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ABSTRACT

With the advancement of sciences such as machine learning, deep learning, and artificial 
intelligence, various algorithms are designed and developed. Learning and application models 
based on data types such as sensor data and databases of computers are made. The BLEVE 
effects, one of the most common types of fire in industries, are predicted using the Levenberg-
Marquardt algorithm, which has become increasingly popular in recent years. Here, the 
equations in the TNO (Toegepast Natuurwetenschappelijk Onderzoek-Netherlands Applied 
Scientific Research Organization) (YellowBook Static) model of BLEVE are used.

The aim of this research is to use artificial neural networks to predict the risk size of the 
BLEVE event. All the results from the TNO model of BLEVE effects were estimated using 
an artificial neural network model. Without utilizing equations, outcomes that are close to 
true results could be estimated in this method. Furthermore, findings were acquired fast, with 
linear outcomes in many settings. For this reason, the study’s necessity and significance have 
shifted in this direction. Sixteen TNO model equations from BLEVE are applied, and heat flux 
values are calculated as a result.
As a result of the studies, the BLEVE effects were predicted by the artificial neural network 
model created using the Levenberg-Marquardt algorithm. It is seen that the estimated results 
and the actual results calculated are close to each other. The statistical values between the 
predicted results of the artificial neural network model created by the Levenberg-Marquardt 
algorithm and the actual results were examined. The average relative error between the last 
stage of the BLEVE model created with ANN and the actual values was 3.34%. In addition, it 
has been observed that when the training iteration is increased within the algorithm, it gets 
closer to the real results, and statistical values such as standard error decrease even more. In 
other words, the computation was done by increasing the iteration sequence processing cycle 
of the result estimations and repeated with the number of training iterations in order to better 
evaluate the network’s performance. It has been observed that as the number of iterations 
increases, closer and more realistic results emerge.
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INTRODUCTION

Artificial neural networks have recently been seen as 
a highly sought-after field within the artificial intelligence 
discipline. Especially in the field of technology (mobile 
phones, computers, various smart devices, etc.), this arti-
ficial neural network system is used. Artificial neural net-
works are a form of decision-making system that learns the 
relationships between events from samples and then applies 
what they have learned to invisible examples [1]. Learning, 
generalization, classification, correlation, feature determi-
nation, and optimization are some of the functions of artifi-
cial neural networks [2].

Artificial neural networks use different learning types 
and techniques. Teacher learning, positive learning, non-
teacher learning, and mixed methods are learning styles 
[3]. Artificial neural network models for teacher learning 
(multi-layer perceptron-MCA) and teacher-less learn-
ing will be used in this analysis (adaptive resonance the-
ory-ART). MCA model: the learning structure needs an 
instructor to learn the situation. The teacher explains the 
situation that should be studied as input and output into 
the method. It is ensured that both inputs and outputs cor-
responding to these inputs are visible in the system for 
each sample. The method, on the other hand, maps these 
inputs to the outputs that the instructor specifies. As a 
result, the relationships between the inputs and outputs 
are discovered. In the ART model, there is no teacher who 
can support the method learn. In the method, only input 
values are specified. The device is supposed to figure out 
how the parameters in the examples relate to one another 
on its own. However, after understanding the method, the 
user must create conditions that illustrate what the outputs 
would mean [1,2].

When some current studies are examined, applica-
tions are seen in different fields. Sabdani 2020 examined 
strong resonance bifurcations with reflection symmetry. 
Numerical analysis of these bifurcations and modeling of 
their results with economic and artificial neural networks 
were made [4]. In another study is numerical treatment of 
a dynamic nonlinear hepatitis-B model: an evolutionary 
approach. Farman 2020 investigated mathematical models 
of Hepatits-B [5]. Tian 2009 determined new delay-depen-
dent asymptotic stability criteria for neural networks with 
time-varying delays. For neural networks (NNs) with time-
varying delays, the problem of delay-dependent asymp-
totic stability criteria is explored. [6]. Naik et al. 2020 has 
researched chaotic dynamics of the fractional order HIV-1 
model involving AIDS-associated cancer cells. The HIV-1 
model in fractional order, which includes AIDS-associated 

cancer cells, is introduced. Stability analysis of the proposed 
model is made. Numerical simulations using the two-stage 
Adam-Bashforth method have been performed to support 
our results. he results show that, among other properties, 
fractional models are better predictors [7].

BLEVE; It is an abbreviation of the initials of the 
words boiling liquid expanding vapor cloud explosion. 
The BLEVE case, which will be used in this study to test 
the artificial neural network, is one of the fire events that 
can occur in many industrial facilities. With the passage of 
time, manufacturing facilities have grown and advanced. 
As an example, energy and chemical facilities can be listed. 
Despite the fact that there are numerous studies in the field 
of facility technology, various processes and safety are still 
needed. Major industrial accidents over the years, particu-
larly in recent years, demonstrate the critical importance of 
the safety sector. In terms of the risk description, it includes 
the probability of any damage, failure, or other negative 
effects as a result of an accident, as well as the possibility of 
causes such as pollution [8].

Significant losses can occur in major industrial accidents 
as a result of death and injury caused by fire, explosion, and 
gas spread, as well as occupational accidents and diseases. 
One of the most common forms of incidents is fire. In all 
facilities, there is a high risk of burning. BLEVE fires, which 
are fireball-shaped, are among these types of fires.

The most dangerous incident in liquefied flammable 
gas tanks, such as LPG, is known as BLEVE. The tem-
perature inside the tank increases rapidly as a result of a 
fire that begins outside the tank; moreover, the transition 
from the liquid to the gas phase increases [9].  The pressure 
relief valve of the tank acts as the internal pressure of the 
tank rises, releasing the excess pressure inside; however, 
due to the speed at which the tank transitions to the gas 
phase, the evacuation mechanism is unable to avoid the 
pressure rise [10,11]. The tank ruptures when the internal 
pressure of the tank reaches the maximum pressure of the 
tank [12,13]. At this point, the fragments that broke away 
from the tank and the tank itself are scattered around like 
shrapnel, often violently enough to fly hundreds of meters 
[12,14]. The warm, pressurized gas inside the tank bursts 
through the breach stage, forming a huge fireball that 
slowly rises [15].

BLEVE; In a brief, it’s the reaction that happens when a 
substance that has been overheated under pressure is sud-
denly released into the atmosphere [16]. This occurrence 
releases massive quantities of thermal radiation over long 
distances, and fatal burns to people in the area [17].
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In this study, the heat flux values of the BLEVE event 
were estimated with the artificial neural network model. 
In this way, thermal radiation effects will be examined. 
In order to construct a model in a neural network, the 
Levenberg-Marquardt algorithm was used. A network 
model was developed using this algorithm, and predictions 
about the BLEVE event were made.

When looking at the algorithms used in the artificial 
neural network, the Levenberg-Marquardt algorithm is 
widely used and gives good results in terms of performance 
from many algorithms. It is good in terms of speed and 
memory performance than algorithm mechanisms such as 
Gradient Descent, Newton Method, Conjugate Gradient 
and Quasi-Newton [18].

Many studies have looked into the significance and 
role of the Levenberg-Marquardt algorithm in a variety of 
applications. Artificial intelligence plays an important role 
in the development of artificial neural network modelling, 
according to these studies.

In this study, it is aimed to design a modeling and calcu-
lation mechanism of artificial neural networks and results, 
which can be used in responding to risks such as fire and 
explosion, which can occur at the same time, through the 
example scenario of BLEVE effects, which are among the 
major industrial accident types.

The BLEVE effects were predicted by an artificial neural 
network model developed using the Levenberg-Marquardt 
algorithm as a result of the studies. It can be seen that the 
estimated and calculated results are very close to each other.

In real-life applications, especially when the decision 
support mechanism will be designed, the desired goal will 
be achieved by using these algorithms by giving faster and 
more accurate results. In this way, since there will be more 
training sets in the artificial neural network model, it will 
show the results directly in any scenario.

The goal of this research is to expand it and contrib-
ute to other domains. It is possible to model fire, explosion, 
and gas dispersion events, which are common in signifi-
cant industrial accidents like BLEVE. It will also assist in 
reducing the harmful environmental consequences of these 
events.

THEORY

In this study, the artificial neural network was mod-
elled with the input data determined using the Levenberg-
Marquardt algorithm, which is a multi-layer perceptron 
(MLP) (teacher learning) type of modelling method in the 
literature. The outputs produced by the network are com-
pared with the actual values calculated for BLEVE. The 
feasibility of performance determination is investigated by 
using the curves to be created from the obtained values and 
the artificial neural network.

The scenario was determined and calculated for 
the modelling of the fireball explosion (BLEVE). In the 

scenario, the gas in the tankers was chosen as LPG. Its 
molecular weight is 53.06 gr/mol. Artificial neural network 
results were developed for the outputs of the data on LPG 
gas explosions in tankers. For the BLEVE model, inputs are 
given to the network. What is expected from the network is 
the thermal radiation heat flux (W/m2) value as the output 
value corresponding to these inputs.

An artificial neural network model and a calculator 
were created to explosion of LPG gas in tanks of different 
mass and volumes. The equations for BLEVE are given 
below chapter. It is given in the heading number. All equa-
tions in the BLEVE model are processed sequentially. Each 
equation was processed systematically, and its results were 
obtained in the artificial neural network.

BLEVE

Some models have been developed for calculating the 
results of BLEVE thermal radiation effects (heat flux). 
One of the most used modelling is the TNO (YellowBook 
Static) method. In this study, artificial neural networks were 
trained and evaluated according to the data in the TNO 
model [17; 19]. The equations for BLEVE are given below 
[20; 21]:

Fireball radius equation,  [m (in meters)]:

rfb = c9 × m0.325 (1)

Where m; represents the mass in kilograms. c9 is the 
constant coefficient, and its value is 3.24.

Fireball formation time equation, t [s (in seconds)]:

t = c10 × m0.26 (2)

Where m; represents the mass. c10 is the constant coef-
ficient, and its value is 0.852

The equation for the lift-off height of the fireball from 
the ground, Hbleve, [m (in meters)]:

Hbleve = 2 × rfb (3)

The equation for distance between fireball center and 
object, X [m (in meters)]:

X xbleve Hbleve= +( )2 2 (4)

Here is xbleve; It is the measurement distance between 
the area where the heat flux is felt and the fireball.

The image (shape) factor equation affecting the fire,  
Fshape [without units]:

Fshape
rfb
x

= 





2

(5)
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The fraction equation for heat generated from the fire-
ball, heat release rate, Fs [without units]:

Fs = c6 × (Psv)0.32 (6)

Here Psv; is the rupture pressure in bar and c6 is also 
constant. Its value is 0.00325.

The temperature difference equation, (ΔT) [K (in Kelvin)]

ΔT = Tf – Ta (7)

Here Tf (BLEVE temperature) is constant, and its value 
is 1500 K. Ta is determined as the air temperature.

The equation for net heat dissipation, ∆H [j / kg]:

ΔH = ΔHc – ΔHv – CpΔT (8)

Some values in the equation are fixed. The heat of com-
bustion (ΔHc) is 49752800 J / kg. The value of ΔHv is the 
ratio of heat of vaporization to molecular weight. Cp value is 
the ratio of specific heat to molecular weight.

Surface emission power equation, SEP [W / m2 (in Watt 
/ square meter)]:

SEP = ΔH × m × 
F
rfb t
s

4 2× × × (9)

Radiation true path length equation, x [m]:

x = X – rfb (10)

The vapor pressure equation of water formed in the air 
after fire, Pwx [Pa (in Pascal)]:

Pwx = 
Hua
100





  × (PvW) × (Ta) × (x)	 (11)

Here Hua; It is the air humidity rate in %.
Water vapor absorption coefficient equation, αx [with-

out unit]:

αx = (0,0428) × ln(Pwx) – (0,2893)	 (12)

Carbon dioxide partial pressure equation in air, PvCO2x 
[Pa]:

PvCO2x = (PvCO2) × (x) (13)

The PvCO2 value in this equation is 0.03% (0.0003) of 
atmospheric pressure (101325 Pa) and is constant. Hence, 
it is 30.3975 Pa.

The carbon dioxide absorption coefficient equation, αC 
[without units]:

αc = (0,0428) × (PvCO2x)
0,4004	 (14)

The equation for atmospheric permeability value, τa 
[without units], affects the radiation propagation:

τa = 2.02 × (Pwx)–0.09 (15)

Calculated heat flux / Thermal radiation value equation 
detected by the receptor, q˝ [W / m2]:

q˝ = SEP × Fshape × τa (16)

ARTIFICIAL NEURAL NETWORK MODEL

The artificial neural network created is a network model 
that learns with the Levenberg-Marquardt algorithm, creat-
ing input and output levels and uses consultancy learning.

LEVENBERG-MARQUARDT ALGORITHM

One of the minimum search algorithms is the Levenberg-
Marquardt (LM) algorithm. It approaches the error surface 
parabolically in each iteration (number of training repeti-
tions), and the minimum of the parabola becomes the most 
suitable solution for that iteration.

Many software applications use LM to solve common 
curve fitting issues. The LM, like many other fitting algo-
rithms, only finds a local minimum, which is not always the 
global minimum. LM interpolates the Gauss-Newton algo-
rithm (GNA) and the gradient descent procedure [22, 23]. 
Because LM is more resilient than GNA, it will usually find 
a solution even if it begins far from the absolute minimum. 
LM is slower than GNA for well-behaved functions and 
rational starting parameters. Using a trust zone method, 
the LM can also be considered as Gauss-Newton [24, 25].

Newton’s method would be as follows if there is a func-
tion E (x) to look for the minimum and this function is 
reduced according to the x parameter [26].

∆x = − [∇2 E (x)]-1 ∇E (x)	 (17)

The expression ∇2 E (x) is the Hessian matrix. ∇E (x) is 
the slope. Since the function E (x) is the sum of squares of 
network errors, this relation can be represented as:

E x( ) = ( )
=∑ e xii

N 2
1

(18)

Expanding the expression ∇E (x) results in the follow-
ing two equations:

∇E(x) = JT(x)e(x) (19)

∇E(x) = JT(x)JT(x) + s(x) (20)

Here J (x); It is the Jacobian matrix.

π
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This function is accepted as 0 in Gauss-Newton method 
and the equation is given below.

S x( ) = ( )∇ ( )
=∑ e x e xi ii

N 2
1

(22)

∆x = [JT(x)J(x)]-1JT(x)e(x) (23)

With the Levenberg-Marquardt update, the Gauss-
Newton approach becomes:

∆x = [JT(x)J(x) + µI]-1JT(x)e(x) (24)

The letter I represents the unit matrix in the equation. 
The Marquardt parameter is a number between 0 and 
1. A scalar number is a parameter. When E (x) rises, the
parameter is multiplied by a factor (β), and when it falls,
the parameter is divided by the β factor. The procedure
becomes a small-step gradient reduction if the parameter
is a large number and the Gauss-Newton method is a small
number [27].

To solve the first part in relation 24, it is necessary to 
use the Hessian matrix. In the Levenberg-Marquardt algo-
rithm, the approximate value of the Hessian matrix is used. 
The Hessian matrix’s approximate value is as follows:

H = [JT(x)J(x) + µI]-1 (25)

To calculate the Jacobian matrix in the Hessian matrix, 
all of the network’s training inputs must be trained, yielding 
the following error vector equation:

  νT = [ν1, ν2, … νN] = [e1,1, e2,1, … eSM +1, e1,2, … eSM,Q]	 (26)

All of the weights and bias values in the artificial neural 
network are combined to form the vector in the following 
equation:

	 xT = [x1, x2, … xN] = [w1
1,1, w

1
1,2, … , w1

S1,R, 
b1 … b1

S1, w1
1,1, … bM

SM] (27)

The output layer’s local gradients are calculated using 
equations 26, and the hidden layer’s local gradients are cal-
culated using equations 27. Two matrices are generated as 
long as the input, and hidden layers’ gradient are distinct.

Sq
–m = –Fmnm

q (28)

Sq
–m = –Fm(nm

q).(Wm+1)T. Sq
–m+1 (29)

The weights and bias values of Jacobian matrix elements 
are computed using equations 28 and 29:
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The Levenberg-Marquardt algorithm changes whatever 
connection weight in the network has the greatest impact 
on the outcome. As a result, it gets to the solution quickly. 
However, as a defect, a large amount of memory is required 
[28].

METHOD STAGES AND APPLICATION

The number of inputs, output, neuron and intermediate 
layer numbers were determined to obtain optimum results 
using the application’s trial and error technique. In this 
context, it was decided to use two hidden layers for each 
equation. In each model of the applications, one more than 
the total input and output values were determined as the 
number of neurons and the number of hidden layers was 
kept constant as 2.

In the created artificial neural network model, the 
hyperbolic tangent (sigmoid) is used in the input and inter-
mediate layers. The purelin function, a linear transfer func-
tion, is used for the output layer. Back propagation logic is 
used in this algorithm because it has an easy and under-
standable difference.

Artificial neural network training was created with dif-
ferent data sets from the performance and time perspective 
and the results were examined. For example, 100 training 
data were given as input and 100 uneducated data results 
were calculated within 200 different values. To measure the 
performance of the artificial neural network in calculat-
ing data outside the range of training data, some values are 
given outside of the training range.

The artificial neural network created initially for the 
applications was created to calculate one output value for one 
input value, and then an artificial neural network model was 
created, which was trained with the Levenberg-Marquardt 
algorithm, using consultancy learning by increasing the 
number of inputs. In all of the applications, 100 data were 
used for each of the inputs and outputs, and the training and 
calculation were calculated over these 100 data sets.
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STAGES OF APPLICATION

As previously mentioned, all equations in the BLEVE 
model were processed in order in application. Each equa-
tion was processed systematically in the artificial neural 
network, and the results were obtained. Every stage’s phase 
and operation are as follows:

- For equation (1), the LPG mass was determined as
the input value. The model was created and applied
as one input, one output, two hidden layers and three
neurons in each hidden layer. The test data in the data
set were computed using values that differed from
the training data set. In this application, the results
of the fireball radius were calculated using the mass
values.

- For equation (2), the LPG mass was determined as
the input value. The model was created and applied
as one input, one output, two hidden layers and three
neurons in each hidden layer. The test data in the data
set were computed using values that differed from the
training data set. In this application, the results of the
fireball formation time were calculated using mass
values.

- For equation (3), the output values of the fireball
radius calculated with the artificial neural network
in equation (1) were determined as the input value.
The model was created and applied as one input, one
output, two hidden layers and three neurons in each
hidden layer. The test data in the data set used were
calculated by giving different values than the training
data set. In this application, the results of the rising
distance of the fireball were calculated.

- For the equation (4), two input values will be created.
The first input value is the output values of the rising
distance of the ball of flame calculated with artificial
neural network in equation (3). The other input is
determined as the measurement distance. The model
was created and applied with two inputs, one output,
two hidden layers and four neurons in each hidden
layer. The test data in the data set used were calculated 
by giving different values than the training data set. In 
this application, the results of the distance from the
centre of the fireball to the measurement point were
calculated.

-	 For the equation numbered (5), two input values were 
created. The first input value is the output values of
the fireball radius calculated with the artificial neural
network in equation (1). The other input is the out-
put values of the distance from the fireball centre to
the measurement point calculated with the artificial
neural network in the equation (4). The model was
created and applied with two inputs, one output, two
hidden layers and four neurons in each hidden layer.
The test data in the data set used were calculated by
giving different values than the training data set. In

this application, the results of the image (shape) fac-
tor are calculated.

- For equation (6), the rupture pressure was deter-
mined as the input value. The model was created and
applied as one input, one output, two hidden layers
and three neurons in each hidden layer. The test data
in the data set used were calculated by giving different 
values than the training data set. In this application,
the results of the heat release rate were calculated
using mass values.

- For equation (7), the air temperature was determined
as the input value. The model was created and applied
as one input, one output, two hidden layers and three
neurons in each hidden layer. The test data in the
data set used were calculated by giving different val-
ues than the training data set. In this application, the
results of the temperature difference were calculated
using mass values.

- In the equation (8), the output values of the tempera-
ture difference calculated with the artificial neural
network in the equation (7) are determined as the
input value. The model was created and applied as one 
input, one output, two hidden layers and three neu-
rons in each hidden layer. The test data in the data set
used were calculated by giving different values than
the training data set. In this application, the results
of the net heat dissipation were calculated using mass
values.

- For the equation numbered (9), five input values ​​were 
created. The first input value is the output values ​​of
the net heat dissipation calculated with artificial neu-
ral network in equation (8). The 2nd input value is
the value ​​of the LPG mass. The 3rd input value is the
output values ​​of the heat emission ratio calculated
with the artificial neural network in the equation (6).
The 4th input value is the output values ​​of the fireball
radius calculated with the artificial neural network in
equation (1). The last input value is the output value
of the fireball formation time calculated with the arti-
ficial neural network in the equation (2). The model
was created and applied with five inputs, one output,
two hidden layers and seven neurons in each hidden
layer. The test data in the data set used were calculated 
by giving different values ​​than the training data set.
In this application, the results of the surface emission
power (SEP) are calculated.

- For the equation numbered (10), two input values
were created. The first input value is the output value
of the fireball centre to the measurement point calcu-
lated with the artificial neural network in the equa-
tion (4). The other input value is the output values ​​of
the fireball radius calculated with the artificial neural
network in equation (2). The model was created and
applied with two inputs, one output, two hidden lay-
ers and three neurons in each hidden layer. The test
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data in the data set used were calculated by giving dif-
ferent values than the training data set. In this appli-
cation, the results of the distance from the fireball 
surface to the measurement point are calculated.

- For the equation numbered (11), two input values
were created. The first input value is the air humid-
ity (Hua) ratio values ​​in percentage. The other input
value is the output values ​​of the distance from the
fireball surface to the measurement point calculated
by artificial neural network in the equation numbered 
(10). The model was created and applied with two
inputs, one output, two hidden layers and three neu-
rons in each hidden layer. The test data in the data set
used were calculated by giving different values ​​than
the training data set. In this application, the results of
the water vapor pressure are calculated.

- In equation (12), the input value is they are the out-
put values ​​of the water vapor pressure calculated
with the artificial neural network in equation (11).
The model was created and applied as one input, one
output, two hidden layers and three neurons in each
hidden layer. The test data in the data set used were
calculated by giving different values than the training
data set. In this application, the results of the water
vapor absorption coefficient were calculated using
mass values.

- For the equation numbered (13), the input value is
the output value of the distance from the fireball sur-
face to the measurement point calculated with the
artificial neural network in equation (10). The model
was created and applied as one input, one output, two
hidden layers and three neurons in each hidden layer.
The test data in the data set used were calculated by
giving different values ​​than the training data set. In
this application, the results of the partial carbon diox-
ide pressure in the air are calculated.

- For the equation numbered (14), the input value is
the output value of the carbon dioxide partial pres-
sure calculated with the artificial neural network in
equation (13). The model was created and applied as
one input, one output, two hidden layers and three
neurons in each hidden layer. The test data in the
data set used were calculated by giving different val-
ues ​​than the training data set. In this application, the
results of the carbon dioxide absorption coefficient
are calculated.

- For the equation numbered (15), the input value is
the output value of the water vapor pressure calcu-
lated with the artificial neural network in equation
(11). The model was created and applied as one input,
one output, two hidden layers and three neurons in
each hidden layer. The test data in the data set used
were calculated by giving different values ​​than the
training data set. In this application, the results of the
atmospheric permeability are calculated.

- For the equation numbered (16), three input values
were created. The first input value is the output values
of the surface emission power (SEP) calculated with
artificial neural network in equation (9). The 2nd
input value is the output values of the image (shape)
factor calculated with artificial neural network in
equation (5). The last input value is the output values
of atmospheric permeability calculated with artifi-
cial neural network in equation (15). The model was
created and applied with three inputs, one output,
two hidden layers and five neurons in each hidden
layer. The test data in the data set used were calcu-
lated by giving different values than the training data
set. In this application, the results of the heat flux are
calculated.

RESULTS AND DISCUSSION

Results

Graphical Results
Based on the implementation of the steps specified in 

the previous chapter. title, the graphs comparing the test 
inputs used for training with the ANN results, the ANN 
results and the actual results of the tested inputs are as 
follows:

The results of the trained and test data of the mass (ANN 
and actual results) values of LPG and the fireball radius for 
Equation (1) are shown in Figure 1:

The results of the trained and test data of the mass (ANN 
and actual results) values of LPG and the fireball formation 
time for Equation (2) are shown in Figure 2:

The results of the trained and test data of the fireball 
radius (ANN and actual results) values and the fireball ris-
ing distance for Equation (3) are shown in Figure 3:

The ANN and actual results of the data of the fireball 
radius values and the fireball rising distance for Equation 
(4) are shown in Figure 4:

The ANN and actual results data of the image (shape)
factor values for Equation (5) are shown in Figure 5:

The results of the trained and test data of image (shape) 
factor (ANN and actual results) values and heat release 
rate from flame surface for Equation (6) are shown in 
Figure 6:

The results of the trained and test data of air tempera-
ture (ANN and actual results) values and temperature dif-
ference for Equation (7) are shown in Figure 7:

The results of the trained and test data of air tempera-
ture difference (ANN and actual results) values and net heat 
dissipation for Equation (8) are shown in Figure 8:

The ANN and actual results data of surface emission 
power values for Equation (9) are shown in Figure 9:

The ANN and actual results data of distance from 
the fireball surface to the measurement point values for 
Equation (10) are shown in Figure 10:
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Figure 1. Comparison of ANN and actual results for fireball radius.

Figure 2. Comparison of ANN and actual results for fireball formation time.

Figure 3. Comparison of ANN and actual results for fireball rising distance.
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Figure 4. Comparison of ANN and actual results for distance from fireball center to measurement point.

Figure 5. Comparison of ANN and actual results for image (shape) factor.

Figure 6. Comparison of ANN and actual results for heat release rate from flame surface.
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The ANN and actual results data of water vapor pres-
sure in the air values for Equation (11) are shown in Figure 
11:

The results of the trained and test data of water vapor 
absorption coefficient (ANN and actual results) values and 
water vapor pressure for Equation (12) are shown in Figure 12:

Figure 7. Comparison of ANN and actual results for temperature difference.

Figure 8. Comparison of ANN and actual results for net heat dissipation.

Figure 9. Comparison of ANN and actual results for surface emission power.
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Figure 10. Comparison of ANN and actual results for distance from the fireball surface to the measurement point.

Figure 11. Comparison of ANN and actual results for water vapor pressure in the air.

Figure 12. Comparison of ANN and actual results for water vapor absorption coefficient.

The results of the trained and test data of partial pres-
sure of carbon dioxide in the air (ANN and actual results) 
values and distance from the fireball surface to the mea-
surement point for Equation (13) are shown in Figure 13:

The results of the trained and test data of carbon dioxide 
absorption coefficient (ANN and actual results) values and 

carbon dioxide partial pressure for Equation (14) are shown 
in Figure 14:

The results of the trained and test data of atmospheric 
permeability (ANN and actual results) values and water 
vapor pressure for Equation (15) are shown in Figure  
15:
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Figure 13. Comparison of ANN and actual results for the partial pressure of carbon dioxide in the air.

Figure 14. Comparison of ANN and actual results for carbon dioxide absorption coefficient.

Figure 15. Comparison of ANN and actual results for atmospheric permeability.
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The ANN and actual results data of heat flux values for 
Equation (16) are shown in Figure 16:

Based on these results, when the appropriate network 
model and learning algorithm are used, values that are 
very close to the expected output are obtained at the val-
ues that the network is not trained. It is understood that 
these values obtained can be used in making estimates 
close to fair results. Although some test value ranges were 
given outside the training range, it was observed that the 
deviation in the results was small and within an acceptable 
range.

STATISTICAL RESULTS

Based on the above results, the average RMSE (Root 
Mean Square Error), R2, Standard Error and Percent 

Average Relative Error values of the actual results of the 
tested inputs with ANN results are given in the Table 1.

The artificial neural network’s working output is based 
on the values in the tables, and it operates in such a way that 
the values are very similar to reality. In all BLEVE equa-
tion models, the 100 iteration sequence operation cycle 
was repeated with the maximum number of training itera-
tions, and training data were learned. In some step models, 
it has been observed that learning occurs in shorter itera-
tions without reaching 100 iterations, and values close to 
correct results are calculated. As mentioned before, some 
test data sets consist of values that are not included in the 
range of training data set. Although the ANN model is 
given values from the data range in which it is not trained, 
it is still found close to the correct result and in calculations 
where the deviations are low. In addition, even when ANN 

Table 1. Statistics of BLEVE equations results

Equation Number of TNO 
Model (BLEVE)

Average RMSE R2 Standard Error Percent Average Relative 
Error

1 0,039163982 0,999971492895458 0,0411235632242887 0,031552896
2 0,002967298 0,99998083143435 0,0034308086321631 0,020005816
3 0,049857745 0,999990130334786 0,0484581557814802 0,019327986
4 0,713700999 0,999983528850211 2,17971187713268 0,285665103
5 0,002740433 0,994289429937661 0,0050259314252044 15,10272771
6 0,000283308 0,999945452141368 0,0003097671049413 0,075136241
7 0,063944124 0,999990602163493 0,0140819367989871 0,006120764
8 18972,94767 0,999997670104328 7,75013081087416 0,030182387
9 477,0849746 0,999962948591004 327,236987951567 0,079021082
10 7,715861269 0,999944204413832 3,97345474637233 0,190054267
11 1470,495478 0,999996430009117 1103,8849423202 0,267410229
12 0,000184794 0,999836466254009 0,0005979460889715 0,152032927
13 15,99473124 0,99999940532668 12,4670475992749 0,098403715
14 0,000247295 0,999767304056404 0,0003770205207641 0,505381419
15 0,002265918 0,990362242820547 0,0055103075234544 0,518838194
16 221,6802217 0,999885031745213 165,667346684379 3,343618219

Figure 16. Comparison of ANN and actual results for heat flux.
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results are reprocessed as input, it has been observed that 
the results calculate values that are close to reality and with 
fewer deviations than expected.

DISCUSSION

The iteration number of the heat flux values measured 
in the last step was consistently set to 100 in a consistent 
manner, as was the case in every step, and the results were 
analysed. However, in order to see the relationship and pro-
portion of the results with the number of iterations, calcula-
tions were made with 250 and 500 iterations, respectively, 
in the last step. As a result of these additional calculations, 
it is seen that increasing the number of iterations increases 
the accuracy of the results up to a certain point, but it has 
been observed that it has no effect after the threshold value 
is exceeded. At this step, the threshold value was deter-
mined as 122. Giving the iteration number as 250 or 500 
does not affect the result, but the ANN training and calcu-
lation reaches a conclusion in the 122nd iteration. In this 
context, increasing the iteration does not always increase 
the increase in accuracy but proportionally up to a specific 
threshold value.

In the Figure 17, there is a comparison of the data 
calculated with the 122 iterated heat flux artificial neural 
network.

The comparative statistical results of two heat flux val-
ues calculated with 100 iterations and calculated with 122 
iterations are given in the Table 2:

As can be seen from the table, as the number of itera-
tions increases, the value of R2 gets closer to 1. The aver-
age RMSE value gets smaller, the standard error and the 

percentage average standard relative error values are also 
decreasing. It gets closer to the real results.

When other studies are examined, it is not made to 
interpret all equations of a modelling such as BLEVE by 
processing them sequentially.

Barisik 2021 has prepared the artificial neural network 
modelling infrastructure and decided on input and out-
put values​ for BLEVE calculations [29]. In this study, the 
measurement distance value was determined as input and 
thermal radiation calculations as output, and experiments 
were made in modelling. In other words, one input, one 
output, three hidden layers and three neurons in each layer 
were designed and the model was created. In the literature, 
Hemmatian et al. 2020 has his work in conjunction with a 
related analysis. The aim of this research is to use an artifi-
cial neural network to estimate BLEVE mechanical energy 
[30].

CONCLUSION

After applying all of the equations in the BLEVE TNO 
model one by one, the final value, the heat flux value, was 
found using the Levenberg-Marquardt algorithm. The out-
puts produced in almost every step (processing the equa-
tions in order) were used as input to the next step. At each 
stage, the values found by the artificial neural network are 
used as test data in the input of the next equation without 
correction. As a result, the results produced by all ANN 
models are continuously processed, and the next stage 
has begun. In this way, the deviation rate and interaction 
between the values within the network itself have been 
controlled.

Table 2. Comparative statistics of two heat flux results

Heat Flux Values Average RMSE R2 Standard Error Percent Average Relative Error
100 Iterations 221,6802217 0,999885031745213 165,667346684379 3,343618219
122 Iterations 98,83887135 0,99997311320879 80,2869685205154 1,504089919

Figure 17. Comparison of ANN and actual results for 122 iterated heat flux.
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The deviation rate in each step is transferred to the next 
step in the same way. The deviation rates in each step from 
the first step to the last step of the ANN were also observed, 
the standard deviation in the last step was calculated, and 
the total deviation in its algorithm and the deviations 
between the steps were calculated.

As stated in the above section, calculation and training 
data learning was carried out by repeating 100 iterations of 
the results of almost all equations with the sequence opera-
tion cycle, that is, with the maximum number of training 
iterations. It has been observed that in some step models, 
learning takes place in shorter iterations before reaching 
100 iterations, and values close to the correct results are cal-
culated. Afterwards, higher iterations were applied. ANN 
models found close to the correct result in calculations with 
low deviations. In addition, it has been observed that even 
when ANN results are reprocessed as input, the results cal-
culate values that are close to reality and have less devia-
tions than expected.

As a result of the simulation studies, it is understood 
that these values obtained with the Levenberg-Marquardt 
(LM) algorithm can be used to make estimations close to 
realistic results. It has been observed that the deviation in 
the results is small and in the acceptable range.

The performance of the network can be affected by 
factors such as the network model used; the training algo-
rithms prepared, the number of intermediate layers and 
neurons, and the number of samples [31, 32]. LM algorithm 
can be combined with some algorithms such as the genetic 
algorithm (GA) to achieve optimization suitability, higher 
success, calculate results in a shorter time, and high conver-
gence. Realistic results can be predicted in fewer iterations 
[33].

Interpretation can be made about the effect degrees of 
the estimated heat flux value in the application made with 
ANN. In this way, it can be possible to take measures against 
adverse effects. According to the ranges of the heat flux val-
ues calculated in the TNO model, the degree of impact on 
the environment and people is given in the Table 3:

When the heat flux values ​​in Table 3 are examined, for 
the BLEVE TNO YellowBook Static model, the values ​​of 

the artificial neural network modelled with the Levenberg-
Marquardt algorithm are more than 37.5 kW / m2. Therefore, 
it is a condition that can have very serious and fatal conse-
quences. However, factors such as increased measurement 
distance, gas outflow, decreased atmospheric permeability, 
and increased surface emission power cause the heat flux 
value to decrease. (Fig.16, Fig.17). Therefore, when the val-
ues ​​in Table 3 are examined, the heat flux value of the mod-
elling fell below 1.6 kW / m2 after a certain period of time. 
Therefore, it is a harmless situation.

This study is aimed to be developed further and to con-
tribute to other fields. Modelling of fire, explosion and gas 
dispersion events, which are major industrial accidents such 
as BLEVE, can be made. It will also contribute to reducing 
the negative environmental impacts of these accidents.

The desired goal will be reached in application areas, 
especially when the decision support mechanism is built, 
by applying these algorithms, which will provide faster and 
more accurate outcomes. Because the artificial neural net-
work model will have more training sets, the results will be 
displayed directly in any scenario.

NOMENCLATURE

q˝ Heat flux, W/m2

Pwx Vapor pressure of water formed in the air after fire, Pa
SEP Surface emission power, W/m2

Fshape Shape factor
ΔH Heat dissipation, j/kg
Fs Heat release rate
rfb Radius ball shape of fire in BLEVE event, m
Hbleve Height of the fireball from the ground, m
c9 The constant coefficient, 3.24
c10 The constant coefficient, 0.852
X Distance between fireball center and object, m
xbleve The measurement distance between the area where the 

heat flux, m
Tf BLEVE temperature, K
Ta Air temperature, K

Table 2. The different thermal harm categories [34]

Thermal density (Kw/m2) Thermal damage to the environment Thermal harm to humans Classification
37.5 Very serious damage to facilities 100% mortality in 1 minute and 50% 

mortality in 20 seconds
FATAL

25 Minimum energy to ignite wood 50% mortality in 1 minute HEAVY LOSS
12.5 Plastic materials melting 1% death in 1 minute and Grade 1 

burn in 10 seconds
MEDIUM DEGREE

4.0 Damage to PVC insulation materials Pain occurrences of 20 seconds or 
more

LIGHT

1.6 No damage to equipment, buildings, etc. Minimum pain threshold HARMLESS
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Hua Air humidity rate, %
Pwx Vapor pressure, Pa
PvCO2x Carbon dioxide partial pressure, Pa
J(x) Jacobian matrix
νT Error vector
w Weight
R2 Coefficient of determination (Correlation)
Greek symbols
αx Water vapor absorption coefficient
αc carbon dioxide absorption coefficient
τa Atmospheric permability
∇2 E Hessian matrix
∇E Slope
β Threshold weight
Subscripts
t Refers to time
m Refers to mass
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