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ABSTRACT

The number of the applications that analyze and evaluate human activities of daily living such 
as transport mode detection and activity recognition is increasing rapidly due to the require-
ments in several fields such as transportation planning, elderly care and ambient assisted liv-
ing. One of the drawbacks of these systems is their high battery consumption characteristics. 
In this study, we introduce a novel instance selection methodology that provides energy saving 
in testing process by reducing the amount of the training data while preserving the accuracy 
of the system. By their nature, daily living activities separate to several sub-classes within each 
class. The proposed method selects instances in an iterative cluster-based manner assorting 
with the characteristic structure of the daily activities. The success of the system is evaluat-
ed by applying Decision Tree (J48) and k-Nearest Neighborhood (k-NN) algorithms to two 
different publicly available daily activity datasets. Obtained results show that the proposed 
instance selection algorithm based on sub-activity characteristics could achieve up to 11% im-
provement of the classification results when 50% of the training instances are eliminated. With 
the help of this selection process, we built 4% to 57% smaller and 4% to 62% faster models for 
activity recognition on energy-constrained devices.

Cite this article as: Akkiraz C, Türkmen Hİ, Güvensan MA, Can B. Battery-friendly tiny mod-
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INTRODUCTION 

In the last decade, a huge amount of environmental and 
personal data started to be generated/flow on/into our elec-
tronic devices including our smartphones, smartwatches, 
laptops, cloud-computers and etc. With the help of pow-
erful hardware, researchers exploit the obtained big data to 
build more skill full expert systems, stronger training mod-
els, and reliable forecasting architectures. However, with 

the era of big data the systems started to demand much 
more resources in terms of storage, processing capability, 
energy and communication. Especially wearable and por-
table devices such as smartwatches, smartphones, smart 
bracelets and so on could survive still only a very limited 
time with a full-charged battery. Therefore, smart applica-
tions should be designed regarding this issue to consume 
energy attentively.
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 Mobile applications running machine learning algo-
rithms especially 7/24 in the background are the major 
threat for the battery and storage of mobile devices. 
Transport mode detection, activity recognition, fall detec-
tion, sleep quality analyzer, driving quality scoring and sim-
ilar applications are very popular among the users to watch 
human behavior during daily life. Those applications suffer 
very much from depleting the battery very quickly. There 
are several solutions to save battery for such cases. The first 
one is to select the least energy consuming sensors and 
keep away from the energy-hungry sensors such as GPS 
though it slightly helps to make accurate decisions for rec-
ognition of daily outdoor activities especially for motorized 
activities. Moreover, it is important to note that GPS usage 
became widespread due to location-based applications. 
On the other hand, the system designer should also avoid 
computational complex operations. For example, simple 
machine learning algorithms always reduce the consumed 
energy on resource-constrained devices. As a last solution, 
researchers try to minimize the number of features and/or 
instances required for the model training.

 In this study, we focus on both transport mode detec-
tion and activity recognition problems. There are several 
studies [1, 2], about recognition of motorized and non-mo-
torized activities. Most of them deals with increasing the 
success rate of daily activities. Some of them are interested 
in the existing energy-problem and offer feature reduction 
[3] or the systems that work on low resolution sensor data 
[4] as solution. However, to the best of our knowledge, none 
of the studies exploit the instance selection approach for 
minimizing both the complexity and size of the model, i.e. 
the energy consumption. 

 In this study, we aim at selecting the discriminative 
instances for generating efficient training models to be run 
on energy-constrained devices. We propose an instance-se-
lection algorithm exploiting the clustering approach. Since 
motorized and non-motorized activities consist of several 
sub-activities, our algorithm aims at finding the representa-
tive instances and eliminating the redundant and mislead-
ing examples. Thus, we obtain training models with smaller 
sizes and less computational complexity without sacrificing 
the success rate. 

The main contributions of the study are given as follows;
•	 We obtain training models with smaller sizes and less 

computational complexity without sacrificing the suc-
cess rate. This scheme solves many serious difficulties, 
such as lack of memory and long processing time.

•	 Our proposed instance selection approach enables 
mobile applications that uses energy consuming sensors 
such as GPS in an energy efficient way.

•	 Its structure that taking within-class differences into 
account may contribute developing personalized mod-
els for mobile device users.
 In the following chapters, we first discuss the available 

solutions on minimizing energy about activity recognition 
and instance selection approaches for different domains. 

Then, we introduce the details of our novel instance selec-
tion algorithm in Section 3. In Section 4, we present the 
experimental results and talk over the results. Finally, we 
conclude our paper in Section 5.

Related Work
The requirement of analyzing the traffic flow of cities 

has increased the number of studies published in this area 
in recent years [5]. These studies exploit various sensors 
including GPS, accelerometer, barometer and magnetom-
eter. Most of the studies extract time-domain features from 
gathered sensor data and employ traditional shallow models 
in order to make classification [6–10]. In [11], researchers 
used Discrete Hidden Markov Model (DHMM) to classify 
transportation modes into 8 different classes namely still, 
walk, run, bike, road, rail, plane and other. They achieved a 
success rate of up to 96% using GPS information and 94% 
relying only on an accelerometer and magnetometer. There 
are a few studies that reveal the effect of post processing 
techniques on increasing the performance of shallow clas-
sification algorithms [12, 13]. Although studies that use 
time-domain features dominate the literature on transport 
mode detection, a few studies have also examined the suc-
cess of frequency-domain features [14].

 Analysis of non-motorized activities of humans is 
another active research area of daily living activity rec-
ognition on mobile devices [15]. Most of the proposed 
approaches perform activity recognition by using on-board 
sensors of smartphones and employ shallow classification 
techniques as transport mode detection systems. It is hard 
to compare the success rates of the presented work due to 
different experimental setup. Ortiz et.al. achieved a success 
rate of 96% in classification of lying, sitting, standing, walk-
ing, walking upstairs and downstairs, sit-to-stand, sit-to-lie 
and lie-to-stand groups by combining SVM with a heuristic 
filtering approach [16]. An interesting work is published by 
Das et.al. which exploits ordinal classification in order to 
determine human activities [17]. The researchers obtained 
significant improvement in shallow techniques including 
k-Nearest Neighbour (k-NN), Support Vector Machine 
(SVM) and Random Forest (RF). Their proposed ordinal 
classification based approach achieved an accuracy value of 
97.96% when it is combined with the AdaBoost. Rahman 
et.al. evaluated the performance of boosting classifiers in 
activity recognition [18]. A comprehensive survey that 
compares human activity recognition systems in terms of 
battery, memory and CPU usage is published by Shoaib 
et.al. [1]. There are also attempts to reduce battery con-
sumption and annotation cost. In [19], researchers propose 
a multi-tier architecture that combines thresholding meth-
ods with machine learning algorithms in order to provide 
energy saving. Cruciani et.al. proposed an automatic label-
ing method that employs a heuristic function which com-
bines step count and GPS information in order to facilitate 
the collection of labeled datasets. The authors claim that it 
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is possible to obtain labels automatically with an 85% aver-
age precision rate [15].

 The ability of deep learning architectures to model 
non-linear data, leads increasing number of studies exploit-
ing deep learning techniques in transport mode detection 
and activity recognition problem. Fang. et.al. achieved 
a success rate of 95% in classification of transport modes 
into still, walk, run, bike and vehicle groups using accel-
erometer, magnetometer, and gyroscope sensors [20]. In 
[21], researchers exploit accelerometer sensor and employ 
Convolutional Neural Network (CNN) to perform trans-
port mode detection. They reported a success rate of 94% 
in classification of still, walk, bike, rail, train, car and bus 
groups. Vu et.al [22] use Recurrent Neural Networks and 
obtain a classification accuracy of 94%. Hassan et.al. used 
Kernel Principal Component Analysis (KPCA) and Linear 
Discriminant Analysis (LDA) for extracting robust features 
of the data gathered from smartphone inertial sensors. Deep 
Belief Network (DBN) is then feeded with extracted fea-
tures in order to perform activity recognition [23]. In [24], 
researchers perform real-time human activity recognition 
with a success rate of 82% by using accelerometer data and 
CNNs. Sharma et.al. presented a hybrid deep learning clas-
sifier which utilizes the capabilities of the CNN, recurrent 
neural network (RNN), and deep neural network (DNN) 
in order to detect the transportation mode at an early stage 
[25]. In a recent study, researchers proposed a method that 
combines Long Short Term Memory (LSTM) layer and 
convolutional layer for classifying eight different transpor-
tation modes. They also analyzed the contribution of each 
sensor to the classification performance which may provide 
insights into more energy efficient designs [26]. 

 Thanks to big data and deep learning approaches, 
researchers are able to create models with high accuracy 
rates. A recent study which is published by Nawaz et.al. 
fused weather and GPS information to predict the trans-
portation type. They used CNN to extract deep high-level 
features and then LSTM is employed to learn the sequen-
tial patterns [27]. In [28], researchers compared CNN, 
Ensemble of Autoencoders (EAE) and RF methods for 
determining transportation mode of the people using GPS 
data generated by smartphones and achieved best results 
with RF model. Nevertheless, one of the major constraints 
of developing mobile applications is the energy consump-
tion problem. There are a lot of work which report that 
using GPS sensor inevitably increases the energy consump-
tion of mobile devices [5, 29, 30]. Su et.al. used low sam-
pling frequency in order to save battery of a smartphone 
[31]. In another study [32], researchers provide battery sav-
ing by using GSM cell tower information. 

 Reducing the amount of the data to be processed such as 
feature selection and dimensionality reduction is an effec-
tive way of energy saving which is also possible by instance 
selection from training set. There are many studies in the 
literature that make instance selection in different fields 
[33]. Li et.al. presented a sparse coding based approach 

to select samples for image classification [34]. Ramirez 
et.al. proposed an optimization-based method in order to 
select samples for face recognition [35]. In [36], researches 
employed fuzzy-means clustering algorithm to remove 
outliers from the original samples which are derived from 
network traffic data. Researchers also appealed instance 
selection for establishing a robust framework for imbal-
anced data sets, active learning and dealing with big data. 
In [37] and in [38] authors performed instance selection 
for active learning approaches. Kuncheva et.al. delineated 
the contribution of the instance selection to the classifi-
cation success of imbalanced data by employing several 
instance selection approaches including random under-
sampling, AdaBoost-like ensemble of evolutionary under-
sampling, particle-swarm optimisation, one-sided selection 
and neighbourhood cleaning rule [39]. Bi et.al. proposed a 
dynamic active learning-based activity recognition method 
in order to address training data labelling issue and to 
overcome the difficulties caused by variety of the activities 
performed by individuals. Their approach selects the most 
representative samples by taking their uncertainty and 
diversity into account. In this way, the annotation cost is 
significantly decreased [40].

 Besides, there are substantial studies that propose a 
classifier type dependent instance selection approach [41, 
42]. Kavrin et.al. proposed a Bagging-based instance selec-
tion algorithm for instance-based classification [43]. Pérez 
et.al. used Bagging of 1-NN and 1-NN algorithms in order 
to classify 66 binary imbalanced data sets by using SVM 
algorithm [44]. In [45], researchers proposed a method 
that serves for instance-based learning approaches espe-
cially for k-NN. Researchers exploited CHC (Cross gener-
ational elitist selection, Heterogeneous recombination and 
Cataclysmic mutation) genetic algorithm framework. They 
combined CHC with two strategies: using local k values 
for k-NN rule and selecting each instance more than once. 
They evaluated the performance of the proposed approach 
on 150 databases with different class and feature numbers 
by using k-NN.

 Max et.al. exploited metric learning in order to trans-
form samples to a more organized form in which samples 
within same class close to each other while they are far from 
the samples of other classes [46]. They combined metric 
learning with four instance selection strategies namely 
CHC, Condensed Nearest Neighbor, Random Mutation 
Hill Climbing (RMHC) and Edited Nearest Neighbor 
(ENN). These instance selection strategies rely on the idea 
that selecting the most representative instances by removing 
noisy ones will directly affect the performance of the k-NN 
classifier. Researchers evaluated the performance of metric 
learning by applying k-NN classifier to Iris UCI dataset. 
They claimed that proposed method provide improvement 
in all of the tested instance selection methods. 

 Kim et.al. presented two cluster based approaches 
namely Unlabeled Data Prototypes (UDP) Selection and 
Labeled Data Counterparts (LDC) Selection [47]. UDP 
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starts with clustering unlabeled instances. Then clusters 
with low purity were discarded and the most represen-
tative instance from each cluster is selected as additional 
training data. Average cosine similarity is used to deter-
mine the samples to be retained. LDC involves selection 
of the instances from the clusters containing both labeled 
and unlabeled instances. For each labeled instance the 
unlabeled instance most similar to it in the same cluster is 
selected. By that way, new training instances that share fea-
tures with the original labeled data and maintain the same 
class distribution are acquired. Researchers employed 
SVM for classification of clinical texts. They noted that 
proposed approach brings advantage when large amount 
of unlabeled data is available but manual annotation is 
expensive. This study selects instances based on evalua-
tion of the within class similarity. 

 While within class similarity is critical criteria for 
instance selection, a different approach should be consid-
ered for transport mode detection since it comprises multi-
ple sub clusters within each class. Abdallah et.al. proposed 
an active learning approach which applies clustering algo-
rithms to the activity classes by the purpose of revealing 
sub-clusters that represent different patterns within each 
particular activity [48]. Although that study involves eval-
uation of the sub-clusters as our proposed system does, 
the main goal of it is incremental learning from unlabeled 
data and minimizing labeling costs while we aim at increas-
ing training efficiency in order to obtain less complex and 
energy-efficient training models and achieve better success 
rates. 

 Another study [49] that exploits characteristics of clus-
ters is presented by Czarnowski et.al. They proposed an 
agent-based instance selection algorithm in order to deal 
with two class - imbalanced dataset problem. They first 
perform a similarity-based clustering algorithm in order to 
determine sub-clusters within each considered class inde-
pendently. Then, the prototypes of each cluster are used in 
order to get a balanced dataset. Classification phase was 
performed by using Agent-based population learning algo-
rithm. Researchers compared their framework with the 
results which are obtained by employing traditional clas-
sification methods such as C4.5 and k-NN algorithms on 
unreduced, imbalanced dataset. However, the effects of the 
proposed instance selection method on the performance 
of traditional classification algorithms is not revealed. 
Besides, the relationship of the reduction ratio with the 
training model size, test duration complexity and classifica-
tion accuracy are not discussed which are essential param-
eters for energy-constrained devices.

Instance Selection Based on Sub-activity 
Characteristics

Sensor data of the tasks such as transport mode detec-
tion and activity recognition involves multiple sub-classes 
within each class as a matter of course. For instance, sam-
ples within “car” class of the transport mode data, can be 

divided into multiple sub-classes due to the different car 
activities including acceleration, deceleration, turning, and/
or characteristics of route/driver. The proposed instance 
selection algorithm is developed by taking these features of 
the daily activity data into account. 

 The block diagram of the proposed system is illustrated 
in Figure 1. The algorithm starts with separating the train 
set into k+1 folds. Data within each fold is divided into sub-
classes by using unsupervised clustering methods. In this 
study, X-means clustering which is an extended version 
of K-means algorithm is employed in order to form sub-
classes. X-means constitutes optimum cluster number by 
repetitively partitioning the data [50].

At the second step, initial parameters of the model 
which represent the sub-classes of each class are calculated 
by using the data within fold0. The new values of these 
parameters are transmitted to the instance selection mod-
ule in order to select the instances of fold1. After inclusion 

Figure 1. The block diagram of the proposed system.
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of new instances, model parameters are recalculated. This 
iterative process is repeated for each of the folds. The work-
ing principle of instance selection module is illustrated in 
Figure 2.

Testing the instances of foldi is performed by using 
two threshold values namely class threshold and sub-class 
threshold. These thresholds are calculated by evaluating 
the sub-class distribution of each class within the instance 
pool, which is gathered from the instances that have been 
selected so far. 

 The detailed description of the whole proposed instance 
selection methodology is given below;
1.	 Separate train set into k+1 folds
2.	 Add instances within fold0 to the instance pool
3.	 Apply xMeans to the each class in the instance pool

4.	 Calculate ∀j ∈ {1, ..., S}, ∀n ∈ {1, ..., N} Cnj where S is the 
number of sub-classes within classn and C corresponds 
to the centers of the sub-classes

5.	 Initialize ThClassn and ThSubClassn by evaluating cen-
ters of sub-classes

6.	 For the each remaining fold;
	 a.	 For each sample X which belongs to classn within 

foldi ; StatSubClassn[x] = ∀j ∈ {1, ..., S}, min (||X- Cnj||)
	 StatClassn[x] = )
	 b.	 if ((StatSubClassn [x]>ThSubClassn) AND 

(StatClassn [x]<ThClassn)) 
		  OR
 		  ((StatSubClassn [x]<ThSubClassn) AND (StatClassn 

[x]>ThClassn))			 
 	  	 Add X to the instance pool
	 c.	 Apply xMeans to each class in the sample pool
	 d.	 Update ∀j ∈ {1, ..., S}, ∀n ∈ {1, ..., N} Cnj

Figure 2. The illustration of the proposed instance selection algorithm.
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	 e.	 ThClassn=CalculateAdaptiveThr(StatClassn, α ) 
	 f.	 ThSubClassn=CalculateAdaptiveThr(StatSubClassn, α)

CalculateAdaptiveThr () function returns αth percen-
tile of a given array. Adaptive calculation of the thresholds 
yields a system that is robust to different datasets while α 
parameter controls the elimination ratio.

The proposed instance selection algorithm decreases 
the size of the dataset while preserving the most represen-
tative samples. This is accomplished by eliminating the 
samples which are tend to be outlier or very similar to the 
existing class members. Step 6.b ensures the inclusion of 
sample X if it satisfies one of the following conditions; 
•	 Sample X is not close enough to either of the sub-classes 

within the corresponding class while it closes to the 
class center. In that case, X might start to form a new 
sub-class. 

•	 Sample X is close to one of the sub-classes, however it 
is not close enough to the class center. This situation 
points out that, the corresponding sub-class cannot be 
represented efficiently in that class and the weight of 
that sub-class should be increased to provide full-cov-
erage of the class characteristics.

RESULTS AND DISCUSSIONS

In this study, we exploit two well-known datasets for 
evaluation of the proposed instance selection algorithm. 
HTC dataset [51] includes 11 transportation modes such 
as car, bicycle, train and etc., whereas Mobifall dataset [52] 
consists of 11 different daily activities including walking, 
running, climbing up and down, sitting and different fall 
types. The number of instances for both datasets are given 
in Table 1 and Table 2. Each instance is represented by 348 
time-domain features [12] extracted from accelerometer, 
gyroscope and magnetometer raw data. All experiments 
were run for both HTC dataset and Mobifall dataset to 
show the performance of battery-friendly training models 
on test operations using our instance selection algorithm. 
Implementations were performed on a system that uses 

Intel Core i5-6200u with 12 GB RAM and Ubuntu 17.10 
operating system. 

There are several pre-processing techniques which 
would help for creating better training models, such as 
feature selection and instance selection. They generally 
improve the success rate and/or reduce the model size and 
the complexity of the model. On the other hand, most stud-
ies exploit the train dataset undividedly during learning 
phase. However, applying instance selection is an alterna-
tive approach for better model accuracy. In this chapter, 
we will demonstrate how our algorithm helps to build an 
efficient activity recognition model for energy constrained 
devices. 

Since our main goal is to eliminate the unnecessary and 
redundant instances during training, we first examine the 
impact of the proposed instance selection algorithm for 
different number of folds, elimination ratio (α) on HTC 
dataset and Mobifall dataset. Number of folds refers to 
how many steps are the training model created in, whereas 
the parameter α indicates how many percentage of the 
instances might be discarded in each iteration to build a 
size-friendly classification model. Two different classifica-
tion algorithms, k-NN and Decision Tree (J48) are selected 
for the comparison. Weka software was used for training 
the models and to perform tests [53]. Over a range of 1-7 
which is covered in the determination of k in k-NN algo-
rithm, best results occur at k=3. In order to establish a fair 
comparison, J48 was employed using default hyper param-
eter set on both datasets and for each elimination ratio. 
Figure 3, Figure 4, Figure 5, and Figure 6 show us whether 
the elimination process results in increasing the success rate 
compared to the model built without instance selection. For 
J48 algorithm, it is obvious that discarding instances could 
increase the success rate up to 11% as shown in Figure 3b. 
On the other hand, models built with the proposed instance 
selection algorithm for k-NN algorithm produce similar 
success rates to the traditional single-step model without 
instance selection.

Table 1. HTC Dataset

Activity Type Number of Activities
Walking
Metro 
Car
Motorbike
Train
Bicycle
High Speed Rail
Running
Still

8333
2949
1890
8334
8333
8333
8334
6821
8332

Table 2. Mobifall Dataset

Activity Type Number of Activities
Standing
Walking
Jogging
Jumping
Stair up 
Stair Down
Sit Chair 
Car Step-in
Car Step-out 
Fall

1029
1020
299
297
91
95
53
52
52
744
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Analyzing Figure 3,4,5,6 indicates that dividing 
the training set into 5 or 6 pieces and then applying our 
instance selection algorithm for each piece gives the best 
result. However, the optimum number of folds might 

vary for different datasets and algorithms. All machine 
learning algorithms have certain hyper parameters that 
must be tuned based on the dataset and the expectations. 
Accordingly, the number of folds and the elimination ratio 
should be considered as hyper parameters for building bat-
tery-friendly tiny training models. 

We obtain promising success rates even after eliminat-
ing quite high number of instances. However, our main 

(a) 

(b)

(c) 

Figure 3. The performance of J48 Decision Tree on HTC 
Dataset (a) After eliminating approx. 25% of instances (b) 
After eliminating approx. 50% of instances (c) After elimi-
nating approx. 75% of instances.

(a)

(b) 

(c)

Figure 4. The performance of k-NN algorithm on HTC 
Dataset (a) After eliminating approx. 25% of instances (b) 
After eliminating approx. 50% of instances (c) After elimi-
nating approx. 75% of instances.
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goal with designing such an instance selection algorithm 
is to reduce the model complexity and test duration of 
the decision process, i.e. energy consumption, especially 
for energy-constrained mobile devices. Our test results, 
shown in Figure 7 and Figure 8 show that with the help of 
our algorithm we could create up to 30% and 58% smaller 

models than the traditional single-step training approach 
without instance selection for J48 and k-NN algorithms, 
respectively. Our algorithm performs better for k-NN clas-
sifier than Decision Tree (J48) algorithm in terms of creat-
ing smaller models. However, at the worst case, selecting 
instances with our algorithm creates 9% smaller models.

It is very critical to determine how many and which 
instances should be discarded out of the model during the 
training phase. To find an optimal value, we conducted 

(a) 

(b) 

(c) 

Figure 6. The performance of k-NN algorithm on Mobifall 
Dataset (a) After eliminating approx. 25% of instances (b) 
After eliminating approx. 50% of instances (c) After elimi-
nating approx. 75% of instances.

(a)

(b) 

(c) 

Figure 5. The performance of J48 Decision Tree on Mobi-
fall Dataset (a) After eliminating approx. 25% of instanc-
es (b) After eliminating approx. 50% of instances (c) After 
eliminating approx. 75% of instances.
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several tests for different elimination ratios by changing the 
parameter α. In Figure 9 and Figure 10, we demonstrate the 
accuracy rates of the k-NN and Decision Tree(J48) algo-
rithms in terms of the number of eliminated instances. The 
number of folds that used during training procedure was 
set as 5 during the experiments. For both datasets, 25% 
and 50% elimination rates give better results compared to 
75% elimination of instances. In all cases except perform-
ing k-NN to HTC dataset, instance selection procedure not 
only created smaller models but also improved the classi-
fication accuracy in regard of the models obtained with-
out instance selection. We can say that discarding 25% of 
instances than 50% performs a notch better for k-NN algo-
rithm, whereas J48 algorithm gives more accurate results 
for the parameter α = 0.5. 

As an important metric for such solutions, we evalu-
ated the test duration of the obtained classification model 
with/without instance selection per instance. In Table 3, 

we observe that the obtained classification model for HTC 
Dataset with instance selection approach could make deci-
sions faster for both k-NN and J48 algorithms up to 61% 
and 13%, respectively. On the other hand, Table 4 shows 
that measured gain ratios of these algorithms are 62% and 
10% after applying the proposed instance selection algo-
rithm for Mobifall Dataset. In the tests performed using 
the two algorithms on both datasets, the gain ratios that 
increase in direct proportion with the instance selection 
rate are revealed. The achieved results indicate the con-
sistency and reliability of the proposed instance selection 
algorithm.

On the other hand, our main contribution is building 
energy-efficient models for battery-constrained devices 
such as smartphones and smartwatches. To demonstrate 
the battery saving ability of the proposed algorithm, we run 
several tests on a smartphone, VESTEL Venus Z20 [54], for 
four different cases. Since the training process is executed 

(a) (b)

Figure 7. The comparison of model sizes for k-NN algorithm (a) The comparison of model sizes of k-NN algorithm apply-
ing with/without instance selection algorithm for Mobifall dataset (b) The comparison of model sizes of k-NN algorithm 
applying with/without instance selection algorithm for HTC dataset.

(a) (b)

Figure 8. The comparison of model sizes for J-48 Decision Tree algorithm (a) The comparison of model sizes of Decision 
Tree algorithm applying with/without instance selection algorithm for Mobifall dataset (b) The comparison of model sizes 
of Decision Tree algorithm applying with/without instance selection algorithm for HTC dataset.
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Figure 10. Accuracy for different Elimination Ratios on 
Mobifall Dataset.

Figure 9. Accuracy for different Elimination Ratios on 
HTC Dataset.

Table 4. Test Duration for Mobifall Dataset

J48 Algorithm

Instance Selection W/out Instance Selection Gain Ratio (%)
0.0064 ms (α = 0.25
0.0062 ms (α = 0.5)
0.0060 ms (α = 0.75) 

0.0067 ms
4.48%
7.46%
10.45%

k-NN Algorithm

Instance Selection W/out Instance Selection Gain Ratio (%)
14.56ms (α = 0.25)
9.58 ms (α = 0.5)
7.10 ms (α = 0.75)

18.72 ms
22.22%
48.82%
62.07%

Table 3: Test Duration for HTC Dataset

J48 Algorithm

Instance Selection W/out Instance Selection Gain Ratio (%)
0.0126 ms (α = 0.25)
0.0124 ms (α = 0.5)
0.0116 ms (α = 0.75) 

0.013ms
3.08%
4.62%
10.77%

k-NN Algorithm

Instance Selection W/out Instance Selection Gain Ratio (%)
135.922 ms (α = 0.25)
95.759 ms (α = 0.5)
62.500 ms (α = 0.75)

162.261 ms
16.23%
40.98%
61.48%
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once on deployment of the system, testing performance 
matters in terms of daily usage. Therefore, we measured 
the battery usage of the system while the system is run-
ning on test mode. The results, shown in Figure 11, verify 
that, our proposed instance selection algorithm could save 
6 to 44 points battery capacity compared to training with-
out instance selection. Additionally, Figure 11 shows that 
energy saving for k-NN is far much more than J-48 algo-
rithm as expected, since in k-NN, test duration is directly 
proportional to the number of instances whereas in J-48, 
both the number of instances and the correlation between 
them have an effect on the test duration and model size.

CONCLUSION

Widespread usage of energy-constrained mobile 
devices has increased the diversity in the mobile applica-
tions and their user profiles. In this study, an instance selec-
tion method which is designed by evaluating structural 
features of the daily activities is presented. The proposed 
method works in an iterative and cluster-based manner in 
order to increase training efficiency. The performance eval-
uation of the system is carried out for the combinations of 
two different datasets, two classifiers and three elimination 
ratios. It is observed that the proposed instance selection 
algorithm could increase the success rate of the system up 
to 11% while reducing the test duration and model size 
of the system by 62% and 58% respectively. Especially the 
accuracy results for J-48 algorithm is slightly better after 
instance selection both for HTC dataset and Mobifall data-
set, whereas k-NN performance is just chasing the perfor-
mance of without instance selection both for two datasets. 
Achieved results demonstrate that presented instance selec-
tion approach can contribute to the solutions to energy and 
resource constraints of daily activity recognition applica-
tions especially on energy saving. With the help of instance 
selection algorithm, the battery usage of a mobile phone for 

activity recognition applications could be reduced by up to 
44 unit in terms of percentage. Battery saving is up to 12 
units for J-48 algorithms, whereas the energy consumption 
could be saved more than half of without instance selection 
approach for k-NN algorithm. The proposed algorithm 
could be applied to different datasets by tuning the opti-
mum fold number and elimination ratio parameters on val-
idation set. On both datasets, elimination ratio of 0.25 and 
0.5 generally gave better results than 0.75 in terms of accu-
racy. However, number of folds and elimination ratio could 
be described as two hyper-parameters for the introduced 
instance selection mechanism.

As a future work, we first aim at conducting the same 
experiments on deep learning algorithms. We then will 
investigate for a better model for deep learning algorithms. 
We also will try to optimize the hyper-parameters of the 
introduced mechanism.

NOMENCLATURE 

S 	 Number of sub-classes within classn
C 	 Centers of the sub-classes

Greek symbols
α 	 Elimination ratio.
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