
ABSTRACT

In small workshops, a more number of holes on aero engine parts are drilled successively 
in one process to confirm positional accuracy. Because of the fast time-varying drill wear, 
the surface roughness of the holes is unstable and difficult to be satisfied. To the present 
end, this paper presents a varying-parameter drilling (VPD) method to enhance machining 
efficiency and hole surface roughness for multi-hole parts manufactured from Al 7075 alloys. 
This method uses varying cutting parameters for every hole to adapt to the varying drill 
wear. The major problem of this method deceit in an optimization issue during which the 
optimal combination of  setting of cutting parameters have to be found, with the target of the 
interval  and also the constaint of the opening surface roughness, because sequence of cutting 
parameter encompasses a important aspect and therefore the surface roughness of all the 
holes must be guaranteed, the challenge of this optimization issue is that the strict constraint 
with a sophisticated non-linear boundary of the feasible zone. To cope with the convergence 
complexity of the searching algorithm, a metaheuristic method supported particle swarm 
optimization (PSO) algorithm with a self-adaptive penalty method (SAPM) is applied. The 
drilled hole surface roughness is predicted with a radial basis function (RBF) neural network. 
The various types of drill wear comprising flank wear, crater wear, chisel wear and outer corner 
wear are considered and the grey relational analysis (GRA) is deployed to pick the input drill 
wear parameters to the network. The PSO algorithms integrate with the SAPM is used to 
search the overall optimal solution of the optimization problem. It is found that the satisfied 
solutions can be searched in all the trials with the proposed metaheuristic algorithms, even 
though the proportion of feasible solutions is severely fluctuant during the searching process. 
The drilling experiment confirm that, when compared with the fixed-parameter drilling, the 
proposed VPD and the metaheuristic algorithm method for solving the optimization problem 
can effectively improve machining efficiency and surface quality for drilling Al 7075 alloy 
multi-hole parts.
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INTRODUCTION

Drilling is a fundamental metal cutting operation has 
long been widely used in manufacturing industry. Drill 
wear affects surface quality of the hole. In drilling pro-
cess, the worn outer corner of the drill rubs against the 
machined surface and directly affects the surface finish. On 
the other hand, the wear on the cutting lips and chisel edge 
will influence the mechanical and thermal load as well as 
the cutting stability. It also has strong impact on the surface 
quality of the hole, because tool vibration and the mechani-
cal or thermal overloading may cause cracks on the hole 
inner wall. The cracks and other surface defects on the 
hole wall caused by drill wear is unacceptable in aerospace 
industry, because it may lead to premature in service failure 
of the key component, and it may even cause a catastrophic 
accident. To avoid low surface quality caused by drill wear, 
usually in workshops the drill is frequently changed during 
the successive drilling process. It largely raises the manu-
facturing time and production cost, and even so the sur-
face quality of the holes is still hardly satisfied. Therefore, 
drilling parameter optimization is a crucial issue to be 
addressed. There has been lots of research on drilling 
parameter optimization. The most influential parameters 
or the main effect on the target variables related to hole 
quality, machining efficiency or production cost can be 
obtained based on statistical analysis for DOE. Kurt et al. 
used Taguchi method to select best process parameters for 
hole diameter accuracy and surface finish in the dry drill-
ing of Al 2024 alloy. The process parameters considered 
in the DOE are cutting speed, feedrate, drilling depth and 
drill types. The analysis of S/N ratio, ANOVA and regres-
sion analysis were applied for parameter selection. Grey 
based Taguchi method was proposed [Reddy Sreenivasulu 
and Chalamalasetti SrinivasaRao, 2016] to obtain best 
combinations of cutting speed, feedrate and drill type to 
get minimum hole surface roughness and circularity devia-
tion in drilling of Aluminium alloys. Also [R.Sreenivasulu, 
2015] investigated the effect of cutting speed, feedrate, 
drill diameter, point angle and clearance angle on sur-
face roughness, burr size and circularity deviation of the 
hole in drilling of Al 6061 through Taguchi method. The 
desirable parameters were selected with the analysis of 
S/N ratio and ANOVA. The grey relational analysis (GRA) 
is another effective technique to find out the relevance 
between the control factors and the response variables. 
D-form 3D technique to develop a model of the effect of
cutting speed, feedrate, drill diameter and point angle on
entry and exit face, thrust force and torque in drilling of

aluminium alloys [Sreenivasulu et al, 2018]. The optimal 
parameters are obtained based on this model, and the 
Taguchi method to compare with the D-form 3D model. 
Also they utilized design of experiments to optimize drill-
ing parameters for aluminium 2014 alloys and compare the 
results with artificial numeral network. ANN was used to 
attain the relationship between cutting parameters (spin-
dle speed and feedrate) and various output parameters 
comprising surface roughness, ovality, thrust force and 
machining time[Kannan et al, 2014]. Genetic Algorithm 
used to optimize feedrate and drilling torque for a multi-
objective problem where the hole eccentricity and material 
removal rate are chosen as two optimization objectives in 
drilling of carbon fiber reinforced plastic composite mate-
rial [Saravanan et al, 2014]. Most previous research mainly 
focuses on finding an optimal setting of process parameters 
for drilling a specific hole to improve machining efficiency, 
hole quality and production cost. To this point, many bril-
liant research works have been made with comprehensive 
factors from the aspect of the drill, the hole and the drill-
ing process. The target variables studied comprise hole 
quality (surface quality, accuracy of dimension and form, 
burr height and thickness), drilling thrust, drilling torque, 
vibration and flank wear. However, in the practical drilling 
operations in a workshop, one drill is often used for drilling 
a sequence of holes until the end of its service life. In this 
case, it is not advisable to use fixed parameters for drilling 
all the holes. The reason is that, the parameter settings used 
for drilling each hole not only determine the total manu-
facturing time, but also affect the drill wear. As drill wear is 
cumulative during drilling process and it affects hole sur-
face quality, the parameters used for each hole have a cor-
relation with the surface quality of the following holes to 
be machined. Therefore, different types of drill wear must 
be considered in the drilling parameter optimization. To 
address the problem of low surface quality and manufac-
turing efficiency in successive drilling operations for alu-
minium 7075 alloy, the successive drilling operations are 
considered as a whole process and the cutting parameter 
sequence is optimized in this paper, which is termed as 
the varying parameter drilling (VPD) strategy. The math-
ematical model of the optimization problem is established 
in which the optimization objective is processing time and 
the constraint is the tolerance of surface roughness. As hole 
surface roughness is influenced by the cutting parameters 
and the accumulated various types of drill wear in succes-
sive drilling process, in the solution updating procedure 
the change of the cutting parameters for one hole will cause 
overall changing of the surface roughness of its subsequent 
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and on this basis the fitness function for the searching algo-
rithm is developed.

Solution
In the VPD, the cutting parameters are varied for each 

hole to achieve a global optimum for the successive drill-
ing process. Accordingly, the solution of the optimization 
problem is described as a sequence of spindle speed and 
feedrate. It can be expressed by the matrix below

x
S S S
f f f

n

n
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
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Where x represents the solution of the optimization 
problem, ‘n’ is the number of holes to be machined, ’S’ is 
spindle speed and ’f ‘is feedrate. Each column of this matrix 
corresponds to the cutting parameters used for one hole. 
Compared to the traditional fixed-parameter drilling, the 
cutting parameters S and f in the VPD are adjustable for dif-
ferent holes. The cutting parameters used for each hole can 
be flexibly varied to better fit the fast variation of drill wear 
in drilling of aluminium 7075 alloy, to get shorter machin-
ing time and better hole quality of all the holes.

Optimization objective
To improve the manufacturing efficiency of multi num-

ber of holes, the optimization objective is to minimize the 
total processing time. In the successive drilling process, the 
processing time comprises three portions: machining time, 
idle motion time and tool changing time. The machining 
time is determined by the feedrate selected for each hole. 
The idle motion time consists of the time of tool approach-
ing, retracting and moving to the next holes. It is restricted 
by the maximum permissible feedrate of the machine tool. 
During the successive drilling process, when the drill gets 
severe worn, the drill has to be changed and it costs the time 
for tool presetting and adjustment. As drill wear is usually 
serious in drilling difficult-to-cut materials, tool changing 
time should be considered in the total processing time. The 
total time for tool change is determined by the frequency 
of tool failure that is related to the drill wear rate. To opti-
mize the total processing time, the idle motion time can 
be regarded as constant that can be shortened by setting 
a large fixed idle feedrate. Then, the objective function is  
given as

t
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f
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n

c idle= + ⋅ +
=
∑

1
(2)

Where‘t’ is the total processing time of the successive 
drilling process,’ n’ is the number of holes to be machined, 
‘D’ is the nominal depth of the hole,’ fi’ is the feedrate set 
for the th hole, ‘Tc’ is the tool changing time, ‘m’ is the total 
number of tool change, ‘Tidle’ is the idle motion time set as 
a constant.

holes. Thus, the candidate solutions are difficult to stay 
within the feasible zone during the searching process. It 
affects the convergence rate and may even lead to noncon-
ference. To handle this difficulty, a soft computing method 
using metaheuristic algorithm coupled with the self-adap-
tive penalty method (SAPM) is proposed. The novelty of 
this paper is that, the VPD is first introduced in the suc-
cessive drilling operation of aluminium alloys to adapt to 
the first time-varying drill wear during the process, and a 
soft computing method to address the difficulty in solu-
tion solving of the corresponding optimization problem is 
proposed.

Problem Description
The aluminium 7075 alloy casings in aero engines usu-

ally have a high requirement of hole surface quality, because 
poor surface quality may easily cause fatigue damage in the 
harsh service condition. In workshops, for better positional 
accuracy of all the holes, the hole making operations are 
generally performed by successive drilling in one process. 
This process is often faced with troubles of low machining 
efficiency and hardly guaranteed surface quality due to the 
drill wear. The drill wear is related to the cutting param-
eters, and has an influence on the machining efficiency and 
hole surface quality together with the cutting parameters. 
As the number of holes is quite large, the drilling operations 
occupy a long processing time in the production cycle. As is 
known, the efficiency of drilling operations is proportional 
to the setting of feedrate. When the drill wear is excessive, 
the drill should be changed. It costs extra set-up time and 
increases the production cost. In traditional drilling opera-
tion of the multi-hole parts, fixed cutting parameters are 
used for all the holes. As drill wear is accumulated in the 
successive drilling process, the surface roughness of the 
holes is unstable and hardly to control with fixed cutting 
parameters. Accordingly, the cutting parameters are bet-
ter to be adjusted for each hole as per the variation of the 
drill wear. In this paper, the varying-parameter drilling 
method (VPD) is presented, with a sequence of varied cut-
ting parameters used for the successive drilling process. 
The main issue of the VPD is to find the optimal sequence 
of cutting parameters that minimize the processing time 
and guarantee the hole surface quality. The mathematical 
model of the optimization problem is developed in the next 
section.

MATHEMATICAL MODEL OF DRILLING 
PARAMETER OPTIMIZATION

The drilling parameter optimization is to maximize 
machining efficiency and guarantee hole surface quality at 
the same time. The solution, the optimization objective and 
the constraints are mathematically expressed in this sec-
tion. A self-adaptive penalty method (SAPM) is proposed 
as the supporting algorithm of this optimization problem, 
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Constraints
As aforementioned, the surface quality of the holes is 

unstable due to the varied drill wear and need to be con-
trolled in the optimization. In workshops, the surface 
roughness is commonly adopted as the index of hole sur-
face quality. As for the hole of a particular part, there is a 
tolerance requirement of the surface roughness. Therefore, 
in this study the tolerance of the hole surface roughness is 
adopted as the constraint. The Ra value is the most widely 
used parameter of surface roughness, which is calculated as

R
L

Y l dla

L
= ∫

1
0

| ( ) |  (3)

Where ‘L’  is the sample length on the drilled hole wall,  
‘l’ is the ordinate along the sample length, ‘Y’ is the ordinate 
of the profile curve along the sample length, and Ra mea-
sures the arithmetic average deviation from the mean line 
of Y. Besides, the constraints of spindle speed and feedrate 
that are related to cutting performance and machine tool 
property should also be considered in the practical situa-
tion. Then, the constraints of the optimization problem can 
be given by
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Where Ra,max is the tolerance of the hole surface rough-
ness, Ra is the spindle speed with its minimum value Smin 
and maximum value Smax, f is the feedrate with its minimum 
value fmin and maximum value fmax. The range of the cut-
ting parameters [Smin, Smax] and [fmin, fmax] can be set as per 
the tool manufacturer’s recommendation. As hole surface 
roughness is affected by various factors including cutting 
parameters, cutting force and tool wear [Ji W etal 2017], the 
ANN is used in this study to develop the complex nonlin-
ear relations between hole surface roughness and all these 
influence factors, which is detailed in Section 4.

Fitness function
For the convenience of solving the above constrained 

optimization problem, it is usually converted to an uncon-
strained problem. The penalty function is the most widely 
used constraint handling technique for its effectiveness and 
simplicity [Woldesenbet YG et al 2009]. The main difficulty 
of the penalty method is to balance the optimization objec-
tive and the penalty to improve the convergence rate. When 
using the classic swarm intelligence algorithms like GA and 
PSO in the constrained optimization problem, some par-
ticles (candidate solutions) may be infeasible and the pro-
portion of the feasible solutions is varied as the searching 
progresses. For the drilling parameter optimization prob-
lem, the boundary of the feasible zone is complex because 

there are too many possible settings for each cutting param-
eter in one solution and the relation between the constraint 
of surface roughness and cutting parameters is complex. In 
this case, there are two requirements for the penalty func-
tion: (a) infeasible particles should move into the feasible 
zone rapidly, (b) feasible particles should stay in the feasible 
zone and approach the optimum solution. To this end, a 
self-adaptive penalty method (SAPM) is proposed. On this 
basis, a new fitness function for the searching algorithm is 
developed. The procedure is detailed as follow.

Distance value
To overall evaluate each particle’s degree of deviation 

from the optimum solution, a new parameter denoted as 
the distance value is introduced. The value of the objective 
function and the constraint violation are both included in 
the distance value. To this end, the objective value and con-
straint violation are normalized to balance their dimension. 
The objective value, i.e., the total processing time‘t’ is nor-
malized as follow

t x
t x t
t t

min

max min

( )
( )

=
−
−

(5)

Where ‘x’ represents a particle in the searching 
algorithm,‘t’ is the value of objective function, t- is the nor-
malized objective value, tmin and tmax represent the possible 
maximum and minimum processing time, respectively. 
After the normalization, t̄(x) is confined within the range 
between 0 and 1. The constraint violation of each candi-
date solution in this optimization is the sum of the devia-
tion of surface roughness Ra from the tolerance Ra,max for all 
the holes. Then, the constraint violation of each particle is 
normalized as

c x
c x
cmax

( )
( )

= 6)
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is the value of constraint violation,

cmax = maxxc(x)	

is the possible maximum value of constraint violation 
among all the distance value ‘d’ is formulated as
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Where
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(αf) = 
number of feasible particles 

swarm size

is the proportion of the feasible particles among all the 
candidate solutions. The distance value is the measure of 
the distance each particle away from the optimum solu-
tion. From Eq. (7), the distance value is increased when the 
value of the objective function and the constraint violation 
increase. If all the particles in the swarm are infeasible 
(αf = 0), the distance value is equal to the constraint 
violation.

Self-adaptive penalty
The distance value measures the deviation of each par-

ticle from the optimum solution. In order to add penalty to 
infeasible particles for a higher convergence rate, the SAPM 
is established, with the penalty function given as follow

p x X x Y xf f( ) ( ) ( ) ( )= − +1 	 (8)

Where,

X x
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From Eq.(8), two penalty values X(x) and Y(x) are added 
to make sure the penalty can be self-adaptive according to 
the proportion of feasible particles in the swarm: if there are 
a large proportion of feasible particles in the swarm, then 
the particles with high objective value are more penalized; 
and if there are few feasible particles, then those with high 
constraint violation are more penalized. The SAPM can 
help achieve two targets in the constrained optimization: 
(a) searching for more feasible solutions if there are few,
(b) finding the optimum solution quickly if enough feasible
particles are obtained.

Final fitness function
The final fitness function f(x) is obtained as the sum 

of the distance value d(x) and the penalty function p(x) as 
given below

f(x) = d(x) + p(x) (9)

With the SAPM, the constrained drilling parameter 
optimization is transformed into an unconstrained optimi-
zation problem, and the candidate solutions will be penal-
ized according to their deviation from the optimum solution 
as the searching process progresses. From Eq. (7)-(9), when 
there are no feasible particles in the swarm (αf = 0), the fit-
ness function becomes f(x) = v(x). It only depends on the 
value of constraint violation. When the number of the 

feasible particles is increasing, the proportion of the objec-
tive value t̄(x) in the fitness function is raised. The penalty 
on the particles is in-process adjusted for fast convergence 
rate. In summary, the mathematical model of the optimiza-
tion problem can be expressed by

find x
S S S
f f f

min f x d x p x

n

n n
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×

1 2

1 2 2


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The optimization problem for the VPD involves differ-
ent cutting parameters of all the holes. There are too many 
possible settings. As the surface roughness of all the holes 
must be constrained within the tolerance, the boundary of 
the feasible zone is complex. Hence, the particles are prone 
to repeatedly moving into and out of the feasible zone in 
the searching process. The SAPM is able to adjust the fitness 
value according to the distance of the particles from the 
optimal solution and the proportion of feasible particles in 
the swarm. It is important for finding better solutions in the 
searching process so that the optimization can smoothly 
progress.

OPTIMIZATION PROCEDURE

After the fitness function of drilling parameter optimi-
zation is developed in Section 3, the next issue is to find 
the optimum solution that minimizes the fitness function. 
The flow chart of the optimization procedure is illustrated 
in Figure 1. As mentioned in Section 3.4, the fitness value 
is calculated from the optimization objective (total process-
ing time) and the constraint (hole surface roughness). The 
processing time found from Eq. (2). While, the hole surface 
roughness has a complicated nonlinear relationship with 
various influence factors including cutting parameters, 
drill wear and drilling forces [Tsao CC, Hocheng H, 2008]. 
In this study, the relation between hole surface roughness 
and these factors is developed by the RBF neural network 
is an ANN approximator applies to build complex nonlin-
ear relationship between the input and output data and it 
has been widely used for prediction in machining processes 
[Zhou J et al 2017]. Since the hole surface roughness is 
calculated with a RBF neural network, it is difficult to for-
mulate the fitness function given in Eq. (9). On the other 
hand, the fitness function may be a non-convex function 
with multiple local optimums. In this case the classic gradi-
ent-based searching algorithm may be not effective. In this 
study, PSO is utilized to solve the optimization problem. 
PSO is a sort of meta-heuristic algorithms that has a strong 
global optimization capability proposed [Eberhart and 
Kennedy, 1995]. Due to its good performance and concise 
expression, it has been widely used in many fields referring 
to optimization, design, control and data mining [Han C 
et al, 2014]. This paper presents a data-driven optimization 

α α
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Figure 1. Overall optimization procedure.
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method on the basis of the measured data from drilling 
experiments. The RBF neural network used to predict the 
surface roughness can be trained with the dataset of drill 
wear, drilling forces and hole surface roughness at different 
cutting parameters. Then, the fitness value can be obtained 
by the proposed SAPM, and PSO can be conducted with its 
updating rule. The procedure of each step is detailed in the 
following subsections.

Grey relational analyses of different drill wear types and 
surface roughness

The geometry of a standard twist drill is illustrated in 
Figure 2. In drilling of difficult-to-cut materials, drill wear 
is usually serious with various types on different edges such 
as flank wear, crater wear, chisel wear and outer corner wear. 
Since there are two cutting lips for a standard twist drill, 
the mean value of the two drill wear parameters is used for 
analysis in this study. Before these drill wear parameters are 
used as input features of the RBF neural network, it is nec-
essary to investigate their relevance with the hole surface 
roughness, because the input features with weak relevance 
will cause low prediction accuracy and extra computation 
cost. To this end, the relevance of these different drill wear 
types to hole surface roughness are analyzed with GRA and 
the principal impact factors are selected as the input fea-
tures. A grey system is a complex and multivariate system 
that has a level of information between black and white, 
where black means having no information and white repre-
sents having all information. GRA is an analysis method in 
grey system theory that measures the uncertain correlations 
between one main factor (the reference sequence) and the 
other factors (the comparison sequences) in a given system 
[Deng J 1989]. In this study, the relationship between vari-
ous drill wear types and hole surface roughness are complex 
and uncertain, which can be considered as a grey system. In 
the drilling parameter optimization problem, the reference 
sequence is the hole surface roughness, which is the vari-
able to be investigated. The comparison sequences are the 
different types of drill wear, which is the influence factor. 
The reference sequence Xo and each comparison sequence 
Xi can be expressed as follows

X0 = [Ra(1)  Ra(2)  …  Ra(n)]T (11)

[X1  X2  X3  X4  X5] = 

VB(1)   KB(1)   Cψ(1)   Cψ(1)   W(1)

VB(2)   KB(2)   Cψ(2)   Cψ(2)   W(2)

… … … … …

VB(n)   KB(n)   Cψ(n)   Cψ(n)   W(n)

	 (12)

Where ‘n’ is the number of the elements in the data 
sequence, and in this case referring to the number of mea-
sured holes. Since the unit and scale in each sequence are 
different, the normalization is necessary to conducted in 
order to keep the scale of data unified. The normalization 
formula is as follow

X k
X k X k

X k X ki

i k i

k i k i

* ( )
( ) min ( )

max ( ) min ( )
=

−

−
(13)

Where Xi* denotes the normalized data, X0*(k) and 
Xi*(k) are the normalized element in the reference sequence 
(hole surface roughness) and the comparison sequences 
(drill wear parameters), respectively, i ∈{1,2,3,4,5} and 
k ∈{1,2,3,4,…n}. In GRA, the measure of the relevance 
between the reference sequence and the comparison 
sequence is evaluated as the grey relational grade. To cal-
culate the grey relational grade, the grey relation coefficient 
ξoi(k) is first introduced to measure the relevance between 
the corresponding elements in two sequences, and it can be 
given by

ξoi(k) = 
Δmin + ρΔmax 

Δoi(k) + ρΔmax

(14)

γoi = 
1

1n k

n

=
∑ ξoi(k)	  (15)

The grey relational grade γoi describes the degree of 
relevance between the reference sequence and a compari-
son sequence. From its definition, for each comparison 
sequence, the greater γoi is the larger relevance it has with 
the reference sequence. In this study, the drill wear param-
eters with higher grey relational grade calculated from the 
measured data are selected as the input features of the neu-
ral network.

Prediction of drill wear and drilling forces
Drill wear and drilling forces are the input features of 

the RBF neural network for the prediction of the hole sur-
face roughness. Drill wear is also involved in the calculation 
of tool changing time as mentioned in Section 3.2. Hence, 
drill wear and drilling forces should be calculated in the Figure 2. Geometry of a standard twist drill.
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optimization. Since tool wear is a gradually cumulative pro-
cess, the drill wear rate is introduced to calculate the drill 
wear parameters, which is defined as the incremental wear 
value of drilling per unit depth with the expression below

r
dwear

dli
i= (16)

Where ‘ri’ is the wear rate of each wear type, weari 
denotes a particular drill wear parameter, ‘l’ is drilling 
depth. The drill wear rate of different wear types can be esti-
mated based on the measured drill wear data.

As the wear rate’ ri‘ is time varying, the drill wear can be 
calculated by integral

wear r dli i

l
= ∫0

(17)

After the different drill wear parameters are obtained, 
the drilling forces can be predicted according to the model 
given below

F = δa,lip Ka,lip A + δchisel Kchisel lchisel

T = (δt,lip Kt,lip A + δcorner Kcorner lcorner	 (18)

Where is F the thrust force, T is the torque, A is the chip 
load, R is the drill radius, lchisel and lcorner are the length of 
the chisel edge and the outer corner, Ka,lip and Kt,lip are the 
axial and tangential drilling force coefficients of the cut-
ting lips, Kchisel and Kcorner are the drilling force coefficient 
of chisel edge and outer corners δa,lip, δt,lip, δchisel, δcorner are 
the four coefficients termed as the drill wear effect coef-
ficients to describe the effects of various drill wear types 
on the corresponding drilling force coefficients. The drill-
ing force coefficients and the drill wear effect coefficients 

can be calibrated in the drilling tests. When the drill wear 
is known, the drilling forces can be predicted as per this 
drilling force model. After then, the relations between drill 
wear, drilling forces and cutting parameters can be devel-
oped through experimental data.

Prediction of surface roughness with RBF neural network
The nonlinear relationship between hole surface rough-

ness and cutting parameters, drill wear and drilling forces 
are developed with RBF neural network. After the hole sur-
face roughness is predicted with the RBF neural network, 
the fitness value expressed in Eq. (9) can be calculated with 
the SAPM mentioned in previous section. To be noted that, 
the network training is time-costing but conducted before 
the searching process with PSO, and the well-trained RBF 
neural network is then used for fitness calculation in the 
searching process (shown in Figure 3).

Searching of optimal solution with PSO
In this study, PSO is used to search for a global optimum 

solution of the drilling parameter optimization problem. 
With the fitness calculation procedure above, the search-
ing procedure with PSO can be progressed according to the 
following steps.

Step 1: Particle initialization
The solution of the optimization problem is expressed 

as a matrix in Eq. (1). The initial particles can be randomly 
generated with the set value of the speed and feedrate 
within the feasible zone as per Eq. (4).

Step 2: Fitness calculation
The fitness value of each particle is obtained with the 

SAPM, in which the objective of processing time is calcu-
lated as per Eq. (2) and the constraint of surface roughness 
is predicted with the RBF neural network. In each itera-
tion of PSO, the optimum location of each particle and the 
global optimum location in the swarm are recorded. In this 
study, the maximum iteration number is set as the termi-
nation condition. When the updating is executed with cer-
tain times, the global optimal solution is output as the final 
result, if the output sequence of cutting parameters is not 
satisfied the constraint in Eq. (4). To be noted that, as PSO 
is a meta-heuristic algorithm, it should have at least one 
feasible solution to guarantee the particles converging to a 
feasible solution. In the initialization step, when all the par-
ticles are infeasible, it is necessary to reinitialize the swarm 
until there exist’s a feasible particle.

EXPERIMENTAL SETUP

In the present work, a radial drilling machine to per-
form different size of holes  as per Taguchi’s orthonal array 
for 3 level of factors on Aluminium 7075 alloy work pieces 
are chosen to conduct experimentation. The tools used for 
drilling operation are HSS-R (DIN 338) twist drills supplied 

Figure 3. Structure of RBF neural network to predict hole 
surface roughness.
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Table 1. Drilling parameters and levels [21]

LEVEL DRILLING PARAMETERS

Speed
s (rpm)

Feed
 Rate
f(mm/min)

Drill 
Dia.
(mm)

Point
Angle

Clearance
Angle

1 465 18 8 100o 40

2 695 20 10 110o 60

3 795 26 12 118o 80

Table 2. Measured data in drilling experiment

Drill Wear Ra  F  T

VB KB Cψ Vψ W µm N Nm
24 250 352 530 46 0.197 281.69 113.1
32 278 298 528 32 0.165 235.24 155.7
26 242 245 459 26 0.253 395.95 219.7
34 234 452 527 65 0.197 232.09 171.5
36 311 275 551 36 0.189 291.19 173.5
22 295 354 467 42 0.216 265.49 127.3
18 265 375 375 16 0.238 336.63 199.1
42 260 395 415 25 0.218 286.74 157.3
41 350 405 525 24 0.273 252.26 158.3
38 328 475 565 96 0.232 241.79 134.1
29 368 315 605 54 0.178 237.26 156.2
41 284 335 625 26 0.237 395.95 219.7
42 289 235 575 86 0.245 262.09 144.5
48 309 415 495 78 0.245 208.19 165.2
37 310 345 395 65 0.251 265.46 137.4
51 323 290 385 38 0.262 346.63 274.1
57 425 457 685 97 0.186 286.74 147.3
28 465 398 643 52 0.229 252.26 232.1
62 475 367 592 92 0.278 241.69 213.1
35 502 346 618 89 0.248 236.54 177.7
30 552 209 627 42 0.222 395.95 219.7
57 525 324 678 82 0.241 272.09 184.5
46 545 528 691 74 0.241 298.19 165.3
44 475 478 725 78 0.152 365.49 241.4
62 495 187 705 64 0.141 396.63 249.1
59 625 192 515 67 0.158 286.74 197.3
54 605 286 555 91 0.187 362.26 238.1

by Miranda, INDIA (Figure 4). A Kistler type 9272, Kistler 
Instrumente AG, CH8408, Winterthur, Switzerland, four 
components dynamometer was used to measure thrust 
force and torque and the signal was processed to the com-
puter by a type 5070 multichannel charge amplifier, data 
acquisition card and graphical images displaying math-
ematical processing of thrust force and torque signals 
recorded with Dynoware software 2825A. The selection of 
cutting parameters and their levels are depicted in table.1 as 
per Taguchi method.

RESULTS AND DISCUSSION

The drilling experiments were performed according to 
the procedure in detailed provided in previous Section. The 
measured data depicted in Table 2. After the experimental 
data are obtained, the optimization can be achieved as per 
the mathematical model and the optimization procedure 
given in previous. In this section, the results comprising the 
GRA of drill wear on surface roughness (shown in table.3), 
the prediction of drill wear and drilling forces, RBF neural 

Figure 4. schatic diagram for drilling machine setup for 
experimentation.

network of surface roughness and the cutting parameter 
optimization with PSO are illustrated and discussed.

Grey relational analyses (GRA) of different drill wear 
types and surface roughness

The GRA was performed based on the measured data 
given in Table 2 from 27 holes drilled with different drill 
wear state. Let each type of wear values be the comparabil-
ity sequence and the corresponding surface roughness be 
the reference sequence.

From the result, crater wear KB has the highest grey rela-
tional grade among all the drill wear types. It means crater 
wear has the largest relevance with the surface roughness. It 
is because the hole surface roughness is largely determined 
by the chip evacuation state and the chip morphology and 
evacuation process are affected by the rake face [20] which 
is identified from Figure 7. In drilling process, the rake 
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face of the drill directly reacts with the generated chip flow. 
The continuous chips flow along the rake face and cause 
large stress and strain on the chip-tool interface (secondary 
deformation zone). Then, the chip flow is evacuated along 
the drill flute with high-speed relative motion with the hole 
wall due to the fast-rotating spindle, which causes large 
precision and friction on the hole wall that has significant 
effect on the surface finish. The next important factors are 
flank wear VB and outer corner wear W. The flank face and 
the outer corner of the drill are directly contacted with the 
work material in drilling process, and thus their wear state 
also play an important role on surface roughness. While, 
the chisel wear Cψ and Vψ has the lowest relevance with the 
surface roughness.

Table 3. GRA Calculated data from table.2 for Surface 
Roughness

Grey relational coefficients Grey 
relational 
grades

VB KB Cψ Vψ W
0.5501 0.6242 0.5608 1.0000 0.6246 0.6568
0.7405 0.4353 0.7762 0.6539 0.4489 0.6135
0.3794 0.5291 0.3730 0.3707 0.6696 0.4949
0.5457 0.4469 0.7970 0.5795 0.8181 0.6195
0.5879 0.3333 0.5307 0.5712 0.8020 0.5372
0.4773 0.6113 0.6209 0.8500 0.8805 0.6722
0.4138 0.6309 0.4222 0.4834 0.8724 0.5418
0.4707 0.5513 0.5540 0.6454 0.5955 0.5385
0.3416 0.7468 0.6805 0.6403 0.3337 0.5264
0.4294 0.6704 0.7363 0.7930 0.6439 0.6227
0.6492 0.7065 0.7634 0.6512 0.4735 0.6337
0.4163 0.7971 0.3333 0.4545 0.6912 0.5175
0.3902 0.4609 0.6352 0.7193 0.9272 0.6026
0.3970 0.6940 1.0000 0.6070 0.8399 0.6475
0.3837 0.5339 0.6090 0.7680 0.9213 0.5962
0.3614 0.5783 0.4040 0.3333 0.9009 0.5050
0.6143 0.5870 0.5640 0.7017 0.5934 0.5869
0.4376 0.6820 0.6905 0.4034 0.3383 0.4882
0.3333 0.4520 0.7091 0.4459 0.6343 0.4846
0.4017 0.7374 0.7680 0.5547 0.4147 0.5589
0.4581 0.5645 0.4898 0.4302 0.6733 0.5010
0.4065 0.3818 0.5949 0.5299 1.0000 0.5674
0.3539 1.0000 0.5105 0.6065 0.7998 0.6661
0.8616 0.8427 0.4060 0.3855 0.8567 0.7119
1.0000 0.8136 0.5367 0.6728 0.8229 0.8077
0.8011 0.5042 0.5444 0.4887 0.5950 0.6147
0.5982 0.8081 0.3786 0.3917 0.3333 0.5307

Figure 5. Response surface of wear coefficients (KB, VB).

Figure 6. Response Surface of wear Coefficients (Vψ, Cψ).

Figure 7. Drill bits images after successive drilling process.

From MATLAB response surface plots drawn (shown in 
figures 5 & 6) and analyzes the response of drill coefficients 
with respect to change of input factors. The grey relational 
grade for each drill wear type were obtained and shown in 
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Figure 8. Finally, compare the drills after successive drilling 
operation with VTD and without VTD (fixed parameter) 
and found that the proposed SAPM technique shows good 
agreement with other methods.

The fitness function values in all the three trials of PSO 
are diminishing step by step. The value of fitness is small 

due to the normalization process already mensioned in 
the grey relational analysis. From the result obtained the 
various fitness magnitudes at the closing of final iteration 
which shows optimized value out of three iterative values. 
To further investigate the effectiveness of the optimization 
method, the proportion of the feasible particles in each 
iteration step was output (see Fig. 9). During the searching 
process, the proportion of the feasible solutions is gradually 
increased and in the three trials all the particles are updated 
to the feasible zone after a certain number of iteration steps.

It can be seen that, the proportion of feasible par-
ticles among all the particles is continually changing in 
the searching process. Thus, it is necessary to adjust the 
penalty as the variation of the proportion of feasible parti-
cles, which makes the infeasible particles moving into the 

Table 4. Average grey relational grade calculations from 
table 3 for surface roughness

Drilling 
parameters

Average grey relational grade by factor level

Level 1 Level 2 Level 3
VB 0.5779 0.5778 0.5955
KB 0.5648 0.6245 0.5618
Cψ 0.5878 0.6081 0.5553
Vψ 0.6090 0.5504 0.5918
W 0.5916 0.5997 0.5599

Figure 8. Effect of Grey relational grade of different drill 
wear types on surface roughness.

Figure 9. Inflence of fitness value in PSO with iteration.

Figure 10. Proportion of feasible particles in PSO with 
iteration.

Figure 11. Variation of processing time with iteration.



Sigma J Eng Nat Sci, Vol. 40, No. 4, pp. 855–867, December, 2022866

feasible zone and the feasible particles moving fast to the 
optimal solution. From the result, although the propor-
tion ofthe feasible particles are fluctuant in the searching 
process of all the three trials, all the particles are moving 
into the feasiblezone in the end. It proves the effectiveness 
of the proposed SAPM. It can be seen that the process-
ing time is continually decreasing with the iteration num-
ber. In the initial seven iteration steps of the first trial, the 
time cost is much longer than the other two trials. This is 
because the drill has to be changed once during the drill-
ing process as per the best particle in the swarm then, a 
solution with no tool change has been found and the pro-
cessing time is largely reduced. From Fig. 10, the propor-
tion of feasible particles in this phase of the first trial is 
greater than the other trial. It is because the feasible solu-
tions are easy to find with a tool change. From Fig. 11 and 
Fig. 12, although the best solution obtained is not the same 
at the end of the iteration, the time cost is largely reduced 
after the optimization and the surface roughness of all the 
holes is controlled with in the set tolerance. It also shows 
that the VPD with the proposed optimization method is 
able to control the drill wear and reduce the tool chang-
ing gtime. The reason is that the set tool changing time is 
the additional penalty in the objective function and the 
solution with less times of tool change has smaller fitness 
value.

CONCLUSIONS

This paper presents a varying-parameter drilling (VPD) 
method for aluminium 7075 alloy and its supporting algo-
rithm for the involved optimization problem using particle 
swarm optimization (PSO) algorithm with self-adaptive 
penalty method (SAPM) is also proposed. This method 
aims at finding the optimal cutting parameter sequence 
of the successive drilling process to raise the machining 

efficiency and guarantee the surface quality of large num-
ber of holes. The major contributions and novelty are sum-
marized as follows:

• Compared to the commonly used fixed-parameter
drilling, the proposed VPD involves the cumulative
drill wear in the optimization of the successive drill-
ing process, and optimizes the successive drilling pro-
cess as a whole.

• The optimization problem of VPD has a complex
nonlinear constraint, the infeasible solutions in
searching of PSO are unavoidable and their propor-
tion is severely fluctuant as the searching progresses.
To handle the complex boundary of the feasible zone
and speed up the convergence, the SAPM as the sup-
porting algorithm of the specific problem is proposed
and validated.

• This study considers various drill wear types, and
their correlations with hole surface roughness are
investigated with GRA. This is more adapted to the
practical situation in drilling of Al 7075 alloy mate-
rials aims at addressing the uppermost problems of
low efficiency and uncontrolled surface quality of the
holes in drilling.
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