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ABSTRACT

Encryption is the process of scrambling a message and can provide a means of securing 
information. Information security is becoming more important in data storage and 
transmission. It is known that most encryption method in the literature. In this paper we 
propose two new encryption schemes by using cyclic codes. Our method is based on the One 
Time Pad system. We use the properties of cyclic codes to provide its security.
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INTRODUCTION

A cryptosystem is an implementation of cyrptographic 
techniques and their accompanying infrastructure to pro-
vide information security services. A cryptosystem is also 
referred to as a cipher system. The various components of a 
basic cryptosystem are as follows.

Plaintext: It is the data to be protected during 
transmission.

Encryption Algorithm: It is a mathematical process 
that produces a ciphertext for any given plaintext and 
encryption key. It is a cryptographic algorithm that takes 
plaintext and an encryption key as input and produces a 
ciphertext.

Ciphertext: It is the scrambled version of the plaintext 
produced by the encryption algorithm using a specific the 
encryption key. The ciphertext is not guarded. It flows on 

public channel. It can be intercepted or compromised by 
anyone who access to the communication channel.

Decryption Algorithm: It is a mathematical process, 
that produces a unique plaintext for any given ciphertext 
and decryption key. It is a cryptographic algorithm that 
takes a ciphertext and a decryption key as input and outputs 
a plaintext. The decrypiton algorithm essentially reverses 
the encrption algortihm and is thus closely related to it.

Encryption Key: It is a value that is known to the sender. 
The sender inputs the encryption key into the encryption 
algorithm along with the plaintext in order to compute the 
ciphertext.

Decryption Key: It is a value that is known to the 
receiver. The decryption key is related to the encryption key 
but it is not always identical to it. The receiver inputs the 
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decryption key into the decryption algorithm along with 
the ciphertext in order to compute the plaintext.

For a given cryptosystem, a collection of all possible 
decryption keys is called a key space. An attacker is an unau-
thorized entity who attempts to determine the plaintext. He 
can see the ciphertext and may know the decryption algo-
rithm. However, he must never know the decryption key.

In 1978, McEliece [21] proposed the first code-based 
cryptosystem. This system is a general encryption setting 
for coding theory. McEliece cryptosystem is based on fam-
ily of Goppa codes (Reed-Solomon codes, Reed-Muller 
codes) [19, 5]. MDPC cryptosystem [17] of the NTRU 
cryptosystem [12] was proposed recently. This system is 
interested the problem by using a hidden code structure 
which is significantly weaker than that of previously used 
algebraic codes like Goppa codes. Then a new cryptosystem 
[9] was proposed.

Alekhnovich introduced an efficient approach based on
the random codes [3]. In this system the secret key is a ran-
dom error vector.

Ajtai-Dwork cryptosystem [2] is based on solving hard 
lattice problems. This system is also inspired by Regev [24].

The systems based on the Learning Parity with Noise 
(LPN) has been proposed by exploiting the analogy with 
LWE [8, 15]. The LPN problem is the problem of decoding 
random linear codes of fixed dimension and unspecified 
length over a binary symmetric channel.

Cyclic codes form an important class of linear codes by 
means of error correcting. They have a very interesting alge-
braic structure. Furthermore, many important codes, such 
as binary Hamming codes, Golay codes and BCH codes 
are equivalent to cyclic codes. Binary cyclic codes were 
first introduced by Prange [22] in 1957, and have been the 
topic of hundreds of papers since. However, constacyclic 
code plays an important role in the error-correcting codes. 
Boucher et al. [11] explained the cyclic code over a noncom-
mutative ring is called the skew polynomial ring  x ;q[ ], 
where  is a finite field and θ is an automorphism over 
. Skew cyclic codes were studied by Boucher et al. [11] and 
Boucher-Ulmer [6]. Abualrub et al. [1] also studied skew 
cyclic codes over ring also studied skew cyclic codes over 
ring  2 2+ v , where v2 = v. Skew cyclic codes over  p pv+
were introduced by Gao [10]. Yao et al. [25] presented skew 
cyclic codes over ring R u v uvq q q q= + + +    , where u2 
= u, v2 = v, uv = vu, and q = pm. Islam et al. [14] exam-
ined skew constacyclic codes over finite non-chain ring 
R u vp

m
p
m

p
m= + +   , where p is an odd prime and u2 = u, v2 

= v, uv = vu = 0. Dertli et al. [7] studied codes over the ring 
R u v u v v uv vu= + + = = = =  2 2 2

2 20 0, , , .
In [4], it is presented a new efficient encryption from 

random Quasi-cyclic codes.
In this paper, we propose a secure cryptosystem based 

on the cyclic codes. It is inspired by the One Time Pad cryp-
tosystem. We examine the security of new system, consider 
the possible attacks.

The rest of the paper is organized as follows. Section II 
gives necessary background on coding theory and cryp-
tography. Section III describes the cryptosystem, compares 
to the other systems. Section IV analyzes its security and 
explains the possible attacks. Section V collects concluding 
remarks.

Our Contributions
We propose two new encryption schemes by using 

cyclic codes. We are inspired by the One Time Pad crypto-
system. The One Time Pad is an encryption technique that 
cannot be cracked. So we provide an efficient approach for 
the cryptosystems. Our analysis allows us to work on cyclic 
codes. Any cyclic shift of a codeword consists of the key and 
this key has been used only once. However, the ciphertext 
can be obtained several times. This is an advantage for a 
cryptosystem. Because it is got many meaningful message 
and obtained them by different keys. This means it is very 
difficult to guess the key. Thus, when compared to the other 
cryptosystem [4, 21], our technique ensures the higher 
security.

PRELIMINARIES

Cyclic Codes
Among the first codes used practically were the cyclic 

codes which were generated using shift registers. It was 
noticed by Prange that the class of cyclic codes has a 
rich algebraic structure, the first indication that algebra 
would be a valuable tool in the code design. Moreover, 
many important codes, such as binary Hamming codes, 
Golay codes and BCH codes are equivalent to cyclic 
codes.

Definition 1 [13] Denote a prime number by p, a finite 
field by p. A linear code C of length n over p is a subspace 
of p

n.
Definition 2 [13] A code C is cyclic if
i. C is a linear code and
ii.	any cyclic shift of a codeword is also a codeword,

whenever (a0a1…an−1) is in C, then so is (an−1a0a1…
an−2).

Example 
i) The binary code {000,101,011,110} is cyclic.
ii)	The binary linear code {0000,1001,0110,1111} is not

cyclic but it is equivalent to a cyclic code; interchang-
ing the third and fourth coordinates gives the cyclic
code {0000, 1001, 0110, 1111}.

Basics It is convenient to think of cyclic codes as consist-
ing of polynomials as well as codewords. With every word  
a a a a a ai n n q

n= ∈− −( , ,..., ,..., , )0 1 2 1    we associate the polyno-
mial of degree less than n a x a a x a x a x xi

i
n

n
q( ) ... ... [ ].= + + + + + ∈−

−
0 1 1

1  
a x a a x a x a x xi

i
n

n
q( ) ... ... [ ].= + + + + + ∈−

−
0 1 1

1 
If c is a codeword of the code C, then we call c(x) the 

associated code polynomial.
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Under some circumstances it is convenient to consider 
xn−1 to be the generator polynomial of the cyclic code 0 
of length n. Then by Theorem 1, there is one-to-one cor-
respondence between cyclic codes of length n and monic 
divisors of xn−1 in  x[ ].

If we are in possession of a generator polynomial 
g x g xj

j

r
j( ) =

=
∑

0
 for the cyclic code C, then we can easily 

construct a generator matrix for C. Consider

G

g g g g
g g g g

g g

r r

r r=

−

−

0 1 1

0 1 1

0

0 0 0
0 0 0

0 0 0

... ...
... ...

...
� � � � � � � � �

11 1...

.

g gr r−



















The matrix G has n columns and k = n−r rows; so the 
first row, row g0, finishes with a string of 0ʹs of length k−1. 
Each successive row is the cyclic shift of the previous row: 
g gi i= ′ −1, for i =1,…,k−1 As g x h x xn( ) ( ) ,= −1  we have 
g h g h n

0 0 0 0 0 1 0= = − ≠( ) ( ) .
In particular g0 ≠ 0 (and h0 ≠ 0). Therefore G is in eche-

lon form. In particular the k = dim(C) rows of G are linearly 
independent. Clearly the rows of G belong to C, so G is a 
generator matrix for C.

B. Linear Codes Over  2 2+ v
Consider a commutative ring R as  2 2 0 1 1+ = +v v v{ , , , },

where v2 = v. R is also the quotient ring 2
2[ ] /( ).v v v+  R is 

a semilocal ring and has two maximal ideals given by <v> 
and <1+v>. A linear code C of length n over R is a R− sub-
module of Rn. Every element in R can be written as c = a + 
bv, where a b, .∈2  The Lee weights of 0 1 1, , ,v v R+ ∈  are as 
follows.

W W W v W vL L L L( ) , ( ) , ( ) , ( ) .0 0 1 1 2 1 1= = = + =
It is clear that ψ is a bijection.
Definition 4 Let q  be a finite field with q elements, 

where q = pm, p is a prime. Let R denote the commutative 
ring  2 2+ v ,  where v2 = v.

i) The Gray map ψ is defined as follows.
y y: , ( ) ( , ),R a bv b a b→ + = +2

2  where a b, .∈2

In this case, y y y y( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) [ ].0 00 1 01 11 1 10 23= = = + =v v  
y y y y( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) [ ].0 00 1 01 11 1 10 23= = = + =v v

ii)	The projection map f f: , ( ) .R a bv a→ + =2 is defined as follows.
f f: , ( ) .R a bv a→ + =2

Theorem 3 The Gray map ψ is f f: , ( ) .R a bv a→ + =2− a linear isometry 
(or distance preserving) map from R (Lee distance) or f f: , ( ) .R a bv a→ + =2 
(Hamming distance) [14].

So ψ is a weight-preserving map from (Rn, Lee wight) to 
(2

2n Hamming weight), W x W xL H( ) ( ( )).= y
Definition 5 The cartesian product of vectors 

m m m mn
n= … ∈( )1 2 2  and t t t tn

n= … ∈( )1 2 2  is m t m m m t t t m m m t t tn n n n
n⊗ = … ⊗ … = … … ∈( ) ( ) ( ) .1 2 1 2 1 2 1 2 2
2 

m t m m m t t t m m m t t tn n n n
n⊗ = … ⊗ … = … … ∈( ) ( ) ( ) .1 2 1 2 1 2 1 2 2
2

Definition 6 Let A and B be two codes. In this case
A B a b a A b B⊗ = ∈ ∈{( , ) | , } and A B a b a A b B⊕ = + ∈ ∈{ | , }.

With this convention, the shifted codeword cʹ has asso-
ciated code polynomial ′ = + + + + + +−

+
−

−c x c c x c x c x c xn i
i

n
n( ) ... ... .1 0 1

2 1
2

1  
′ = + + + + + +−

+
−

−c x c c x c x c x c xn i
i

n
n( ) ... ... .1 0 1

2 1
2

1  Thus cʹ(x) is almost equal to the product poly-
nomial xc(x). More precisely, ′ = − −−c x xc x c xn

n( ) ( ) ( ).1 1
Therefore cʹ(x) has also degree less than n is equal to 

the remainder when xc(x) is divided by xn−1. In particular 
′ = −c x xc x mod xn( ) ( ) ( ).1

That is cʹ(x) and xc(x) are equal in the ring of polynomi-
als [ ] ( ),x mod xn −1  where the arithmetic is done modulo 
the polynomial xn−1.

If c(x) is the code polynomial associated with some 
codeword c of C, then we will allow ourselves to abuse nota-
tion by writing c x C( ) .∈

If f(x) is any polynomial of [ ] ( ),x mod xn −1 whose remainder, 
upon division by xn−1, belongs to C, then we may write 
f x C mod xn( ) ( ).∈ −1

The cyclic code C has the pleasing polynomial form 
c x C mod xn( ) ( )∈ −1  if and only if xc x C mod xn( ) ( ).∈ −1  
Since additional shifts do not take us out of the cyclic code 
C, we have x c x C mod xi n( ) ( )∈ −1  and indeed a x c x C mod xi

i

d
i n

=
∑ ∈ −

0

1( ) ( ). 
a x c x C mod xi

i

d
i n

=
∑ ∈ −

0

1( ) ( ).

That is for every polynomial a x a x c x xi
i

d
i( ) ( ) [ ],= ∈

=
∑

0

   

the product a(x)c(x) still belongs to C.
Definition 3 [17] Let C be a linear code over p. The code 

C is cyclic if ( , , , )a a a Cn n− −… ∈1 0 2  while ( , , ) .a a Cn0 1… ∈−

The following statement is used to convert the structure 
of cyclic codes into an algebraic one.

Φ : [ ] /( ), p
n

p
nx x→ − 1

( ) ,a a a a a a x a xn n
n

0 1 1 0 1 1
1… → + +…+− −

−  where the set 
of polynomials in x with coefficients in p is denoted by 
p x[ ].

It is known that p
nx x[ ] /( )−1  is a ring for n≠1.

Theorem 1 Let Ф be the linear map defined as above. 
The code C of length n over p is a cyclic code if and only if 
Ф(C) is an ideal of p

nx x[ ] /( )−1  [17].
There is one-to-one correspondence between the cyclic 

codes in p
n and ideals of the ring p

nx x[ ] /( )−1 .
Let C g x=< >( )  be a cyclic code of length n over p 

where g x g g x L g xr
r( ) ( ) ... ...= + + + + +0 1  and g(x) divides 

xn−1. In this case, the code C can be expressed as follows.
C a x g x a x x x deg a x n ri i p

n
i= ∈ − < −{ ( ) ( ) : ( ) ( )[ ] /( ), ( ( )) },  1  

where i = pn−r

Theorem 2 Let C ≠ {0} be a cyclic code of length n over 
p.

i) Let g(x) be a monic code polynomial of minimal
degree in C. Then g(x) is uniquely determined in C
and C q x g x q x x= ∈{ ( ) ( ) | ( ) [ ]},  where r = deg(g(x)).
In particular C has dimension n−r.

ii)	The polynomial g(x) divides xn−1 in  x[ ] [13].
The polynomial g(x) is called the generator polynomial 

for the code C. The polynomial h x x( ) [ ]∈    determined by 
g x h x xn( ) ( ) = −1 is the check polynomial of C.
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Let C be a linear code of length n over R. Define the 
binary linear codes C1 and C2 as follows.

C x x vy Cn
1 2= ∈ + ∈{ ( ) | ,  for ∃ ∈y n2 } and C x y x vy Cn

2 2= + ∈ + ∈{ | }. 
C x y x vy Cn

2 2= + ∈ + ∈{ | }.
Theorem 4 Let C be a linear code of length n over R. 

Then y ( )C C C= ⊗1 2 and | | | || | .C C C= 1 2  Moreover, ψ(C) is 
linear [26].

Secret Key Cryptosystem
A cryptosystem is called secret key cryptosystem if some 

secret piece of information (the key) has to be agreed first 
between any two parties that want to communicate through 
the cryptosystem. There are some basic types of secret key 
cryptosystems:

• substitution based cryptosystems
• they substitute the characters of plaintext for another

characters;
• monoalphabetic cryptosystems:
• they use a fixed substitution, one character is always

replaced with the same group of symbols;
• polyalphabetic cryptosystems:
• the substitution keeps changing during the

encryption;
• transposition based cryptosystems:
• they only transpose the characters of plaintext, for

example permission/impression.
The cryptosystems can be also divided into block cryp-

tosystems (cryptosystems that are used to encrypt simulta-
neously blocks of plaintext) and into stream cryptosystems 
(cryptosystems that encrypt plaintext letter by letter).

Stream cryptosystems are more appropriate in some 
applications (telecommunication), usually are simpler to 
implement, faster and have no error propagation. In the 
stream cryptosystems each block of plaintext is encrypted 
using a different key.

In the block cryptosystems, the same key is used to 
encrypt arbitrarily long plaintext block by block.

One Time Pad Cryptosystem: The One Time Pad is a 
cryptosystem for encoding data using a key of same length 
as the data. If m is the plaintext, s is key and c is cryptotext, 
then the encryption algorithm es is c e m m ss= = +( )  and 
the decryption algorithm ds is m d c c ss= = +( )  [16].

THE NEW ENCRYPTION SCHEMES

In this section, we present two new encryption schemes 
by using One Time Pad cryptosystem.

First Encryption Scheme
An encryption scheme consists of the following four 

parameters.
• Setup
• KeyGen
• Encrypt
• Decrypt

So our new encryption scheme can be explained as 
follows.

Key Generation Procedure:
i. Choose a codeword of a cyclic code of length n with

generator matrix g(x) of degree r is called m.
ii. Compute a cyclic shift of the codeword is called s.
iii. Calculate c = m+s.
iv. The plaintext is m and the private key is s.

Encryption:
Plaintext : m a x g xi i= ( ) ( ), where 0 ≤ ≤ −i pn r .
Key : s x a x g xi

t
i= ( ) ( ), where t is the number of shift 

and s s s sn= 1 2 ... .
Ciphertext : c m si i i= + .
We assume that a x g x a x g xi j( ) ( ) ( ) ( )≠  for i j i j pn r≠ ≤ ≤ −, , .0  

i j i j pn r≠ ≤ ≤ −, , .0

Decryption:
Ciphertext : ci

Plaintext : m c p si i i= + −( )1
Correctness: The correctness of our encryption scheme 

relies on the structure of a cyclic code. It is known that any 
cyclic shift of a cyclic code is also a codeword. Every cyclic 
shift of a codeword consists of key and this key has the same 
length with the plaintext. Furthermore the key is used only 
once.

Example 1 Consider length 7 binary cyclic codes. 
We have the factorization into irreducible polynomials 
x x x x x x7 3 3 21 1 1 1− = − + + + +( )( )( ).

Since we are looking at binary codes, all the minus signs 
can be replaced by plus signs:

x x x x x x7 3 3 21 1 1 1+ = + + + + +( )( )( ).
As there are 3 irreducible factors, there are 23=8 cyclic 

codes (including 0 and 2
7 ). The 8 generator polynomials 

are
i. 1=1.
ii. x x+ = +1 1
iii. x x x x3 31 1+ + = + +
iv. x x x x3 2 3 21 1+ + = + +
v. ( )( )x x x x x x+ + + = + + +1 1 13 4 3 2

vi. ( )( )x x x x x x+ + + = + + +1 1 13 2 4 2

vii. ( )( )x x x x x x x x x x3 3 2 6 5 4 3 21 1 1+ + + + = + + + + + +
viii.	( )( )( )x x x x x x+ + + + + = +1 1 1 13 3 2 7

We try to construct an encryption scheme by using the
generator polynomial g x x x x( ) .= + + +4 3 2 1  So the gen-
erator matrix is

G =
















1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

.

The codewords generated by the generator matrix are 
specified as below.
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C =       { , , , , , ,1011100 0101110 0010111 1110010 0111001 1001011 11100101 0000000, }. 
C =      { , , , , , ,1011100 0101110 0010111 1110010 0111001 1001011 11100101 0000000, }. 

If g x x x x( ) ,= + + +4 3 2 1  then a x x xi ( ) [ ] /( ),∈ − 2
7 1  

deg a xi( ( ) .< − =7 4 3  So a x x x x x x x x xi ( ) { , , , , , , }.= + + + + +1 1 1 12 2 2 2

 
a x x x x x x x x xi ( ) { , , , , , , }.= + + + + +1 1 1 12 2 2 2

Encryption: The encryption scheme constructed based 
on these codewords is given in the following.
m a x g x s x a x g xi i i

t
i= =( ) ( ), ( ) ( ), (let t = 1) c m s ii i i= + ≤ ≤, .1 8

m a x g x x x x x x x1 1
2 3 4 2 3 41 1 1 1011100= = + + + = + + + =( ) ( ) ( )

s xa x g x x x x x x x x x1 1
2 3 4 3 4 51 0101110= = + + + = + + + =( ) ( ) ( )

s xa x g x x x x x x x x x1 1
2 3 4 3 4 51 0101110= = + + + = + + + =( ) ( ) ( )

c m s x x x1 1 1
2 51 1110010= + = + + + =

m a x g x x x x x x x x x

s xa x g x

2 2
2 3 4 3 4 5

2 2

1
0101110

= = + + + = + + +
=

=

( ) ( ) ( )

( ) ( ) == + + + = + + +
=

x x x x x x x x x( )3 4 5 2 4 5 6

0010111
c m s x x x x

m a x g x x x x x x
2 2 2

2 3 6

3 3
2 2 3 4 2

0111001

1

= + = + + + =

= = + + + = +( ) ( ) ( ) xx x x4 5 6

0010111
+ +

=
s xa x g x x x x x x x x x

c m s

3 3
2 4 5 6 3 5 6

3 3 3

1
1001011

1

= = + + + = + + +
=

= + = +

( ) ( ) ( )

xx x x

m a x g x x x x x x x x

2 3 4

4 4
2 3 4 2 5

1011100

1 1 1

+ + =

= = + + + + = + + +
=

( ) ( ) ( )( )
11110010

1
0111001

4 4
2 5 2 3 6s xa x g x x x x x x x x x= = + + + = + + +

=
( ) ( ) ( )

c m s x x x

m a x g x x x x x x
4 4 4

3 5 6

5 5
2 2 3 4

1 1001011

1

= + = + + + =

= = + + + +( ) ( ) ( )( ) == + + +
=

= = + + + = + + +

x x x x

s xa x g x x x x x x x x x

2 3 6

5 5
2 3 6 2 3 4

0111001

1( ) ( ) ( )
==

= + = + + + =

= = + +

1011100

1 1100101

1 1
5 5 5

4 6

6 6
2

c m s x x x

m a x g x x x( ) ( ) ( )( 22 3 4 3 5 61
1001011

+ + = + + +
=

x x x x x)

s xa x g x x x x x x x x

c m s x x

6 6
3 5 6 4 6

6 6 6
3

1 1
1100101
= = + + + = + + +

=

= + = +

( ) ( ) ( )

++ + =

= = + + + + + = + +

+

x x

m a x g x x x x x x x x

x

4 5

7 7
2 2 3 4 4

6

0101110

1 1 1( ) ( ) ( )( )

==

= = + + + = + + +
=

1100101

1 1
1110010

7 7
4 6 2 5s xa x g x x x x x x x x( ) ( ) ( )

c m s x x x x

m a x g x x x x
7 7 7

2 4 5 6

8 8
2 3 4

0010111

0 1 0 0

= + = + + + =

= = + + + = =( ) ( ) ( ) 0000000

Decryption:
m c p s

m c s x x x x x x x x

x x

i i i= + −

= + = + + + + + + + = +

+ + =

( )

( ) ( )

1

1 11 1 1
2 5 3 4 5 2

3 4 11011100

010
2 2 2

2 3 6 2 4 5 6

3 4 5

m c s x x x x x x x x x

x x x

= + = + + + + + + + =

+ + + =

( ) ( )

11110
m c s x x x x x x x x

x x x

m

3 3 3
2 3

4
3 5 6 7 2

4 5 6

4

1

0010111

= + = + + + + + + + =

+ + + =

=

( ) ( )

cc s x x x x x x x x

x x

m c s

4 4
3 5 6 2 3 6

2 5

5 5 5

1 1

1110010

+ = + + + + + + + = +

+ + =

= +

( ) ( )

== + + + + + + + = +

+ + =

( ) ( )1 1

0111001

4 6 2 3 4 2

3 6

x x x x x x x x

x x
m c s x x x x x x x x

x x

m c

6 6 6
3 4 5 4 6 3

5 6

7 7

1 1

1001011

= + = + + + + + + + = +

+ + =

= +

( ) ( )

ss x x x x x x x x

x x
m c s

7
2 4 5 6 2 5

4 6

8 8 8

1 1

1100101
0

= + + + + + + + = +

+ + =
= + = +

( ) ( )

00 0 0000000= =

Now we construct another encryption scheme by using 
the generator polynomial g x x x( ) = + +1 3 for the same code.

The generator matrix is

G =



















1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

.

It is clear that deg g x r( ( )) .= = 3  So

a x x x deg a x n r

a x a a x a
i i

i

( ) [ ]/( ), ( ( )) .

( ) { ( )

∈ − < − = − =

∈ + +

2
7

0 1 2

1 7 3 4

xx a x a a a a

a x x x x x x x xi

2
3

3
0 1 2 3 2

2 3 2 31 1 1 1

+ ∈

= + + + +

: , , , }.

( ) { , , , , , , ,


xx x x x

x x x x x x x x x x x x

x

2 3 2

3 2 3 2 3 2 3 2

3

1 1 1 1

0

, ,

, , , , ,

, }.

+ +

+ + + + + + + + + +

+

Encryption:
m a x g x s x a x g x t c m s ii i i

t
i i i i= = = = + ≤ ≤( ) ( ), ( ) ( )( ), , .1 1 16

m a x g x x x x x

s xa x g x x x x
1 1

3 3

1 1

1 1 1 1101000

1

= = + + = + + =

= = + +

( ) ( ) ( )

( ) ( ) ( 33 2 4

1 1 1
2 3 4

0110100

1 1011100

) = + + =

= + = + + + =

x x x

c m s x x x

m a x g x x x x x x x

s xa x g x x x x
2 2

3 2 4

2 2
2

1 0110100= = + + = + + =

= = +

( ) ( ) ( )

( ) ( ) ( ++ = + + =

= + = + + + =

x x x x

c m s x x x x

4 2 3 5

2 2 2
3 4 5

0011010

0101110

)

m a x g x x x x x x x

s xa x g x x x
3 3

2 3 2 3 5

3 3
2

1 0011010= = + + = + + =

= =

( ) ( ) ( )

( ) ( ) ( ++ + = + + =

= + = + + + =

x x x x x

c m s x x x x

3 5 3 4 6

3 3 3
2 4 5 6

0001101

0010111

)
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m a x g x x x x x x x

s xa x g x x x
4 4

3 3 3 4 6

4 4
3

1 0001101= = + + = + + =

= =

( ) ( ) ( )

( ) ( ) ( ++ + = + + =

= + = + + + =

x x x x

c m s x x x

4 6 4 5

4 4 4
3 5 6

1 1000110

1 1001011

)

m a x g x x x x x x x

s xa x g x

5 5
3 2 3 4

5 5

1 1 1
1011100

= = + + + = + + +
=

=

( ) ( ) ( )( )

( ) ( ) == + + + = + + +
=

= + = + + + =

x x x x x x x x

c m s x x x

( )1
0101110

1 11100

2 3 4 3 4 5

5 5 5
2 5 110

m a x g x x x x x x x

s xa x g x

6 6
2 3 2 5

6 6

1 1 1
1110010

= = + + + = + + +
=

=

( ) ( ) ( )( )

( ) ( ) == + + + = + + +
=

= + = + + + =

x x x x x x x x

c m s x x x

( )1
0111001

1 10010

2 5 2 3 6

6 6 6
3 5 6 111

m a x g x x x x x x x

s xa x g x

7 7
3 3 4 6

7 7

1 1 1
1100101

= = + + + = + + +
=

=

( ) ( ) ( )( )

( ) ( ) == + + + = + + +
=

= + = + + + =

x x x x x x x

c m s x x x x

( )1 1
1110010

00101

4 6 2 5

7 7 7
2 4 5 6 111

1
0101110
8 8

2 3 3 4 5

8 8

m a x g x x x x x x x x x

s xa x

= = + + + = + + +
=

=

( ) ( ) ( )( )

( )gg x x x x x x x x x x

c m s x x x x

( ) ( )= + + + = + + +
=

= + = + + +

3 4 5 2 4 5 6

8 8 8
2 3 6

0010111

== 0111001
m a x g x x x x x x x x x

s xa x g x

9 9
3 3 2 3 6

9 9

1
0111001

= = + + + = + + +
=

=

( ) ( ) ( )( )

( ) ( )) ( )= + + + = + + +
=

= + = + + + =

x x x x x x x x

c m s x x x

2 3 6 2 3 4

9 9 9
4 6

1
1011100

1 11001101

1
0010111
10 10

2 3 3 2 4 5 6

10

m a x g x x x x x x x x x

s

= = + + + = + + +
=

=

( ) ( ) ( )( )

xxa x g x x x x x x x x x

c m s

10
2 4 5 6 3 5 6

10 10 10

1
1001011

( ) ( ) ( )= + + + = + + +
=

= + = 11 10111002 3 4+ + + =x x x
m a x g x x x x x x x

s xa x

11 11
2 3 4 5

11 11

1 1 1
1000110

= = + + + + = + +
=

=

( ) ( ) ( )( )

( )gg x x x x x x x x

c m s x x x

( ) ( )= + + = + + + =

= + = + + + =

1 0100011

1 1

4 5 3 5 6

11 11 11
4 6 1100101

1 1 1
1010001
12 12

3 3 2 6

12

m a x g x x x x x x x

s

= = + + + + = + +
=

=

( ) ( ) ( )( )

xxa x g x x x x x x

c m s x x x
12

2 6 3

12 12 12
2 3

1 1 1101000( ) ( ) ( )= + + = + + =

= + = + + + xx6 0111001=

m a x g x x x x x x x x x

s xa x

13 13
2 3 3 5 6

13 13

1
0100011

= = + + + + = + +
=

=

( ) ( ) ( )( )

( )) ( ) ( )g x x x x x x x

c m s x x x

= + + = + + =

= + = + + + =

5 6 2 6

13 13 13
2 5

1 1010001

1 11100010

1 1 1

1
14 14

2 3 3 2

3 4 5 6

m a x g x x x x x x x

x x x x

= = + + + + = + + +

+ + + =

( ) ( ) ( )( )

1111111

1 114 14
2 3 4 5 6

2 3 4

s xa x g x x x x x x x x x

x x x x

= = + + + + + + = +

+ + +

( ) ( ) ( )
55 6

14 14 14

1111111
0 0000000
+ =

= + = =
x

c m s

m a x g x x x x x x x

x x

s x

15 15
2 3 3 3

5 6

15

1 1 1

1001011

= = + + + + + = +

+ + =

=

( ) ( ) ( )( )

aa x g x x x x x x x x

c m s x x

15
3 5 6 4 6

15 15 15

1 1
1100101

( ) ( ) ( )= + + + = + + +
=

= + = + 33 4 5

16 16
3

16 16

0101110

0 1 0 0000000

+ + =

= = + + = =
=

x x

m a x g x x x
s xa

( ) ( ) ( )
(( ) ( )x g x x

c m s
= = =

= + = =
0 0 0000000

0 000000016 16 16

Decryption:
m c p si i i= + −( )1

m c s x x x x x x x x

m c s x

1 1 1
2 3 4 2 4 3

2 2 2

1 1
1101000

= + = + + + + + + = + +
=

= + = +

( ) ( )

( xx x x x x x x x

x

m c s x x x x

3 4 5 2 3 5 2

4

3 3 3
2 4 5 6

0110100

+ + + + + = +

+ =

= + = + + +

) ( )

( )) ( )

( ) (

+ + + = +

+ =

= + = + + + + + +

x x x x x

x

m c s x x x x

3 4 6 2 3

5

4 4 4
3 5 6 4

0011010

1 1 xx x x

x

5 3 4

6 0001101

)

)

= +

+ =
m c s x x x x x x x x

x x

m c

5 5 5
2 5 3 4 5 2

3 4

6 6

1 1

1011100

= + = + + + + + + + = +

+ + =

= +

( ) ( )

ss x x x x x x x x

x x
6

3 5 6 2 3 6

2 5

1 1

1110010

= + + + + + + + = +

+ + =

( ) ( )

m c s x x x x x x x x

x x

m c

7 7 7
2 4 5 6 2 5

4 6

8 8

1 1

1100101

= + = + + + + + + + = +

+ + =

= +

( ) ( )

ss x x x x x x x x x

x x x

m c s

8
2 3 6 2 4 5 6

3 4 5

9 9 9

0101110

= + + + + + + + =

+ + + =

= + =

( ) ( )

(( ) ( )

)

(

1 1

0111001

4 6 2 3 4 2

3 6

10 10 10

+ + + + + + + = +

+ + =

= + =

x x x x x x x x

x x

m c s 11 1

0010111

2 3 4 3 5 6 2

4 5 6

11 11 11

+ + + + + + + =

+ + + =

= + =

x x x x x x x

x x x

m c s

) ( )

)

(( ) ( )

)

(

1 1

1000110

4 6 5 6 4

5

12 12 12
2

+ + + + + + = +

+ =

= + = + +

x x x x x x x

x

m c s x x x33 6 3 2

6

1 1

1010001

+ + + + = +

+ =

x x x x

x

) ( )
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m c s x x x x x x x x

x x

m c

7 7 7
2 4 5 6 2 5

4 6

8 8

1 1

1100101

= + = + + + + + + + = +

+ + =

= +

( ) ( )

ss x x x x x x x x x

x x x

m c s

8
2 3 6 2 4 5 6

3 4 5

9 9 9

0101110

= + + + + + + + =

+ + + =

= + =

( ) ( )

(( ) ( )

)

(

1 1

0111001

4 6 2 3 4 2

3 6

10 10 10

+ + + + + + + = +

+ + =

= + =

x x x x x x x x

x x

m c s 11 1

0010111

2 3 4 3 5 6 2

4 5 6

11 11 11

+ + + + + + + =

+ + + =

= + =

x x x x x x x

x x x

m c s

) ( )

)

(( ) ( )

)

(

1 1

1000110

4 6 5 6 4

5

12 12 12
2

+ + + + + + = +

+ =

= + = + +

x x x x x x x

x

m c s x x x33 6 3 2

6

1 1

1010001

+ + + + = +

+ =

x x x x

x

) ( )

m c s x x x x x x x

x

m c s

13 13 13
2 5 2 6 5

6

14 14

1 1

0100011

= + = + + + + + + = + +

=

= +

( ) ( )

114
2 3 4 5 6

2 3 4 5 6

15

0 1 1

1111111

= + + + + + + + = + +

+ + + + =

=

( )x x x x x x x

x x x x x

m c115 15
3 4 5 4 6

3 5 6

16 16

1 1

1001011

+ = + + + + + + + = +

+ + =
=

s x x x x x x x

x x x
m c

( ) ( )

++ = + = =s16 0 0 0 0000000
It is seen that the key is used only once for each encryp-

tion. However, the ciphertext can be obtained several times. 
This situation is an advantage for us since at the end of 
encryption we get many meaningful message and obtain 
them from different keys. So it is difficult to guess the key.

Proposition 1 Let C be a cyclic code of length n with 
generator polynomial g(x) If n is large enough, then the 
encryption scheme constructed based on C will be more 
reliable.

Proof. The security of an encryption system is directly 
proportional to the key length. The key length must equal 
the length of the message to be encrypted in the One Time 
Pad cryptosystem. In our encrytpion scheme, the key length 
is n since the plaintext is length of n. So it is needed to gen-
erate a long key to encrypt a long message. It is difficult to 
transmit and store this key. If n is large enough, then the 
key cannot be recovered. This means the system is reliable.

Proposition 2 If the polynomial g x x q p pq
r( ) [ ], ( ,∈ =   ( q = pr, 

p is a prime number and r is any positive integer) is primi-
tive, then the encryption scheme can be constructed based 
on C that is generated by g(x).

Proof. The polynomial g x xq( ) [ ]∈    generates a cyclic 
code if and only if it is primitive since a primitive polyno-
mial generates a cyclic code. So it is needed to choose a 
primitive polynomial to construct a cryptosystem by using 
the One Time Pad. Because we work on a cyclic code C.

Second Encryption Scheme
In order to present this scheme, we use the binary cyclic 

codes. So we developed a new encryption scheme by codes 
over the ring R v v v= + = 2 2

2, .
Key Generation Procedure: Consider the linear code 

C v C vC= + ⊕( ) ,1 1 2  where C g x C g x1 1 2 2=< > =< >( ) , ( )
and g x x g x xn n

1 21 1( ) | , ( ) | .− −  We can explain the encryp-
tion and decryption while u C s C i C j Ci j∈ ∈ ≤ < ≤ <1 2 1 20 0, , | |, | | .

u C s C i C j Ci j∈ ∈ ≤ < ≤ <1 2 1 20 0, , | |, | | .

Encryption:
Plaintext: m u s C i C j Ci C j i j+ = × ∈ ≤ < ≤ <| | ( ), | |, | | .

1
0 01 2y

Key: s C j Cj ∈ ≤ <2 20, | | .

Ciphertext: c v u vsi C j i j+ = + +| | (( ) ).
1

1y

Decryption:
Ciphertext: c v u vsi C j i j+ = + +| | (( ) )

1
1y

Plaintext: m c vs si C j i C j j j+
−

+= + ×| | | |[ ( ) ]
1 1

1f y
Example 2 Consider length 3 binary cyclic codes. 

We have the factorization into irreducible polynomials 
x x x x3 21 1 1− = + + +( )( ).

Let the generator polynomials be g x x g x x x1 2
21 1( ) , ( ) .= + = + + 

g x x g x x x1 2
21 1( ) , ( ) .= + = + +  The binary cyclic codes generated by these gen-

erator polynomials, respectively, are C1 000 110 011 101= { , , , } 
and C2 000 111= { , }.

Now we consider u u u u0 1 2 3000 110 011 101= = = =, , ,  
and s s0 1000 111= =,  for i = 0,1,2,3 and j = 0,1.

Encryption:
• Let i = 0, j = 0. That is u0 = 000 and s0 = 000. In this

case
m u s0 0 0 000 000 000000= × = × =  and c v u vs0 0 01 000 000000= + + = =y y[( ) ] ( )

c v u vs0 0 01 000 000000= + + = =y y[( ) ] ( )
• Let i = 0, j = 1. That is u0 = 000 and s1 = 111. In this

case
m u s4 0 1 000 111 000111= × = × =  and c v u vs vvv4 0 11 111111= + + = =y y[( ) ] ( )

c v u vs vvv4 0 11 111111= + + = =y y[( ) ] ( )
• Let i = 1, j = 0. That is u1 = 110 and s0 = 000. In this

case
m u s1 1 0 110 000 110000= × = × =  and c v u vs v v1 1 01 1 1 0 101000= + + = + + =y y[( ) ] ( ) 

c v u vs v v1 1 01 1 1 0 101000= + + = + + =y y[( ) ] ( )
• Let i = 1, j = 1. That is u1 = 110 and s1 = 111. In this

case
m u s5 1 1 110 111 110111= × = × =  and c v u vs v5 1 11 11 010111= + + = =y y[( ) ] ( )

c v u vs v5 1 11 11 010111= + + = =y y[( ) ] ( )
• Let i = 2, j = 0. That is u2 = 011 and s0 = 000. In this

case
m u s2 2 0 011 000 011000= × = × =  and c v u vs v v2 2 01 01 1 001010= + + = + + =y y[( ) ] ( )

c v u vs v v2 2 01 01 1 001010= + + = + + =y y[( ) ] ( )
• Let i = 2, j = 1. That is u2 = 011 and s0 = 000. In this

case
m u s6 2 1 011 111 011111= × = × =  and c v u vs v6 2 11 11 110101= + + = =y y[( ) ] ( )

c v u vs v6 2 11 11 110101= + + = =y y[( ) ] ( )
• Let i = 3, j = 0. That is u3 = 101 and s0 = 000. In this

case
m u s3 2 0 101 000 101000= × = × =  and c v u vs v v3 3 01 1 01 100010= + + = + + =y y[( ) ] ( )

c v u vs v v3 3 01 1 01 100010= + + = + + =y y[( ) ] ( )
• Let i = 3, j = 1. That is u3 = 101 and s1 = 111. In this

case
m u s7 3 1 101 111 101111= × = × =  and c v u vs v7 3 11 1 1 011101= + + = =y y[( ) ] ( )

c v u vs v7 3 11 1 1 011101= + + = =y y[( ) ] ( )

Decryption:
• c0 = 000000, s0 = 000. So i = 0, j = 0 and
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m c vs s v
v

0
1

0 0 0
1 000000 000

000 000
= + × = +
× = +

− −φ ψ φ ψ
φ

[ ( ) ] [ ( ) ( )]
( ) [( ) (( )] ( ) ( ) ( )
( )

000 000 000 000
000000

× = ×
=

• c1 = 101000, s0 = 000. So i = 1, j = 0 and
m c vs s v

v v
1

1
1 0 0

1 101000 000
000 1 1

= + × = +
× = + +

− −φ ψ φ ψ
φ

[ ( ) ] [ ( ) ( )]
( ) [( 00 000 000 1

1 0 000 110 000 110000
) ( )] ( ) (

) ( ) ( ) ( ) ( )
+ × = +

+ × = × =
v

v v
φ

• c2 = 001010, s0 = 000. So i = 2, j = 0 and
m c vs s v

v
2

1
2 0 0

1 001010 000
000 01 1

= + × = +
× = + +

− −φ ψ φ ψ
φ

[ ( ) ] [ ( ) ( )]
( ) [( vv v

v v
) ( )] ( ) (

) ( ) ( ) ( ) ( )
+ × = +

+ × = × =
000 000 01

1 0 000 011 000 011000
φ

• c3 = 100010, s0 = 000. So i = 3, j = 0 and
m c vs s v

v
3

1
3 0 0

1 100010 000
000 1 01

= + × = +
× = + +

− −φ ψ φ ψ
φ

[ ( ) ] [ ( ) ( )]
( ) [( vv v

v v
) ( )] ( ) (

) ( ) ( ) ( ) ( )
+ × = +

+ × = × =
000 000 1

01 000 101 000 101000
φ

• c4 = 111111, s1 = 111. So i = 0, j = 1 and
m c vs s v

vvv v
4

1
4 1 1

1 111111 111
111

= + × = +
× = +

− −φ ψ φ ψ
φ

[ ( ) ] [ ( ) ( )]
( ) [( ) (( )] ( ) ( ) ( )
( ) ( ) ( )

111 111 000 111
000 111 000111

× = ×
= × =

φ

• c5 = 010111, s1 = 111. So i = 1, j = 1 and
m c vs s v

v v
5

1
5 1 1

1 010111 111
111 1 1

= + × = +
× = + +

− −φ ψ φ ψ
φ

[ ( ) ] [ ( ) ( )]
( ) [( vv v) ( )] ( ) ( )
( ) ( ) ( ) ( )

+ × =
× = × =

111 111 110
111 110 111 110111

φ

• c6 = 110101, s1 = 111. So i = 2, j = 1 and
m c vs s v

v v
6

1
6 1 1

1 110101 111
111 11

= + × = +
× = +

− −φ ψ φ ψ
φ

[ ( ) ] [ ( ) ( )]
( ) [( ) (( )] ( ) ( )
( ) ( ) ( ) ( )

111 111 01 1
111 011 111 011111

× = + +
× = × =

φ v v

• c7 = 011101, s1 = 111. So i = 2, j = 1 and
m c vs s v

v v
7

1
7 1 1

1 011101 111
111 1 1

= + × = +
× = +

− −φ ψ φ ψ
φ

[ ( ) ] [ ( ) ( )]
( ) [( ) (( )] ( ) ( )
( ) ( ) ( ) ( )

111 111 1 01
111 101 111 101111

× = + +
× = × =

φ v v

Comparison with Other Systems
In the Aguilar et al. [4] encryption framework, there 

are two independent codes, the random double-circulant 
structure guarantees the security of the scheme, and the 
public code C guarantees correct decryption. This causes 
some important results. First, it makes it is possible to con-
sider public families of codes which are difficult to hide 
but very efficient for decoding. Second it requires finding 
a tradeoff for the code C, between decoding efficiency and 
practical decoding complexity.

Petrenko et al. [21] developed an encryption method 
based on cyclic BCH codes. They used RSA encryption 
algorithm and error correcting codes. So their module 
allows not only to encrypt a message, but also to protect it 
from distortion when sending a message.

In our framework, a cyclic code is considered. The 
security depends on the length of the codewords since the 
plaintext is any codeword of the cyclic code. The plaintext is 
encrypted with a key of the same length. Somebody recov-
ering the message cannot find the message even if he tries 
all the possible keys. Because he finds all the n− bit words 
at the end of this process. Since all the words are also the 
codewords, it is impossible to guess the plaintext.

SECURITY OF THE SCHEMES

In this section, we explain the security of our schemes. 
Cyclic codes form an important class of linear codes. We 
use a codeword of a cyclic code and the One Time Pad 
encryption method to construct our schemes.

• To encrypt plaintext data, the sender uses a key string
equal in length to the plaintext.

• The key is used by mixing (XOR-ing) bit by bit, always 
a bit of the key with a bit of the plaintext to create a
bit of ciphertext.

• This ciphertext is then sent to the recipient.
• At the recipient’s end, the encoded message is mixed

(XOR-ed) with the duplicate copy of the One Time
Key and the plaintext is restored.

• Both sender’s and recipient’s keys are automatically
destroyed after use, to ensure re-application of the
same key is not possible.

• So our new encryption schemes are very safe.

Possible Attacks
In our encryption schemes, the key used for encoding 

the message is completely random and is as long as the mes-
sage itself. That is why one of the possible attacks to such a 
cipher is a brute force attack.

The “Bruce Force” Attack: Brute force attacks use 
exhaustive trial and error methods in order to find the key 
that has been used for encrypting the plaintext. This means 
that every possible combination of key bits must be used to 
decrypt the ciphertext. The correct key would be the one 
that produces a meaningful plaintext.

Algebraic Attacks
These attacks are usually the best ones for small values 

of n. When n decreases it will be easy to find the key.
Our new encryption schemes have some important 

properties in terms of security. These are confusion and 
diffusion. The relationship between the plaintext and key 
is too complex. Moreover, there is no statistical connection 
between the plaintext and ciphertext. These properties have 
been minimalized the probability of attack.

CONCLUSION

We presented an efficient approach for constructing 
code-based cryptosystems. This approach is based on the 
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One Time Pad cryptosystem. The One Time Pad encryp-
tion is the only proven unbreakable encryption method. 
The One Time encryption method is an additive stream 
cipher, where a stream truly random keys is generated and 
then combined with the plaintext for encryption or with 
the ciphertext for decryption by an “exclusive OR” (XOR) 
addition. So we used the cyclic codes to construct our new 
encryption schemes. We analyzed its security. However, 
this method can be applied for the other linear codes in the 
future work.
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