prior studies have examined 
these real life costs in the literature. For instance; Dasdemir 
et al. [29] considered the minimization of the total travelled 
distance, Dutta et al. [30] studied minimizing the operating 
costs and minimizing the carbon emission due to fuel con-
sumption by the service vehicles, Hashemi et al. [28] con-
sidered the minimization of the total transportation costs, 
Niu et al. [36] studied on OVRP to minimize the total cost 
of fuel emissions cost and the driver wages, etc. Therefore, 
this study presents a new and precise model for companies 
that meet real life costs such as standard routing cost, stop 
by cost, and deviation cost. 

In this paper, firstly, the mathematical model was set 
and solved with GAMS software for demand point 5 and 
10. Secondly, due to the NP hard structure of model, the 
Civilized Genetic Algorithm was presented by improving 
the genetic algorithm. The efficiency of CGA was proved 
on test problems. Finally, the real life problem with 26 
demand points was solved for delivering combi boiler 
producer in Turkey via proposed CGA. Results demon-
strate that the total cost of model that takes real life costs 
into account is less than the model that takes minimum 
distance into account, because of competitive standard 
route prices. 

In our future research, we intend to determine routes 
for close up vehicle routing problems and for delivery and 
pickup vehicle routing problems. Also, model parameters 
such as costs, capacity, etc. can be fuzzy numbers to cope 
with the inherent uncertainties of the model. Other meta-
heuristic algorithms such as bee colony, simulated anneal-
ing and tabu search can be used for the studied problem.
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Table 10. Routes according to minimum total distance and minimum real-life costs

Routes
Considering minimum total distance Eskişehir-Kütahya-Burdur-Antalya-Adana

Eskişehir-Afyon-Konya-Kahramanmaraş-Gaziantep -Kilis
Eskişehir-Samsun-Ordu-Giresun-Gümüşhane-Bayburt-Erzurum-Erzincan
Eskişehir-Ankara-Çankırı-Çorum-Amasya-Tokat-Sivas	
Eskişehir-Uşak –Manisa-İzmir-Aydın				  

Considering minimum real life costs Eskişehir-Samsun-Ordu-Giresun-Gümüşhane-Bayburt-Erzurum-Erzincan
Eskişehir-Çankırı-Sivas-Kahramanmaraş-Gaziantep-Kilis
Eskişehir-Kütahya-Afyon –Burdur-Antalya-Konya
Eskişehir-Ankara-Çorum-Amasya-Tokat-Adana
Eskişehir-Uşak-Manisa-İzmir-Aydın

Table 9. Results of the Total Cost According to Minimum Total Distance and Minimum Real Life Costs

Costs

Distance (km) Standard route costs Deviation costs Stop by costs Total cost
Considering minimum total distance 4862 8105 245.25 630 8980.25
Considering minimum real life costs 5235 7535 400.5 630 8565.5
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