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ABSTRACT

In this paper, COVID-19 cumulative cases are estimated with AKF based on total COVID-19 
cases between January-September 9, 2020 in USA, Germany, United Kingdom, Italy, France, 
Russia, Brazil, India, Turkey, Spain, Peru, Colombia, South Africa, Argentina, Iran, Pakistan. 
The cumulative covid-19 cases time-series was modeled with a stochastic dynamic linear 
model (DLM). The estimation performance of the models is measured by the calculation 
of mean square error (MSE) and coefficient of  determination (R2). Ca lculated MSE an d R2 
values showed that the model and AKF could be used to estimate the number of cases in 
these countries. In this study, firstly, the cumulative number of cases was estimated. Secondly, 
using these estimates number of daily cases was calculated. Thirdly, the reproduction number 
was obtained by using these number of daily cases. The model and estimation method used 
is suitable. The AKF algorithm uses only the number of cases in the last day. We propose that 
the model and estimation method under consideration is a convenient tool for calculating the 
reproduction number depending on time.
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INTRODUCTION

In December 2019, a new coronavirus disease emerged 
characterized as a viral infection with a high level of trans-
mission in Wuhan, China. Coronavirus 19 (COVID-19) 

is caused by the virus known as Severe Acute Respiratory 
Syndrome coronavirus 2 (SARS- CoV-2) established by the 
ICTV [1–3]. Gompertz and Logistic models have been used 
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to estimate the number of COVID-19 cases in China by Jia 
et al [4]. Cas torina et al [5] have used these two modes in 
China, South Korea, Italy, and Singapore. Roosa et al [6] 
have used Generalized Logistic Growth Model (GLM) for 
the data gathered between February 5 and February 24, 
2020, for China. Roosa et al [7] have used the Generalized 
Logistic Growth Model (GLM) and Richard model for the 
data gathered between February 13 and February 20, 2020 
for China. Munayco et al [8] have used the Generalized 
Growth Model for the dates February 29 and March 30, 
2020, for Peru. Gompertz, Logistic, and Artificial Neural 
Network models were applied in [9]. Zuzana et al [10] used 
the Gompertz curve to model a trajectory of the number 
of infections for the USA. Cata et al [11] employed the 
Gompertz function in several countries to make short-time 
predictions. Petropoulos et al [12] adopted simple time 
series forecasting approaches.

The papers cited in our manuscript all utilize “the 
cumulative number of infected people” as the data. Also, 
the models employed in those papers are non-linear math-
ematical growth models and there are more than one 
parameter to be estimated in those models. The models are 
non-linear mathematical ones and de-fined using differ-
ential equations. Specific algorithms such as mathematical 
optimization technique are to be employed for parameter 
estimation. The data used in the models employed need 
updating daily in order to analyze them. The methods used 
are offline and all data up to a specific date are necessary for 
parameter es-timation in those models where the estima-
tion needs to be updated on a daily basis with the inclusion 
of the new set of data. There are other growth models is 
addition to logistic, Bertalanffy, and Gompertz non-linear 
matematical models and they are given in Table 1.

State-space models have been employed since the 1960’s, 
mostly in the control and signal processing areas. Kalman 
filtering (KF) has emerged as the most common tool. The 
KF has been extensively employed in many areas of estima-
tion. The extensions and applications of state-space models 

can be found in almost all disciplines. The KF has also been 
utilized in electrophysiological signal analysis and it com-
pares favorably with other approaches [13].

In this work, COVID-19 cumulative cases are estimated 
with AKF based on total COVID-19 cases between January-
September 9, 2020 in USA, Germany, United Kingdom, 
Italy, France, Russia, Brazil, India, Turkey, Spain, Peru, 
Colombia, South Africa, Argentina, Iran, Pakistan. The 
cumulative covid-19 cases time-series was modeled with 
a stochastic dynamic linear model (DLM). The estimation 
performance of the models is measured by the calculation 
of mean square error (MSE) and coefficient of determina-
tion (R2 ).

The rest of this article is organized as follows: In material 
and methods, section the mathematical and computational 
methodologies are described, mathematical equations of 
the models used in this study are given, and analysis and 
estimation results are presented. In section three estimating 
the reproduction number with AKF, the computation of the 
reproduction number with AKF is presented. Finally, the 
last section presents the conclusions.

MATERIAL AND METHODS

Materials
In this paper, AKF has been used to estimate the actual 

COVID-19 cases. If we introduce state-space models and 
AKF representation at this point, it will be easier to see the 
suitability of the AKF approach to this specific problem. 
Let’s consider a discrete-time state-space model stated as 

x F x wt t t t+ = +1 (1)

y H x vt t t t= + (2)

where, xt is a system, yt is an observation vector. wt and vt 
are white noise sequences. The covariance matrices wt and 
vt are Qt and Rt. The matrices Ft, Ht, Qt, Rt are assumed that 

Table 1. Non-linear models and their mathematical notations

Model name Statistical model
Brody y(t;α,β,k) = α(1–βexp(–kt)) + ε
Bertalanffy y(t;α,β,k,m) = (α1–m–βexp(–kt))1/(1–m) + ε
Logistic y(t;α, β,k) = α/(1 + βexp(–kt)) + ε
Generalized Logistic y(t;β,k,m) = α/((1 + βexp(–kmt)1/m) + ε
Richards y(t;α,k,m) = α(1–exp(–kt))1/m + ε
Negative Exponential y(t;α,k) = α(1–exp(–kt)) + ε
Stevens y(t; α,β,p) = α–β(kt) + ε
Tanaka y(t;α, β,k,m) = (1/ β )ln|2β.(t-m)+2 k t m2 2( ) |− + +αβ ε

Gompertz Y(t) = α  exp(–β exp(–kt)) + ε
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yt t t
= +µ ε (8)

µ µ β ξt t t t+ = + +1
(9)

β β ηt t t+ = +1 (10)

where, yt is the logarithmic actual COVID-19 cumula-
tive cases. In Eq. 9, µt represents the trend. We specified 
the trend component as a random walk with drift. Eq. 10 
describes the evolution of the drift which depends on its 
previous value. It is assumed that εt, ξt, and ηt are i.i.d. with 
zero means and constant variances Gaussian white noise.  
It would be useful to put these equations in vector-matrix 
form to obtain the state-space model for COVID-19 cases. 
The simple model introduced above can easily be repre-
sented in a state space form, where the state equation and 
the observation equation are displayed as:
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they are known at time t. The filtering problem is the prob-
lem of determining the best estimate of its xt condition, 
given its observations Yt = (y0, y1, ..., yt ) [14–16]. Let the 
initial state be assumed to have a Gaussian distribution in 
the form of x0 ~ N(x̄0, P0). The AKF equations are

x F xt t t t� �| − − −=1 1 1 (3)

P F P F Qt t t t t t t| |( )− − − − − −= ′ +1 1 1 1 1 1α (4)

K P H H P H Rt t t t t t t t t= ′ ′ +− −
−

| |( )1 1
1 (5)

P I K H Pt t t t t t| |( )= − −1 (6)

x x K y H xt t t t t t t t� � �= + −− −| |( )1 1 (7)

where X̂t|t-1  is the a priori and X̂t is the a posteriori esti-
mation of xt. Pt|t-1 and Pt|t  are the covariance of a priori and 
a posteriori estimation respectively [14–16]. α is the forget-
ting factor proposed by Özbek and Aliev [17–18].

MODEL AND ESTIMATION RESULTS
In [19] a simple linear model was proposed to describe 

a stochastic time-series. This s o-called “ dynamic l inear 
model” (DLM) is defined in terms of state-space represen-
tation through 

Table 2. Calculated MSE and R2

Country Cumulative MSE Cumulative R2 Daily MSE Daily R2

USA 3471865 0.99999 860410 0.99726

Germany 73248 0.99998 19033 0.99067

UK 42561 0.99999 8748 0.9960

Italy 52014 0.99999 8308 0.99667

France 475426 0.99993 748904 0.84456

Russia 117834 0.99999 8982 0.99885

Brazil 4538890 0.99999 4428191 0.98385

India 696734 0.99999 498780 0.99929

Turkey 47872 0.99999 14435 0.98513

Spain 370666 0.99997 598625 0.92229

Peru 222356 0.99999 431187 0.92447

Colombia 94034 0.99999 87392 0.99447

South Africa 146233 0.99999 52605 0.99669

Argentina 28211 0.99999 21020 0.99786

Iran 19691 0.99999 4292 0.98935

Pakistan 73443 0.99999 91626 0.96639
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where Eq. 11 is the state equation that defines the evolu-
tion of system states and Eq. 12 is the observation equa-
tion that relates system states to the observations. In 
above equations, process noises and observation noise 
sequences are assumed to be Gaussian and independent 
of each other. 

Given the observation values, AKF estimates unob-
servable state variables. Since the COVID-19 time-series 
is written as the state-space model above, the AKF equa-
tions can be employed. Initial value of the AKF was used 
as x0 = (51)ʹ. The selection of the initial values is not criti-
cal as the properly constructed model will yield these initial 
values to converge to the measurements. Forgetting factor 
α was 1.5. The data used was taken from Johns Hopkins 
University [20]. Actual cumulative case estimations have 
been obtained online using AKF. The number of daily cases 
can be easily calculated with it = yt – yt–1 to show the total 
number of cases up to yt, t days. Since we have the estimates 
of yt, we can easily find the estimations of it with  î t = ŷt – ŷt–1. 
Daily cases and estimations are given in Figure 1-Figure 16. 
According to the estimation results obtained by using the 
cumulative and daily number of cases in the DLM, MSE 
and R2, were calculated (see Table 2). These calculated val-
ues indicate that the compatibility of the model with actual 
data is quite high. This situation tells us that estimating the 
daily number of cases via the DLM is a reliable method. As 
for AKF, utilizing only the observation in time t and the 
preceding estimation is the most advantageous aspect of 
this method. These results have revealed that with the given 
system model and the assumptions, AKF could successfully 
be used to estimate actual COVID-19 cases. The method 
estimates online. 

REPRODUCTION NUMBER ESTIMATION WITH 
AKF

The instantaneous reproduction number, Rt at time t 
can be estimated as following equation 

R
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where E(X) denotes the expectation of a random variable 
[21].  In Eq. 13, it stands for the number of new infections 
generated at time step t. In practice, ws is approximated by 
the distribution of the serial interval. In this article, we have 
taken the distribution of ws as a uniform distribution in  
f(ws) = 1/7, s = 1,2,...,7   form. Since E(it) = î t, Eq. 13 can be 
written as following equation 
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The value of  Rt calculated using Eq. 14 is given in Figure 
1-Figure 16. There is no need for any other model assump-
tion in estimating Rt with this method by using the DLM. By 
modeling the cumulative case time-series COVID-19 with
DLM stochastic process and estimating them with AKF the
number of daily cases and the instantaneous reproduction
number is calculated without any other operation. It is quite 
a convenient method to model the cumulative case number
time series with the DLM stochastic process and estimate
them with online AKF.

RESULTS AND DISCUSSION

In this study, cumulative and daily cases of COVID-19 
have been estimated online using DLM and AKF based on 
the total COVID-19 cases between January and September 
9 2020, in USA, Germany, United Kingdom, Italy, France, 
Russia, Brazil, India, Turkey, Spain, Peru, Colombia, South 
Africa, Argentina, Iran, Pakistan. The cumulative case num-
ber was modeled with DLM, and the time-series were esti-
mated by online AKF. Estimation by acquired data observed 
between January and September 9, 2020, shows that employ-
ing the discrete-time DLM and AKF in terms of MSE and R2 
provides efficient analysis for modeling the total case. It is pro-
posed that the use of discrete-time DLM and AKF is appro-
priate. After estimating the number of cumulative cases, the 
computation of daily cases was made. After calculation of the 
estimation of number of daily cases, reproduction number 
was obtained. The DLM is an appropriate estimation method 
for the cumulative and daily cases. As for AKF, utilizing only 
the observation in time t and preceding estimation is the most 
advantageous aspect of this method. Modeling the cumulative 
case time-series with the DLM and estimating them with AKF 
both leads to the number of daily cases and the instantaneous 
reproduction number without any other operation. It is quite a 
simple method to model the cumulative case time series with 
the DLM stochastic process and estimate them with online 
AKF. Among the studies made on the COVID-19 pandemic, 
the progress of modeling the disease is remarked primarily. 
The progress of modeling the disease is substantial for the pre-
cautions to be taken and, interventions and treatments to be 
administered by the countries. As a result of estimations com-
puted by data observed between January and September 9, 
2020, it is proposed that the efficient analysis for modeling the 
total case is to be made using the DLM and AKF in terms of 
MSE and R2. It is thought that the method we have proposed 
is suitable for the estimation of the forthcoming progress. Our 
suggestion is that the most convenient method for the estima-
tion of the reproduction number can be performed by model-
ing the cumulative case number time series using DLM. 
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Figure 1. USA: Daily cases and estimated, reproduction number estimation.
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Figure 2. Germany: Daily cases and estimated, reproduction number estimation.
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Figure 3. UK: Daily cases and estimated, reproduction number estimation.
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Figure 4. Italy: Daily cases and estimated, reproduction number estimation.
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Figure 5. France: Daily cases and estimated, reproduction number estimation.
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Figure 6. Russia: Daily cases and estimated, reproduction number estimation.
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Figure 7. Brazil: Daily cases and estimated, reproduction number estimation.
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Figure 8. India: Daily cases and estimated, reproduction number estimation.
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Figure 9. Turkey: Daily cases and estimated, reproduction number estimation.
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Figure 10. Spain: Daily cases and estimated, reproduction number estimation.
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Figure 11. Peru: Daily cases and estimated, reproduction number estimation.
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Figure 12. Colombia: Daily cases and estimated, reproduction number estimation.
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Figure 13. South Africa: Daily cases and estimated, reproduction number estimation.
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Figure 14. Argentina: Daily cases and estimated, reproduction number estimation.
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Figure 15. Iran: Daily cases and estimated, reproduction number estimation.
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Figure 16. Pakistan: Daily cases and estimated, reproduction number estimation.


