
ABSTRACT

In this study, the effect of large deflection on the natural frequency of pre-stressed laminated 
composite plates with different lamination orientations is investigated. An external distributed 
vertical load is applied at the free edge of the plate when the other edge is clamped, and 
then the loading edge of the deflected plate is f ixed without removing the load to model a 
pre-stressed curved plate case. The non - linear deflection curve of the large deflected 
laminated plate is obtained from the large deflection equation. The large deflection is 
lim ited to the  deflection length corresponding to 25% of the plate length. The thin curved 
plate is modeled by employing the classical plate theory with a finite element analysis 
approach. Four different lamination orientations are used which are [0° 0° 0° 0°], [90° 0° 0° 
90°], [0° 45° –45° 0°] and [0° 90° 0° 90°], which are used for the examination of large 
deflection. Besides, the natural frequency parameter of the present model, which is 
performed in MATLAB, is compared with ANSYS to verify the reliability and validity of 
the present model. The load parameter that forms the curved plate causes the different mode 
shapes for each lamination configuration.
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INTRODUCTION

With the development of technology, the need for more 
lightweight, higher resistance, and more economical mate-
rials is increasing day by day. Therefore, composite materi-
als are widely used in engineering structures due to their 
lightness, flexibility, corrosion resistance, and rigidity [1]. 
Some of the engineering structures in the assembly stage 
are produced in a flat or curved form. However, some of 

them are curved during assembly due to their usage places 
and used in the pre-stressed state. The rigidity, which varies 
depending on the geometry and material of the structure, 
also affects the dynamic behavior of the plates. For this rea-
son, knowing the dynamic characteristics of the structures 
is vital in terms of predicting the behavior of the structures 
under dynamic loads.
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Several studies have been presented about static and 
dynamic analyzes of curved plates with different geom-
etries and materials in the literature. Wang et al. analyzed 
composite fiber curve laminates and then gets a damping 
ratio of each laminated plate based on a modal experiment 
using the classical plate theory [2]. Tornabene et al. exam-
ined the free vibration nature of laminated composite thick 
and moderately thick elliptic cones, cylinders, and plates 
[3]. Ye et al. developed a high-performance semi-analytical 
numerical model to analyze the bending responses of the 
angle-ply composite laminated cylindrical shells with the 
fiber-reinforced layers using the scaled boundary finite 
element method [4]. Vidal et al. studied the modeling of 
laminated composite and sandwich shells through a vari-
able separation approach based on Reissner’s Variational 
Mixed Theorem [5]. Sahoo et al. analyzed the geometrically 
nonlinear deflection responses of glass/epoxy composite 
flat/curved shell panel structure theoretically with the help 
of three different displacement field kinematics and Green–
Lagrange strain–displacement relation [6]. Civalek studied 
free vibration analysis of laminated composite panels and 
curved plates with functionally graded materials using 
Love’s shell theory and first-order shear deformation theory 
[7]. Aurojyoti et al. presented a polygonal finite element for 
nonlinear analysis of laminated plates using Reddy’s third-
order shear deformation theory [8]. Kormanikova pre-
sented a numerical approach of mode-frequency analysis of 
a simply-supported laminated doubly curved shell. For the 
laminated shell, the first-order shear deformation theory is 
stated that accurately predicting shell behavior [9]. Dynamic 
analogues of von Karman-Donnell type shell equations for 
doubly curved, thin isotropic shells in rectangular platform 
are formulated and expressed in displacement components 
by Nath and Sandeep [10]. Anamagh and Bediz focused on 
the dynamics of doubly-curved functionally graded and 
laminated composite structures with arbitrary geometries 
and boundary conditions using an energy-based approach 
where the strain energy of the structure is expressed using 
three-dimensional elasticity equations [11]. There are other 
several studies which employed first-order shear deforma-
tion theory (FSDT) and higher-order shear deformation 
theory (HSDT) to examine various structures for many 
purposes [12, 13].

Structural elements encounter different loading cases 
under their service conditions [14]. The curved plates with/
without pre-stress are used in the production of engineer-
ing structures, depending on the desired conditions. In this 
context, the effect of large deflection on the natural frequen-
cies and mode shapes of the pre-stressed curved laminated 
composite plates is the main goal of this study. Although 
there are various studies in the literature about laminated 
composite plates, there have not been any published papers 
on this particular topic and the pre-stressed curved lami-
nated composite plates have not been studied before. The 
transformation of the structure into a pre-stressed curved 

form by bending with an external force, and transforming 
it into a structure with different curvatures gives original-
ity to the work. In order to validate the presented approach 
which is modeled in MATLAB, the flat and curved plate 
models are also created with a finite element software pro-
gram, ANSYS, and natural frequency values are compared.

MATHEMATICAL MODEL

The main difference between thick and thin plates is that 
with thin plates, the transverse shear strains are negligible 
whilst for thick plates they are not [15]. Shear effects are 
considered in plate theories such as first-order shear defor-
mation theory (FSDT) and higher-order shear deformation 
theory (HSDT). However, the use of these theories is not 
required in thin plates where shear effects are not observed. 
Especially in thin and ultra-thin plates, very good and 
consistent results can be obtained with the classical plate 
theory (CPT) theory. The four-node quadrilateral element 
is selected to create flat and curved laminated composite 
plate models using classical plate theory for free vibration 
analysis. The plate must be rotatable about any of its axes to 
create a curvilinear model. Therefore, the selected finite ele-
ment model must also contain six generalized coordinates 
in each node. Figure-1 shows the laminated composite plate 
model.

The strain energy equation for the thin plate element is 
given in equation (1) [15].

U
V

= ∫
1
2

σT ε dV (1)

where σ is a stress matrix, and ε is a strain matrix of the 
plate. Stress-strain relation can be expressed in the form of 
equation (2) for a thin plate.

σ = Dε (2)

The strain energy is formed in equation (3).

Figure 1. Degrees of freedom for the quadrilateral 
rectangular plate.
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{w} = [A1]{q1} (9)

Substituting equation (9) into equation (7) gives the 
quadratic shape function and it is given in equation (10) 
representing the flexural vibration of the plate.
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(ξj, ηj) are the coordinates of node j. The strain displace-
ment matrix B1 is obtained by equation (11).
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The strain energy equation derived from equation (3) 
for flexural vibration is given in equation (12).

U1 = 
1
2 1

1

{ }T

k

NL

A =
∑∫ [Dk](z3

k – z3
k-1) {ε1} dA (12)

where ε1 is strain relation for flexural vibration and given in 
equation (13):

ε1 = B1q1 (13)

Substituting equation (13) into equation (12):

U q B D B d d qT T
B1 1 1 11

1

1

1

1
1
2

= 



−− ∫∫ [ ] [ ][ ]  (14)

Element stiffness matrix [K1] can be calculated and it is 
given in equation (15).

[ ] [ ] [ ][ ]K B D B d dT
B1 1 11

1

1

1
=

−− ∫∫  (15)

The expanded kinetic energy equation is given in equa-
tion (16).

T q h N N B d d qT T
B1 1 1 11

1

1

1

1
1
2

= 



−− ∫∫ [ ] [ ][ ]  (16)

Element mass matrix [M1] is calculated from equation 
(16) and is given in equation (17).
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{ε}T [D]{ε}dz dA (3)

Where NL is the number of laminae, zk, zk-1 are the 
top and bottom coordinates of the kth lamina, and D is the 
material matrix. The stress-strain relation for the laminated 
composite plate contains three displacements (u0, v0, w0) 
and can be expressed in matrix form:
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That is:

{ε} = {ε2} – z{ε1} (5)

The kinetic energy equation for the thin plate element is 
given in equation (6) [15].

T
A

= ∫
1
2

ρh(u̇2 + v̇ 2 + ẇ2)dA (6)

Two different shape function is necessary to satisfy the 
stress-strain and displacement relations. The first shape 
function satisfies the flexural vibration, while the second 
one satisfies the in-plane vibration of the plate.

Flexural Vibration of the Plate
The flexural vibration theory is based on the bending 

vibration of the plate. The finite element model to be used 
for the bending vibration type must have a total twelve 
degrees of freedom corresponding to three generalized 
coordinates, which are w, dw/dy, and dw/dx at each node. 
The displacement function is given in equation (7).

w = a1 + a2x + a3y + a4x
2 + a5xy + a6y

2 + a7x
3 

+ a8x
2y + a9xy2 + a10y

3 + a11x
3y + a12xy3 (7)

The flexural displacement, w, is written in terms of nat-
ural coordinates (ξ, η) instead of cartesian coordinates (x, 
y). Hence, dw/dy and dw/dx become:

∂
∂

=
∂
∂

∂
∂

=
∂
∂

w
y b

w

w
x a
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2

2
(8)

The matrix form of displacement function in terms of ξ 
and η coordinates is:
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M h N N B d dT
1 1 1 11

1

1

1
=

−− ∫∫ [ ] [ ][ ]  (17)

In-Plane Plate Theory

The in-plane vibration theory contains total of eight dis-
placements which are uj and vj (j=1 to 4). The strain energy 
equation derived from equation (3) for in-plane vibration is 
given in equation (18).

U D z z dAT

A

k

k

NL

k k2 2
1

1 2
1
2

= −∫ ∑
=

−{ } [ ]( ){ }  (18)

where ε2 is strain relation for in-plane vibration and given 
in equation (19):

ε2 = B2q2 (19)

Substituting equation (19) into equation (18):

U q B D B J d d qT T
L2 2 2 21

1

1

1

2
1
2

= 



−− ∫∫ [ ] [ ][ ]det  (20)

The matrix B2 is written in the form [16]:

B2 = A2G (21)

where A2 is given by:
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where J is the Jacobian matrix.
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From the interpolation equations, we have:

Gq

u

u

v

v

2 =

∂
∂
∂
∂
∂
∂
∂
∂





































(24)

The element displacement components u and v are 
given in equation (25).

u = N21q21 + N22q23 + N23q25 + N24q27

v = N21q22 + N22q24 + N23q26 + N24q28 (25)

where q2i (i=1 to 8) represents the element displacement 
vector. The shape function for satisfying the stress-strain 
relation is given in equation (26), where ξj, ηj are the coor-
dinates of node j in the rectangular plate model.

N i i i2
1
4

1 1= + +( )( ) (26)

The in-plane element stiffness matrix [K2] is obtained 
with using matrix B from equation (21), and in-plane mate-
rial matrix DL.

[ ] detK h B D B J d dT
L1 2 21

1

1

1
=

−− ∫∫  (27)

The element mass matrix [M2] can also be found from 
the kinetic energy.

T q h N N J d d qT T
1 2 2 21

1

1

1

2
1
2

= 



−− ∫∫ [ det  (28)

The element mass matrix is given in equation (29).

[ ] detM h N N J d dT
2 2 21

1

1

1
=

−− ∫∫  (29)

[K]21 and [K]12, obtained from the substitution of equa-
tion (5) and equation (3), give the couple effect between 
flexural and in-plane strain relation. These matrices can be 
calculated through equation (30).

[ ] [ ] [ ][ ]det
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K B D B J d d
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−

∫∫
11

1

1

∫∫−
d d  (30)

where DC is:

D D z zc
k

k k= − −[ ]( )2
1

2 (31)

Material Matrix of an Anisotropic Material
The material matrix is given in equation (32) for an 

anisotropic material, which has different material proper-
ties in each direction [15]:
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(33)

Ex is the modulus of elasticity in the x-direction, Ey is the 
modulus of elasticity in the y-direction, νxy and νyx are the 
Poisson ratios. The laminated composite has fibers, which 
can be located at different angles in each lamina. The mate-
rial matrix is calculated with considering the fiber angles, 
and the transformation matrix, which includes the angles, 
is given in equation (34).

[ *]

cos sin . sin

sin cos . sin
sin sin cos

R = −
−
















2 2

2 2

0 5 2

0 5 2
2 2 2 

 (34)

The material matrix for each lamina is calculated 
through the equation (35).

[Dk] = [R*]T [D*][R*] (35)

Finite Element Model
As mentioned before, there might be a couple effect 

between flexural and in-plane strain relation. However, 
in non-axisymmetric materials, the value of couple effect 
matrices are equal to zero [15]. In this study, both of the axi-
symmetric ([0 45 –45 0]), and the non-axisymmetric ([0 0 
0 0], [90 0 0 90] and [0 90 0 90]) orientations are examined. 
The element stiffness and the mass matrices are obtained 
with flexural and in-plane matrices are combined. The rela-
tion is given in equation (36).

 [In plane, K2 & M2]8×8 + [Flexural, K1 & M1]12×12 = 

8 8
12 12

21

12 20 20

×
×











×

K
K

(36)

This model has six degrees of freedom at each node, but 
the stiffness and mass matrices have (20×20) size. Although 
these matrices contain the effect of θz, the last value has to 
be added formally into matrices for the drilling effect. This 
relation is given in equation (37).
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0 12 12 0
0 0 4 4

20 20

244 24×

 (37)

The value of θz has taken absolute value that 1/1000 of 
the minimum value in (20×20) stiffness and mass matrices 
[17]. The generalized displacement vector of node j for local 
reference coordinates is now expressed as:

qj = [uj vj wj θxj
 θyj

 θzj
] (38)

Curvilinear Model
The curvature of the deflection curve of a plate under 

loading at any point depends on the magnitude of the bend-
ing moment at that point under the assumption that the 
material of the plate remains linearly elastic. In many such 
applications, the deformation can be analyzed by using a 
thin plate (or beam) theories [18]. The curvature form of 
the plate is shown in Figure-2a and Figure-2b.

Q represents the uniformly distributed load. Ang et al. 
[19] and Ozturk [20] obtained the deflection equation, and
it is given in equation (39).

z x
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Eef represents an effective modulus of elasticity, which is 
given in equation (40).

E
b Def

B

= −

12
1 13 1( , )

(40)

P represents force, I represents the moment of inertia 
for the beam, and l represents the projected length of the 
beam after the force has been applied. P is obtained from 
equation (41).

P = Q b (41)

b represents the width of the plate. The projected beam 
length l is still an unknown. To obtain the curved length, 
the projected length l can be calculated from the knowledge 
of the plate length a using the following formula [20].

a
dz
dx

dx
l

= + 



∫ 1

2

0

(42)

A deflection curvature is needed to create a curvilin-
ear model for the pre-stressed laminated composite plate. 
Therefore, rotation angles have to be found to create a 
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β
β

β

β

β

β

β

β

θ
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curvilinear pattern. These rotation angles are obtained by 
taking the first derivative of equation (39) respect to x. 
Afterward, these values are placed into a transformation 
matrix, which is given in Table-1.

It should be noted that the curvilinear plate is modeled 
by the assembly of a rotated finite element with respect to 
the y-axis by using the transformation matrix. Rotation of 
the coordinate system is given in Figure-3.

The stiffness and mass matrices can be obtained through 
the transformation matrix is given in equation (43).

Kr = TT × Ke × T 
Mr = TT × Me × T (43)

where Ke and Me represent stiffness and mass matrices of 
the reference plate, then rotated matrices Kr and Mr can be 
obtained with the multiplication of transformation and ref-
erence matrices. By assembling the rotated element matri-
ces, global K and M matrices are obtained.

Initial Stress
The curved plate has initial stress because of the vertical 

load. After the creation of the curved form, the stress effect 
must be added to the model. The work done by the in-plane 

Figure 2. The curvilinear form of the thin plate. (a) perspective view, (b) side view and the exact length (l) of the plate, (c) 
two side fixed curved model model.

Table 1. Transformation matrix

X Y Z θx θy θz

cos(θ) 0 sin(θ) 0 0 0 X

0 1 0 0 0 0 Y

-sin(θ) 0 cos(θ) 0 0 0 Z

0 0 0 cos(θ) 0 sin(θ) θx

0 0 0 0 1 0 θy

0 0 0 -sin(θ) 0 cos(θ) θz
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loads when they move through the bending displacements 
is given in equation (44) [21].

V N
dw
dx

dxdyx
A

= 



∫

1
2

2

(44)

where Nx is an initial axial force acting in the local x direc-
tion, and it is given in Figure-4.

As seen in Figure-4, axial force Nx is obtained as:

N
F

x
y=

sin
(45)

where Fy is a total distributed vertical load. These forces can 
be obtained from statics. If equation (44) is written in the 
matrix form:

V qSq=
1
2

(46)

Figure 3. Rotation of the coordinate system. (a) the rotation 
of the axes of translation, (b) the rotation of the axes of 
rotation.

Figure 5. Mesh density graph.

Figure 4. Total distributed axial forces in plate element.

θ



Sigma J Eng Nat Sci, Vol. 40, No. 4, pp. 772–786, December, 2022 779

Figure 6. Flowchart of the ANSYS analyzes.

Table 2. Comparison results between the present model and the ANSYS model

λ1 λ2 λ3 λ4 λ5

β = 0

C1

Present 6.99 7.59 9.98 15.33 19.42

Ansys 7.04 7.63 10.01 15.45 19.82

Error 0.71% 0.52% 0.30% 0.78% 2.02%

C2

Present 4.18 5.13 9.96 11.62 12.96

Ansys 4.22 5.15 10.00 11.87 13.18

Error 0.95% 0.39% 0.40% 2.11% 1.67%

C3

Present 6.77 7.44 10.08 15.87 18.81

Ansys 6.80 7.44 10.03 15.83 19.13

Error 0.44% 0.00% 0.50% 0.25% 1.67%

C4

Present 5.56 6.30 9.98 15.45 16.48

Ansys 5.43 6.18 9.81 15.28 16.30

Error 2.39% 1.94% 1.73% 1.11% 1.10%

β = Max

C1

Present 17.79 22.06 30.37 34.69 35.62

Ansys 17.92 21.87 29.39 35.95 36.61

Error 0.73% 0.87% 3.33% 3.50% 2.70%

C2

Present 10.68 16.46 21.07 22.83 25.79

Ansys 10.77 16.06 21.93 23.50 24.95

Error 0.84% 2.49% 3.92% 2.85% 3.37%

C3

Present 17.20 22.22 30.39 33.23 34.18

Ansys 17.26 21.89 29.31 34.26 35.02

Error 0.35% 1.51% 3.68% 3.01% 2.40%

C4
Present 14.16 18.91 27.57 27.65 28.78

Ansys 13.81 18.67 27.13 27.92 29.03

Error 2.53% 1.29% 1.62% 0.97% 0.86%
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Stiffness matrix Ke, mass matrix Me, and initial stress 
matrix Se of each plate element are used to form global 
stiffness, mass, and initial stress matrices. The dynamic 
response of a plate for the total system can be formulated 
via equation of motion (47).

[M]{q̈} +[[K] + [S]]{q} = 0 (47)

Natural frequencies can be obtained via eigenvalue 
equation as,

([K]+[S]) – ω2[M] = 0 (48)

RESULTS

In this study, large deflected pre-stressed laminated 
composite thin plates that are fixed on both sides are exam-
ined, as shown in Figure-2c. The use of the four-node quad-
rilateral plate element approach is convenient since the 
radius of the curvature of the pre-stressed curved plate is 
large. The local coordinates of the plate element are trans-
formed into global coordinates using its angle of rotation. 

In the scope of the study, four different configurations are 
examined. For simplicity, the configurations are denoted by 
C1 ([0 0 0 0]), C2 ([90 0 0 90]), C3 ([0 45 -45 0]) and C4 ([0 
90 0 90]). C2 is called cross-ply laminate, C3 is called angle-
ply laminate. In addition, the plate is discretized into 16x16 
finite elements. While determining the number of finite 
elements, the mesh density graph is used for considering 
the first natural frequency parameters, which is shown in 
Figure-5.

The material properties are: Ex=45 GPa, Ey=12 GPa, νxy= 
0.3, ρ = 2080 kg/m3 [22]. The dimension parameters are: 
a = 0.8 m, b = 0.8 m and h = 5 mm. The glass-fiber epoxy 
consists of four laminae, therefore each lamina has a 1.25 
mm thickness. The effects of vertical non-dimensional load 
parameter (β) on the natural frequency parameter (λ) and 
mode shapes for the first five modes are investigated. The 
non-dimensional load parameter β is considered between 
the no-load condition and the load parameter value that 
corresponding to deflection in the free end up to %25 of the 
plate length value of each composite. λ and β are given in 
equation (49), where ω is natural frequency, A is the cross-
section area of the plate.

Figure 7. Effect of load parameter on the first five natural 
frequency parameters for C1.

Figure 8. Effect of load parameter on the first five natural 
frequency parameters for C2.

Figure 9. Effect of load parameter on the first five natural 
frequency parameters for C3.

Figure 10. Effect of load parameter on the first five natural 
frequency parameters for C4.
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After the plate is deflected by the vertical distributed 
load, the large deflected plate is fixed at the loading point. 
Thus, the pre-stressed curved plate is obtained, and free 

vibration analysis is performed for all calculated geometric 
forms. The results of the present study are compared with 
ANSYS to verify the reliability and validity of the present 
model. A flow chart of the ANSYS software process is given 
in Figure 6.

Table-2 gives the comparative results between the pres-
ent model and ANSYS for the first five natural frequencies 
for both flat and curved plates.

Table-2 shows that the natural frequency parameter 
results of the present model and the error rates with respect 

Figure 11. First mode shapes of each configuration under different load parameter value. (a1, a2) C1, (b1, b2) C2, (c1, c2) 
C3, (d1, d2) C4.

Figure 12. Second mode shapes of each configuration under different load parameter value. (a1, a2) C1, (b1, b2) C2, (c1, 
c2) C3, (d1, d2) C4.

λ ω
ρ

β



Sigma J Eng Nat Sci, Vol. 40, No. 4, pp. 772–786, December, 2022782

to ANSYS results are quite consistent for each laminated 
composite configuration. For each composite material, 
the effect of the load parameter on the natural frequency 
parameter is examined for the first five natural frequencies. 
Figure-7 to 10 show the effect of the load parameter on the 
natural frequency parameter for C1, C2, C3, and C4 com-
posites, respectively. The first two natural frequency param-
eters behave similarly in all four composites. In the third, 
fourth, and fifth natural frequency parameters, the natural 
frequency parameter curves behave differently for all four 
composites.

The curve between the natural frequency parameter 
and the load parameter differs for each natural frequency 
on each configuration of the laminated composite. With 
the increase of the load parameter, the curvature of each 

natural frequency parameter shows similarity but pro-
gresses by showing different behaviors. Different curves 
or changes in curvature for each configuration of lami-
nated composites reveal different mode shapes. The first 
two natural frequency parameter curves are the same for 
all stacking orders. However, the effect of stacking order 
on dynamic characteristics becomes more apparent with 
the third parametric natural frequency. This situation can 
be observed much more easily especially with the increase 
of curvature. The first, second, and third mode shapes of 
each configuration, which are affected by the load param-
eter value between zero to the max, are shown in Figure-11 
to 13, respectively.

Different mode shape is not observed in any configura-
tion for the first two natural frequency parameter values. 

Figure 13. Third mode shapes of each configuration under different load parameter value. (a1, a2) C1, (b1, b2, b3, b4) C2, 
(c1, c2) C3, (d1, d2, d3) C4.
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However, two extra mode shapes occur in the C2 configu-
ration, and one extra mode shape occurs in the C5 con-
figuration for the third natural frequency parameter value. 
C1 and C3 have the same mode shapes throughout all load 
values. The fourth mode shapes of each configuration are 
shown in Figure-14.

While three different mode shapes occur for each 
configuration, two extra mode shapes occur in the C2 

configuration due to the curve form difference, as also can 
be seen in Figure-8. This situation may mean that C2 is a 
more unstable structure according to other examined com-
posites. The fifth mode shapes of each configuration are 
shown in Figure-15.

Four different mode shapes occur in C1 and C3, three 
different mode shapes occur in C2, and two different mode 
shapes occur in C4. When the load parameter is equal to 

Figure 14. Fourth mode shapes of each configuration under different load parameter value. (a1, a2, a3) C1, (b1, b2, b3, b4, 
b5) C2, (c1, c2, c3) C3, (d1, d2, d3) C4.
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zero, the same mode shapes are seen for all configurations 
in the first three natural frequencies. However, with the 
load parameter increase, different numbers of mode shapes 
can be observed in all configurations. This proves that plate 
curvature has different effects on natural frequencies due to 
the change of the load parameter.

Within the scope of the study, a total of thirteen differ-
ent mode shapes are seen in C1, and C3 configurations for a 
maximum loading condition corresponding to a deflection 
of %25 of the plate length, while a total of 16 different mode 
shapes are seen for C2, and 12 different mode shapes are 
seen for C4. When the load parameter value is equal to zero, 
the same mode shape occurs in all configurations. With the 

increase of the load parameter, more mode shapes may be 
observed especially after the first two mode shapes.

CONCLUSION

In this study, the effect of the large deflection on the 
natural frequency of the pre-stressed laminated compos-
ite curved thin plate is investigated. In order to see the 
effect of the large deflected model on the natural frequency 
parameter, four different configurations of the laminated 
composite plate are examined. According to the numeri-
cal and graphical results, the following conclusions are  
drawn:

Figure 15. Fifth mode shapes of each configuration under different load parameter value. (a1, a2, a3, a4) C1, (b1, b2, b3) 
C2, (c1, c2, c3, c4) C3, (d1, d2).
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• The theoretical approach of the laminated composite
curved plate is performed in different configurations,
and the approach gives substantially accurate results
with ANSYS.

• It is seen that the large deflection equation, which has
been used for beams before, can also be used in com-
posite thin plates.

• When the load parameter value is equal to zero,
the same mode shape occurs in the first three natu-
ral frequencies for all examined stacking order
configurations.

• As the load parameter value increases, the natural fre-
quency parameter also increases. However, this hap-
pens in different forms of curvature for each natural
frequency due to the effective modulus of elasticity.

• The main reason for the change in the parametric
natural frequency and mode shapes is that the effec-
tive modulus of elasticity and stiffness differ due to
the stacking order of the composite plates.

• Each change of slope in curvature in β - λ graphs
causes a different mode shape.

• In different laminated composite configurations, dif-
ferent mode shapes may occur in different order and
numbers, especially in higher frequencies.

• The fiber orientation is the decisive factor in the fact
that plates show differences at different points as the
load parameter value increases.

• As the plate curvature increases, different mode
shapes can be seen for different stacking order config-
urations, regardless of the plate geometry. This clearly
shows the variability of the effect of plate curvature
on vibration and natural frequency due to the load
parameter.
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