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ABSTRACT

In this paper, we aim to find a control parameter in two-dimensional parabolic equations 
with the over-specification conditions. The present method is implemented on two problems 
with different over-specification conditions. This method produces new polynomials by com-
bining Chebyshev polynomials and using an unknown parameter. The numerical solution of 
the problem is estimated by the linear combination of the new polynomials. By collocation 
method, the unknown coefficients of this linear combination and new unknown parameter 
are obtained by solving a nonlinear system by the least-squares method at each of the colloca-
tion points. Finally, with interpolation on all functions obtained at all collocation points, we 
will give an approximation solution. The results of this method are calculated for two types of 
interpolation points. The results obtained from the present method are better than the results 
of finite difference method.
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INTRODUCTION

Most of the activities of engineering, science, and med-
icine are based on inverse problems. Among the fields in 
which inverse problems play a main role, the following 
branches can be pointed out: geophysics [1], optic [2], 
radar [3], acoustics [4], communication theory, signal pro-
cessing [5], tomography, medical imaging [6]. There are 
two analytical and numerical methods for solving inverse 
problems. In this article, a new numerical method is sug-
gested to solve a specific type of inverse problem. Several 

numerical methods are presented to solve the inverse 
problems that can be mentioned in the following methods: 
Bernstein Galerkin method [7], finite difference method 
[8], regularization method, mollification method [9], radial 
basis function method [10]. Due to the difficulty of solving 
inverse problems such as divergence in iterative methods or 
ill-posedness in methods that lead to the creation of system 
equations, it is important to present new methods that do 
not cause these problems.

In this paper, with the help of Chebyshev polynomials, 
we obtain a class of basic functions that approximates the 
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solution of the inverse problem. The inverse problem dis-
cussed in this paper is a two-dimensional inverse problem 
in which the source parameter is unknown. This inverse 
problem has been solved in [11] and [12] by the finite dif-
ference method. Very recently in a one-dimensional case, 
this problem has been solved by the same authors in [13]. 
Here, we will consider two cases.

Problem 1) We will find a pair of functions w (x, y, t), 
P(t) in the following equation

	 [ ] [ ]2( ) ( , , ), ( , , ) 0,1 0, ,t xx yyw w w P t w f x y t x y t T− − = + ∈Ω = × 	 (1)

with the following initial 

[ ]2( , ,0) ( , ), ( , ) 0,1 ,w x y x y x yψ= ∈

and boundary conditions

0 1

1 1

0 1

1 1

(0, , ) ( , ), ( , ) ,
(1, , ) ( , ), ( , ) ,
( ,0, ) ( , ), ( , ) ,
( ,1, ) ( , ), ( , ) ,

w y t k y t y t
w y t k y t y t
w x t l x t x t
w x t l x t x t

= ∈Ω
= ∈Ω
= ∈Ω
= ∈Ω

where Ω1 = [0,1][0,T] and

[ ]
1 1

0 0

( , , ) ( ), 0, .w x y t dxdy E t t T= ∈∫ ∫

Let ψ, k0, k1, l0, l1 and f are known functions and w, P are 
unknown functions. To determine the existence, unique-
ness and stability of the solution, we refer to [14].

Problem 2) Like previous problem, we will consider

	 ( ) ( , , ), ( , , ) ,t xx yyw w w P t w f x y t x y t− − = + ∈Ω 	 (2)

with the following initial condition

[ ]2( , ,0) ( , ), ( , ) 0,1 ,w x y x y x yψ= ∈

and boundary conditions

0 1

1 1

0 1

1 1

(0, , ) ( , ), ( , ) ,
(1, , ) ( , ), ( , ) ,
( ,0, ) ( , ), ( , ) ,
( ,1, ) ( , ), ( , ) ,

w y t k y t y t
w y t k y t y t
w x t l x t x t
w x t l x t x t

= ∈Ω
= ∈Ω
= ∈Ω
= ∈Ω

with a condition at a point (x0, y0) like

2
0 0 0 0( , , ) ( ), ( , ) [0,1] , [0, ],w x y t E t x y t T= ∈ ∈

where ψ, k0, k1, l0, l1 and f are known functions and 
w, P are unknown functions. To determine the existence, 
uniqueness and stability of the solution, we refer to [15].

Existence, Uniqueness, and Stability of the Solution
Suppose that

[ ]{ }
[ ]

[ ]

2

2

2

1 1

0 0

( ) ( , , ), ( , , ) : ( , ) 0,1 , [0, ] ,

( , ,0) ( , ), ( , ) 0,1 ,

( , , ) ( , , ), ( , ) 0,1 (0, ),

( , , ) ( ), [0, ].

t Tw Lu P t w f x y t Q x y t x y t T

w x y x y x y

w x y t x y t x y T

w x y t dxdy E t t T

ψ

χ

= + + = ∈ ∈

= ∈

= ∈∂ ×

= ∈∫ ∫

Which in problem 2, the following condition replaces 
the above condition in problem 1

2
0 0 0 0( , , ) ( ), ( , ) [0,1] , [0, ],w x y t E t x y t Tℵ

where the linear operator L is

, 1
( ( , , ) ) .

i j

n

ij x x
i j

Lw a x y t w
=

= ∑

Theorem 1.1: In view of the above assumptions, the 
inverse problems 1 and 2 have a unique solution and the 
solution depends continuously upon the data.

Proof: See [15].
To solve the problem, we use the following 

transformation:

	 0
( , , ) ( , , ) exp{ ( ) },

t
u x y t w x y t P dξ ξ= −∫ 	

(3)

0

0

( ) exp{ ( ) },

( , , ) ( , , ) exp{ ( ) },

t

t

r t P d

w w x y t u x y t P d

ξ ξ

ξ ξ

= −

= =

∫
∫

we have

	

2

2

0 0

( ) ( , , ),
( , ,0) ( , ), ( , ) [0,1] ,

( , , ) ( , , ) ( ), ( , ) [0,1] [0, ],
( , , )( ) , [0, ].

( )

tu Lu r t f x y t
u x y x y x y

u x y t x y t r t x y T
u x y tr t t T

E t

ψ
χ

= +

= ∈
ℵ

= ∈
	

(4)

In Section 2, the definitions and propositions needed 
in the next sections are brought. In Section 3, the present 
numerical method is described. Section 4 includes conver-
gence and stability theorems and proof of them. In Section 
5, examples and numerical results and tables and figures 
related to examples are displayed. Section 6 is the overall 
conclusion of the present article.
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Polynomial functions
In mathematics, especially in applied mathematics, 

polynomials have always played a main role in the approx-
imation theory [16,17]. In this paper, polynomials with a 
parameter a are used that this parameter is optimized in 
calculations.

Definition [18]: Assume a is a constant parameter. New 
polynomials are produced as follows

0

1

( ) 1,
( ) ( ) ( ), 1,n n n

A x
A x axU x U x n−

=
ℵ

where Un is the second kind Chebyshev polynomial.
The following equations are also established:

	 1 1( ) 2 ( ) ( ), 1,n n nA t tA t A t n+ −= 	 (5)

	
2( ) (1 ) ( ) ( ), 2,

2 2n n n
a aA t U t U t n−= + + ≥

	
(6)

there are many propositions about these polynomials in 
[18] and a new application by the same authors in [13,20].

Proposition 2.1: Un is the eigenfunction of the singular 
Sturm-Liouville problem:

	
1 3 2222[(1 ) ((1 ) ) ( 2)] ( ) 0,n

d dt t n n U t
dt dt

−− − + + =
	

(7)

for n = 0,1,2,…. .
Proposition 2.2: Assume that , then

	
( )

1

,1
, ( ) ( ) ( ) ,

2n m n m n mU U U t U t t dt
ω

πω δ
−

= =∫
	

(8)

	

1 3
,1

( ) ( ) 1( ) ( 2) .
2

n m
n m

dU t dU t t dt n n
dt dt

ω δ
−

= +∫
	

(9)

Remark 2.1: 

	

1 3

1

( )( ) 0,ndU tt dt
dt

ω
−

=∫
	

(10)

	

1 3

1
( ) ( ) 0.nt U t dtω

−
=∫ 	

(11)

Numerical Solution Method
In the present method, the first, the time interval is 

discrete. At any time tk, the sum of the polynomials pro-
duced in the preceding section approximates the function. 
By netting of the spacial domain at any grid temporary 
point tk and using the collocation method, the unknown 

coefficients of the series and parameter a are obtained. In 
the present method, at any grid temporary point tk, the 
least square method is used for solving a nonlinear sys-
tem. Finally, all points (xi, yj, tk, u(xi, yj, tk)) are interpolated 
using B-spline polynomials in domain Ω.

Time discretization
For discretization of [0,T], consider

, 0,1, 2, , ,kt k k Mτ= = 

where . For discretization of the problems (1) 

and (2), we use the forward FDM:

1 111
2 ,

2 2

k kk kk k kyy yy kxx xx u uu uu u r f
τ

+++ +++−
− − =

where  and  and
.

Simplified phrase will be: 

	
1

1 1 1 2  2 ( ) 2 ( ) 2 , 0,1,2, , .
kk k k k k k k

xx yy xx yyu u u u u u r f k Mτ τ τ
++ + +− + = + + + =  	 (12)

Problem 1)
After integrating of the Eq.(3), and using integral condi-

tion, the r(t) is obtained:

1 1

0 0
( , , )

( ) .
( )

u x y t dxdy
r t

E t
= ∫ ∫

In addition to Eq.(12), we have for each tk the following 
equations:

20

2

1 1

0 0

( , ), ( , ) [0,1] ,
( , ) ( , , ) ( ), ( , ) [0,1] ,

( , , )
( ) ,

( )

k
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ψ
χ

= ∈
= ∈

= = ∫ ∫

that we obtain a nonlinear equation system.
Problem 2)
According to Eq.(4), in addition Eq.(12), we have for 

each tk:

20

2

0 0

( , ), ( , ) [0,1] ,
( , ) ( , , ) ( ), ( , ) [0,1] ,

( , , )( ) ,
( )

k
k k

k k
k

k

u x y x y
u x y x y t r t x y
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E t

ψ
χ

= ∈
= ∈

= =

that we obtain a nonlinear equation system.
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Implementation for the problems
Suppose uj+1 is written as follows:

	

1 1

0 0
( ) ( ).

N N
j j

lm l m
l m

u c A x A y+ +

= =

≅ ∑∑
	

(13)

For the higher order derivatives of the above series w.r.t 
x and y, we have:

	

1 1

0 0
( ) ( ),

N N
j j

x lm l m
l m

u c A x A y+ +

= =
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(14)

	

1 1

0 0
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N N
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l m

u c A x A y+ +

= =

′′≅ ∑∑
	

(15)

	

1 1

0 0
( ) ( ),

N N
j j
y lm l m

l m
u c A x A y+ +

= =
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(16)

	

1 1

0 0
( ) ( ).

N N
j j
yy lm l m

l m
u c A x A y+ +

= =

′′≅ ∑∑
	

(17)

For each tj, we put these equations in problems (1) 
and (2). By discretizing the domain [0,1]2, a nonlinear 
system including a unknown parameter a and (N+1)2 + 1 
unknowns  with (N+1)2 + 1 equa-
tions is obtained. To find a and , 
can be minimized L2  norm of residual using least squares 
method. 

For implementing the method, we will consider the fol-
lowing collocation grid points:

Regular grid points

Chebyshev-Gauss-Lobatto (CGL) grid points

where

Convergence and Stability Theorems
Suppose that Λ = [-1,1] and  be function Hilbert 

space with the standard inner product

1

1
( , ) ( ) ( ) ( ) ,f g t f t g t dtω ω

−
= ∫

where  is positive weight function and
 Let N be positive integer, we will consider the 

subspace of  by using the second kind of Chebyshev 
polynomials as

{ }0 1, , , .N NS span U U U= …

We define  -orthogonal projection as follows:

2

0

: ( )

( )( ) ( ),

N N
N

N i i
i

P L S

P v t c U t

ω

=

Λ →

=∑

such that . To estimate 
, we have the space interpolation:

{ }, , ,
( )    ,r

R r R
H v v is measurable and vω ω

Λ = < ∞

where r > 0 is any real number, and

	

1
2 2

2
, ,

0
( 2) .

r ir i

ir R
i

d vv t
dtω

ω

+

=

 
 = +
 
 
∑

	

(18)

We define the Sturm-Liouville operator of the sec-
ond-kind Chebyshev polynomials, R, as

	
1 3( ( )) ( ) ( ( ) ( )),n n

d dR U t t t U t
dt dt

ω ω−= −
	 (19)

see [20], Chapter 5.
Proposition 4.1: Rm is a continuous mapping from 

 to .
Proof: For showing this, we will prove that

	

2

1

( )( ) ( 2) ( ) ,
km

m m k
k k

k

d v tR v t t q t
dt

+

=

= +∑
	

(20)

where qk is a rational bounded uniformly function on 
the whole interval Λ. It is proved by induction. For m = 1, 
we have

2
2

2

2
2 3

2 2 2

( ) 3 (1 )

3 1( 2) ( 2) .
( 2) ( 2)

dv d vRv t t t
dt dt

t dv t d vt t
t dt t dt

= − −

   −
= + + +   + +   

Suppose that for m, n the relation (20) is satisfied. One 
can easily prove that this relation is established for m = n 
+ 1.

Proposition 4.2: For any real r ≥ 0, , 
 then
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	 , ,
,r

N r R
P v v cN v

ω ω
−− ≤

	 (21)

for some real constant c.
Proof: First, we suppose that r = 2m. Due to the (7), (8), 

(19) and integration by parts,

	

3

3

3

2 2ˆ ( ) ( ) ( ) ( ) ( ) ( )
( 2)

2 ( ) ( ( ) ( ))
( 2)
2 ( ) ( )( ( ))
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2 ( ( ) ( )) ( )

( 2)
2 ( ) ( ) ( )

( 2)
2

( 2)

n n n

n

n

n

n

m
m m

v v t U t t dt v t RU t t d
n n

d dv t t U t dt
n n dt dt

d dt v t U t dt
n n dt dt

d dt v t U t dt
n n dt dt

Rv t U t t dt
n n

R v
n n

ω ω η
π π

ω
π

ω
π

ω
π

ω
π

π

Λ Λ

Λ

Λ

Λ

Λ

= =
+

= −
+

=
+

= −
+

=
+

=…=
+

∫ ∫

∫

∫

∫

∫

( ) ( ) ( ) .nt U t t dtω
Λ∫ 	

(22)

Now according to (20), (22) and definition of 
, we have:

Next, we put r = 2m + 1. By (10), (7) and integration by 
part, we have:

3
1 1

3
1 1

2ˆ ( ) ( ) ( )
( 2)

2 ( ) ( ( ) ( ))
( 2)
2 ( ( )) ( ) ( ) .

( 2)

m
n nm m

m
nm m

m
nm m

v R v t U t t dt
n n

d dR v t t U t dt
n n dt dt

d dR v t U t t dt
n n dt dt

ω
π

ω
π

ω
π

Λ

+ + Λ

+ + Λ

=
+

= −
+

= −
+

∫

∫

∫

Now using (9) and (20), we complete the proof. 
The general result follows from the previous results and 

space interpolation.
Theorem 4.1: For any real r > 0, , we have:

for some constant c.
Proof: Using Eq. (6) and Proposition(4.2), we get the 

proof. 
The Chebyshev–Gauss interpolation operator 

 is

that  are the N + 1 Chebyshev-
Gauss points. The following theorem is related to the stabil-
ity of the Chebyshev–Gauss interpolation.

Theorem 4.2: For any ,  such that

Proof: See [20].
This theorem shows that the a-polynomial approxima-

tion has exponential convergence. The ssimilar theorems 
which have been proved in this section can be seen in [21] 
for the Chebyshev polynomials of the first kind.

Numerical Examples
Example 1
Assume problem (1) with:

2

0

1

0

1

2

5( , , ) ( 5 ) sin( ( 2 )),
16 4

(0, , ) sin( ),
2

(1, , ) sin( (1 2 )),
4

( ,0, ) sin( ),
4

( ,1, ) sin( ( 2)),
4

8( ) ,

( , ) sin( ( 2 )).
4

t

t

t

t

t

t

x y t t e x y

yk y t e

k y t e y

xl x t e

l x t e x

E t e

f x y x y

π πψ

π

π

π

π

π
π

= − +

=

= +

=

= +

=

= +

The exact solution is given by:

{ }( , , ), ( ) sin( ( 2 )),1 5 .
4

tw x y t P t e x y tπ = + + 
 

This example is estimated with regular and CGL grid 
points. Absolute errors at some nodal points are given in 
Tables 1-4. The absolute errors are also listed in the tables 
by introducing artificial error 10-2 into the right end and 
initial condition. In Tables 1 and 2, CGL and regular grid 
points are used, respectively, and the absolute errors of 
P(t) obtained by the present method are compared with 
the (1,9) FTCS method [12]. In Tables 3 and 4, regular and 
CGL grid points are used, respectively, and the absolute 
errors of u(x, y) (see Eq.(3) for the definition) obtained 
by the present method are compared with the (1,9) FTCS 
method [12] at T = 1. The results of the present method 
in with and without noise modes are more accurate than 
the (1,9) FTCS method [12]. In Figure 1, the exact and 
numerical solutions P(t) are shown in two moods, with 
and without noise and at CGL grid points. In Figure 2, 
level curves of the absolute errors of u(x, y) are shown in 
two cases, with and without noise at CGL grid points and 
T = 1. It can be seen from Figure 1(b) and Figure 2(b) the 
stability. In Figure 3 and Figure 4, graphs of u(x, y) are 
shown for N = 5 and τ = 0.0005 in CGL grid points at T = 
1, with and without noise.
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Table 1. Example 1, the absolute errors of P(t) 
N = 5, τ = 0.0005, T = 1 and CGL points

t (1,9) FTCS [12] Present 
method

Present method 
with noise

0.1 7.8e-04 1.63775e-04 2.47881e-02
0.2 7.6e-04 4.92752e-05 4.31753e-03
0.3 7.5e-04 1.39452e-05 7.88542e-04
0.4 7.3e-04 6.91637e-05 2.05503e-04
0.5 7.0e-04 6.89632e-05 1.24470e-04
0.6 6.9e-04 1.63994e-04 1.74604e-04
0.7 6.5e-04 2.31303e-04 2.33300e-04
0.8 6.7e-04 2.92222e-04 2.92603e-04
0.9 6.9e-04 3.52198e-04 3.52272e-04
1.0 6.5e-04 4.13071e-04 4.13085e-04

Table 2. Example 1, the absolute errors of P(t) 
N = 5, τ = 0.0005, T = 1 and Regular grid points

t (1,9) FTCS [12] Present 
method

Present method 
with noise

0.1 7.8e-04 6.74683e-05 2.52819e-02
0.2 7.6e-04 1.69208e-05 4.35818e-03
0.3 7.5e-04 2.10545e-05 7.95207e-04
0.4 7.3e-04 6.80101e-05 2.06179e-04
0.5 7.0e-04 1.21761e-04 1.46781e-04
0.6 6.9e-04 1.77630e-04 1.82226e-04
0.7 6.5e-04 2.34915e-04 2.35771e-04
0.8 6.7e-04 2.93410e-04 2.93572e-04
0.9 6.9e-04 3.53126e-04 3.53157e-04
1.0 6.5e-04 4.14122e-04 4.14129e-04

Table 3. Example 1, the absolute errors of u(x, y) 
N = 5, τ = 0.0005, T = 1 and CGL points

x y (1,9) FTCS [12] Present 
method

Present method 
with noise

0.1 0.1 3.8e-04 1.87343e-06 1.87344e-06
0.2 0.2 3.6e-04 4.11858e-06 4.11852e-06
0.3 0.3 3.5e-04 9.80984e-06 9.80974e-06
0.4 0.4 3.4e-04 9.97414e-06 9.97400e-06
0.5 0.5 3.3e-04 1.37279e-05 1.37278e-05
0.6 0.6 3.2e-04 1.98700e-05 1.98698e-05
0.7 0.7 3.7e-04 1.76888e-05 1.76887e-05
0.8 0.8 3.2e-04 8.28951e-06 8.28946e-06
0.9 0.9 3.0e-04 3.59068e-06 3.59066e-06

	 (a)	 (b)

Figure 1. Graphs of the exact and numerical solutions of P(t) in Example 1 for N = 5 and τ = 0.0005 in CGL grid points: 
(a) with noisy data; (b) without noisy data.

Table 4. Example 1, the absolute errors of of u(x, y) 
N = 5, τ = 0.0005, T = 1 and Regular points

x y (1,9) FTCS [12] Present 
method

Present method 
with noise

0.1 0.1 3.8e-04 5.34879e-06 5.34879e-06
0.2 0.2 3.6e-04 2.19912e-06 2.19910e-06
0.3 0.3 3.5e-04 1.19730e-05 1.19729e-05
0.4 0.4 3.4e-04 1.53551e-05 1.53551e-05
0.5 0.5 3.3e-04 1.79834e-05 1.79833e-05
0.6 0.6 3.2e-04 1.92278e-05 1.92277e-05
0.7 0.7 3.7e-04 1.54533e-05 1.54532e-05
0.8 0.8 3.2e-04 1.35557e-05 1.35557e-05
0.9 0.9 3.0e-04 1.46026e-05 1.46026e-05



Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 469−480, June, 2023 475

      
	 (a)	 (b)
Figure 2. Graphs of level curves of the absolute errors for u(x, y) in Example 1 for of N = 5 and τ = 0.0005, in CGL grid 
points at T = 1: (a) with noisy data; (b) without noisy data.

	 (a)	 (b)
Figure 4. Graphs of numerical solution u(x, y) in Example 1 for N = 5 and τ = 0.0005 in CGL grid points at T = 1: (a) with 
noisy data, (b) without noisy data.

	 (a)	 (b)
Figure 3. Graphs of u(x, y) in Example 1 for N = 5 and τ = 0.0005 in CGL grid points at T = 1: (a) numerical solution; (b) 
exact solution.
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Example 2
Assume problem (2) with:

2

0

1

0

1

5( , , ) ( 5 ) sin( ( 2 )),
16 4

(0, , ) sin( ),
2

(1, , ) sin( (1 2 )),
4

( ,0, ) sin( ),
4

( ,1, ) sin( ( 2)),
4

( ) sin(0.2 ),

( , ) sin( ( 2 )).
4

t

t

t

t

t

t

x y t t e x y

yk y t e

k y t e y

xl x t e

l x t e x

E t e

f x y x y

π πψ

π

π

π

π

π
π

= − +

=

= +

=

= +

=

= +

The exact solution is given by:

{ }( , , ), ( ) sin( ( 2 )),1 5 .
4

tw x y t P t e x y tπ = + + 
 

This example is estimated by regular and CGL grid 
points. Absolute errors at some nodal points are given in 
Tables 5-8. The absolute errors are also listed in the tables 
by introducing artificial error 10-2 into the right end and 
initial condition. In Tables 5 and 6, CGL and regular grid 
points are used, respectively, and the absolute errors of P(t) 
achieved by the present method are compared with the 
(9,9) fully implicit method [11]. In Tables 7 and 8, CGL and 

regular grid points are used, respectively, and the absolute 
errors of u(x, y) in Eq. (3) obtained by the present method 
are compared with the (9,9) fully implicit method [11] at T 
= 1. The results of the present method in with and without 
noise modes are more accurate than the (9,9) fully implicit 
method [11]. In Figure 5, the exact and numerical solutions 
P(t) are shown in two moods, with and without noise and 
at CGL grid points. In Figure 4, level curves of the absolute 
errors of u(x, y) are shown in two cases, with and without 
noise at T = 1 and CGL grid points. It can be seen from 
Figure 4(b) and Figure 5(b) that the present method is sta-
ble. In Figure 7 and Figure 8, graphs of u(x, y) are shown for  
N = 5 and τ = 0.0002 in CGL grid points at T = 1, with and 
without noise.

	 (a)	 (b)

Figure 5. Graphs of the exact and numerical solutions of P(t) in Example 2 for N = 5, τ = 0.0002 in CGL grid points: (a) 
with noisy data; (b) without noisy data.

Table 5. Example 2, the absolute errors of P(t) 
N = 5, τ = 0.0002, T = 1 and CGL points

t (9,9) Fully implicit 
[11]

Present 
method

Present method 
with noise

0.1 2.1e-05 1.46409e-04 4.92584e-02
0.2 2.3e-05 3.47002e-05 1.00857e-02
0.3 2.4e-05 1.76180e-05 2.06723-e03
0.4 2.5e-05 5.71086e-05 4.66622e-04
0.5 2.6e-05 9.36641e-05 1.74350e-04
0.6 2.6e-05 1.29301e-04 1.44968e-04
0.7 2.4e-05 1.64419e-04 1.67415e-04
0.8 2.3e-05 1.99088e-04 1.99652e-04
0.9 2.3e-05 2.33313e-04 2.33417e-04
1.0 2.2e-05 2.67086e-04 2.67105e-04
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Table 6. Example 2, the absolute errors of P(t) 
N = 5, τ = 0.0002,  T = 1 and Regular grid points

t (9,9) Fully implicit 
[11]

Present 
method

Present method 
with noise

0.1 2.1e-05 8.79941e-05 5.02518e-02
0.2 2.3e-05 2.93465e-06 1.02132e-02
0.3 2.4e-05 7.60471e-06 2.06522-e03
0.4 2.5e-05 3.86712e-05 4.47073e-04
0.5 2.6e-05 7.35956e-05 1.53445e-04
0.6 2.6e-05 1.08973e-04 1.24341e-04
0.7 2.4e-05 1.44109e-04 1.47018e-04
0.8 2.3e-05 1.78853e-04 1.79394e-04
0.9 2.3e-05 2.13163e-04 2.13262e-04
1.0 2.2e-05 2.47019e-04 2.47036e-04

Table 7. Example 2, the absolute errors of u(x, y) 
N = 5, τ = 0.0002,	 T = 1 and CGL points

x y (9,9) FTCS [11] Present 
method

Present method 
with noise

0.1 0.1 7.5e-06 2.32376e-07 2.32367e-07
0.2 0.2 7.4e-06 6.93914e-07 6.93881e-07
0.3 0.3 7.5e-06 3.11295e-06 3.11289e-06
0.4 0.4 7.8e-06 6.16557e-06 6.16549e-06
0.5 0.5 7.9e-06 7.75301e-06 7.75292e-06
0.6 0.6 7.6e-06 6.72182e-06 6.72174e-06
0.7 0.7 7.8e-06 3.76836e-06 3.76830e-06
0.8 0.8 7.7e-06 1.09950e-06 1.09947e-06
0.9 0.9 8.0e-06 5.51475e-07 5.51468e-07

Table 8. Example 2, the absolute errors of u(x, y) 
N = 5, τ = 0.0002, T = 1 and Regular points

x y (9,9) FTCS [11] Present 
method

Present method 
with noise

0.1 0.1 7.5e-06 2.97402e-06 2.97401e-06
0.2 0.2 7.4e-06 4.56481e-06 4.56478e-06
0.3 0.3 7.5e-06 6.09955e-06 6.09949e-06
0.4 0.4 7.8e-06 7.74896e-06 7.74888e-06
0.5 0.5 7.9e-06 8.70313e-06 8.70304e-06
0.6 0.6 7.6e-06 8.38167e-06 8.38159e-06
0.7 0.7 7.8e-06 7.18318e-06 7.18313e-06
0.8 0.8 7.7e-06 5.92508e-06 5.92505e-06
0.9 0.9 8.0e-06 4.29058e-06 4.29057e-06

              
	 (a)	 (b)
Figure 6. Graphs of level curves of the absolute errors for u(x, y) in Example 2 for N = 5, τ = 0.0002 in CGL grid points at 
T = 1: (a) with noisy data, (b) without noisy data.
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CONCLUSION

Here, we have successfully implemented a new method 
to solve two-dimensional parabolic inverse problems. The 
problems have nonlocal boundary conditions. Comparing 
the results of the present method and the results of previous 
papers, the present method yields better results. The pres-
ent method is easy to consider boundary conditions and is 
convergence and stable with respect to noise. According to 
the previous section tables, it is observed that the present 
method is stable and its results are better than finite differ-
ence method.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the 
findings of this study are available within the article. Raw 
data that support the finding of this study are available from 
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest 
with respect to the research, authorship, and/or publication 
of this article.

	 (a)	 (b)

Figure 8. Graphs of numerical solution u(x, y) in Example 2 for N = 5, τ = 0.0002 in CGL grid points at T = 1: (a) with 
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Figure 7. Graphs of u(x, y) in Example 2 for N = 5, τ = 0.0002 in CGL grid points at T = 1: (a) numerical solution; (b) exact 
solution.
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