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In this manuscript, we introduce generalized hybrid mappings in hyperbolic metric
spaces. We first show that the set of fixed points of such mappings is closed and convex. We
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mappings in the setting of -trees for the first time in the literature.
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INTRODUCTION

Fixed point theorems for several types of mappings
have already been proven and developed in different
spaces by mathematicians. For instance, Takahashi [1]
have contributed a lot to the study of nonexpansive map-
pings, nonspreading mappings [2] and hybrid mappings
[3]. Takahashi et al. [4] then introduced a broader class of
mappings known as generalized hybrid mappings which
contains all the classes of nonexpansive mappings, non-
spreading mappings and hybrid mappings. They proved
fixed point results for such mappings in Hilbert spaces.
The idea of generalized hybrid mappings has then been
extended to (a, )-generalized hybrid mappings [5], (&, f3,
y, 6, € (, n)-widely more generalized hybrid mappings [6]
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and normal generalized hybrid mappings [7]. Lin et al. [8]
extended the idea of generalized hybrid mappings to CAT
(0) spaces and approximated fixed points results through
iterations.

In the present article, we extend the idea of generalized
hybrid mappings for 2-uniformly convex hyperbolic metric
spaces. We first show that the fixed point set of these map-
pings is closed and convex. Secondly, we prove the existence
of fixed points of these mappings. Thirdly, we approximate
these fixed points using Mann iteration process. Finally, we
provide a non-trivial example of generalized hybrid map-
pings in the setting of -trees.
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PRELIMINARIES

Following concepts will be needed in the sequel.

Definition 1: [9] Let (M, d) be a metric space. Suppose
that there exists a family F of metric segments such that any
two points x, y in M are end points of a unique metric seg-
ment [x,y]eF ([x, y] is an isometric image of the real line

interval [O,d(x, y)]) Denote the unique point z of [x, y] by
Sx @ (1- )y, which satisfies

d(x,z)= (1—,6’)d(x,y) and d(z,y) =,6’d(x,y)

where £<€[0,1].

Such metric spaces are known as convex metric spaces
[10].

Moreover, if we have

d(ap@(l—a)x, a’q@(l—a)y)S od(p.q)
+(1- a’)d(x,y)

for all p,q,x,y €M and a€[0,1], then M is said to be a
hyperbolic metric space [11]

A subset C of a hyperbolic metric space M is convex if
[x, y] c C whenever x, y are in C.

Definition 2: [9] Let (M, d) be a hyperbolic metric
space. M is uniformly convex if for any a e M for every r >
0 and for each ¢ > 0,

1 1 1
1-—d (—x@— ,a);d x,a
stney=inf] GO Al

<rd(y.a)<rd(x,y)2re

where infimum is taken all over x,y e M .

From now onwards, we assume that M is a hyperbolic
metric space.

Theorem 1: [11] Let (M, d) be uniformly convex. Fix
ae M . Foreachr>0,¢e>0,denote

Y(r,e)= inf{%d2 (a,x)+%d2 (a,y)-d* (a,%x @%y)},

where infimum is taken all over x,y € M such that d(a, x)
<1 d(a, y) <rand d(x, y) < re. Then ¥(r, €) > 0 for any r > 0
and for each ¢ > 0. Moreover for a fixed r > 0, we have

@ ¥50)=0

(ii) Y(1 €) is nondecreasing function of ¢;

(iii) If £T: #(r.t,)=0, then lim t,=0.

The concept of p-uniform convexity was used exten-
sively by Xu [12]. Its nonlinear version for p = 2 has been
introduced by Khamsi and Khan [11] using the above func-
tion ¥ as follows.

Definition 3: The space (M, d) is 2-uniformly convex if

Cu

:inf{\P(zr’zg) D 1,E >0}.

r'€

From the definition of C,, the following inequality is
obtained:

d’ (a,%x @%y}r cyd’ (x,y)< %dz (a,x)+%al2 (a.y),

for any a,x,y € M.
Theorem 2: [9] Assume that (M, d) is 2-uniformly con-
vex. Then for any az€[0,1], there exists C,, > 0 such that

d*(a,ax®(1- ) y)+ CMmin(a'z,l— 0!2))
d*(x,y)< od’ (a,x)+(1- )d* (a, y)

for any a,x,y € M.

Theorem 3: [13] Let (M, d) be complete and uniformly
convex and C be a nonempty, closed, bounded and convex
subset of M. Let 7 be a type defined on C. i.e., =M — R, if
there exists {x } in C such that 7(x) = lim___d(x, x ). Then
any minimizing sequence of 7 is convergent and its limit is
independent of the minimizing sequence.

Lin [8] gave the definition of generalized hybrid map-
pings in CAT(0) spaces. We now extend the idea of general-
ized hybrid mapping to hyperbolic metric spaces as follows.

Definition 4: Let C be nonempty subset of a 2-uniformly
convex hyperbolic metric space M. We say that T:C - M is
a generalized hybrid mapping if there are functions a,, a,,
a, k, k,: C—[0,1) such that

a,(x)d* (x,y)+a,(x)d*(Tx, y)
i) d&(Tx,Ty)<| +a,(x)d* (Ty,x)+k, (x)d* (Tx, x)

+k, (x)d* (Ty, y)

forall x,yeC.

ii) a,(x)+a,(x)+a,(x)<1forallx e C.

iii) 2k (x) <1-a,(x)andk,(x) <1-ayx)forallx e C.

And here we provide a nontrivial example of general-
ized hybrid mappings in the setting of R -trees. Moreover,
we show that a generalized hybrid mapping is not necessar-
ily a nonexpansive mapping.

Example 1: Consider R? with usual Euclidean metric
d(.,.) and Il defined by

d(xy) ==yl =z - 3.) +(x, =)

where x = (x, x,) and y = (y,, y,). Define the radial metric
d by

d(x.y),
d(x,0)+d(y,0),

if y =txforsomet e R

d,(x,y) ={

otherwise.
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Then X: = (R? d) is an R-tree with radial meter d_[14].
Consider

(,0): 0,):

2

B ae[o,z]U[zx,sﬂ U ae[o,z]U[zx,sﬂ -

0 (x>=a2(x>=a3<x)=§, kl(x)f,kz(x):j

Define a mapping T: C - C by

(0,00 «e][0,2]
T(0)= 1] and

0,) ae [4,55}

(0,00 «e[0,2]
T(0,)=

(@0) ac [4,5%}'

Then we show that T is a generalized hybrid mapping.
Case 1: x = (a, 0), y = (5, 0).
(i) Ifa, 5 €[0,2], then Tx=(0,0), Ty = (0,0). This gives
& (Tx,Ty) =47 ((0,0),(0,0)) =0
and hence,

& (Ix,Ty) S £ (x,9) 4 (Tx,p) 4 (Ty,x)

+id,2 (Tx,x)+ de (Ty,y)

is true as

2 2 2 2 2
OSM+a_+ﬁ_+a_+3i‘
5 5 5 4 4

() If a,Be [4,5%}, then Tx = (0, &), Ty = (0, B) and

hence

d’(Tx,Ty)=(a- )
Sl(oz—ﬁ’)2+'[)ﬁ-|-w2 +,6’2+a2 +Z+£
5 5 5 2 2
1 2 1 2 1 2 1 2
=—d (x,y)+gdr (x,y)-i-gd, (Ty,x)+zdr (Tx,x)

r

+ de (Ty.y)

1
(iii) If «€[0,2],B¢€ [4,55}, then Tx = (0, 0), Ty = (0,
p) and hence

2 2 2 2 2 2
ZS(Ol ﬁ) +ﬁ_+06 +ﬂ +a_+£
5 5 5 4 2

(iv) If ae[4,5%:|,ﬂe [0,2] then Tx = (0, &), Ty = (0O,

0) and hence
(a-B) o o o' 3

o<+t
5 5 5 2 4

Case 2: x = (a, 0), y = (0, p).
(i) Ifa B e [02] then Tx = (0, 0), Ty = (0, 0) and
hence

& (Tx,Ty)=0<2 -

(i) If a,Be [4,5%}, then Tx = (a, 0), Ty = (B, 0) and

hence

(B-o) o

2 2 2
o-
a2+ﬁ2£a i +( A) + e
5 5 5 2 2

(iii) If a€[0,2],B€ [4,5%} then Tx = (0, 0), Ty = (¢,

0) and hence
2 2 2 2 2 2
i 04
2 SM+B_+M+O‘_+£‘
5 5 5 4 2

B

1
(iv) If ae [4,55:|,ﬂ6 [0,2] then Tx = (0, @), Ty = (¢,

0) and hence

Case 3: x = (0, «), y = (0, 3), the proof is similar to Case
2.

Case 4: x = (0, a), y = (0, 3), the proof is similar to Case
1.

Hence, in all the cases, T is a generalized hybrid map-
ping. Moreover, generalized hybrid mapping is not neces-
sarily a nonexpansive mapping as below.

Consider the mapping same as defined above and let

x=(0,5), y=(0,1), Tx=(5,0), Ty =(0,0).
Then d?(Tx,Ty)=d;((5,0),(0,0)) =25.

d; (x,y)=d; ((5,0),(0,1)) =16 = d; (Tx,Ty) >d} (x.).

MAIN RESULTS

In this section, we use extended idea of generalized
hybrid mapping to hyperbolic metric spaces to show that
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the fixed point set of these mappings is closed and convex.
We also prove the existence of fixed points of these map-
pings and then approximate these points using Mann itera-
tive process.

In order to achieve our first goal, we prove in the follow-
ing proposition that the set of fixed points F(T) of a general-
ized hybrid mapping T is closed and convex.

Proposition 1: Let C be a nonempty closed and convex
subset of a complete 2-uniformly convex hyperbolic metric
space M and T:C - M be a generalized hybrid mapping

with F(T)# @ and c,, =(%—1)> 0, where t € (0,1). Then

F(T) is a closed and convex subset of C.
Proof: If {x } is a sequence in F(T) and limx, = x, then

n—seo

d*(Tx,x,)<d*(Tx,Tx,)
<a,(x)d’*(x,x,)+a,(x)d* (Tx,x,)+a,(x)d’* (Tx,,x)
+k, (x)d* (Tx,x)+k, (x)d*(Tx,,x,).

This gives
(1-a,(x))d* (Tx,x,) < a,(x)d* (x,x, ) +a, (x)d* (x,,x)
+k, (x)d* (Tx,x)
< (a1 (x)+a, (x))d2 (x,xn ) +k (x)d* (Tx,x)
< (1 —a, (x))d2 (x,xn ) +k (x)d* (Tx,x),

and so

k, (x)

d (Tx,xn)Sd (x,xn)+m

d* (Tx,x).

Applying limit on both sides in the above inequality, we
get that

k, . _
(l—mj d (TX,X) =0.

Since | 1— ky #0, therefore d*(Tx, x) = 0.
1- a, (x)

Next, we show that F(T) is convex. If x,ye F(T)c M
and x # yset z=tx @ (1—-t)y fort € [0,1]. Note that
d*(Tz,z)=d* (Tz,tx ® (1—t) y) < td” (Tz,x)

=00 (T2,y) ¢ min(e (1= 07 ()

Now,

d*(Tz,x)=d*(Tz,Tx) < a,(z)d’ (z,x)+a,(z)d" (Tz,x)
+a,(2)d* (Tx,z)+k (2)d* (Tz,z)+ k, (z)d* (Tx, x),

implies

(1-a,(2))d* (Tz,x) < (a,(2) +a,(2))d’ (z,x)
+k, (2)d* (Tz,z).

This gives

k, (z)

d*(Tz,x)<d (z,x)+(l_a2(z))

d’(Tz,z).

Further,

d*(z,x)Sd* (tx ®(1—1) y,x)
<td® (x,x)+(1—t)d*(y,x)-C,, min(l‘z,(l—t)z)d2 (x,9)
<(1-t)d*(y,x)-C,, min(tz,(l— 1‘)2)d2 (x,).

Similarly,

ki (2)

d (TZ,)/) <d (Z,y)+m

d*(Tz,z),

and
d*(z,y)<td* (y.x)—c,, min(tz,(l - l‘)z)d2 (x,).
Substituting values back in (3.1)

d’ (Tz,z) <t(1-t)d* (x,y) — te, min(t*,(1-1)* )d* (x, y)
N tk, (z)
(1-4a,(2))
—(1=1t)c, min(t*,(1-1)*)d* (x,y)
L=k (2)

d* (Tz,z)+t(1-1)d*(x,y)

d*(Tz,z)—c,, min(t*,(1—t)*)d* (x, y).

(1-a,(2))
Now,
d* (Tz,z)<2t(1-t)d’ (%, )+ %dz (Tz,z)

—tc,, min(t’ ,(1 —t)? )dz (x,y)
-(1-t)c,, min(tz,(l - 1‘)2)d2 (x,)
—Cy min(tz,(l - z‘)z)d2 (x,).

(3.2)

1
Case 1: If min(tz,(l—t)2)=t2(t<—) then (3.2)
becomes, 2

k, (2)
(1-a,(2))
e, d (x,y) =2 A=t)c,d’ (x,y)—t7c,,d* (x,y)

d*(Tz,z)<2t(1-t)d* (%, )+ d’(Tz,z)
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<2td* (x,y)—2t°d* (x,y)—2t%¢c,,d* (x, )
k (z)
(1-a,(2)

From above inequality, we get

d’ (Tz,z).

4’ (Tz,z)<2d* (x,y)[t—t* =t |
ki (2)

+md2 (TZ,Z),

which implies

(1-a,(z)

2 42 42 l_a—z(Z)
<2d’ (x,y)[t -t ”M]Jr[z(l—az(Z))

<2d’ (x,y)[t-t* —tsz]—édz (Tz,2),

OSZdZ(x,y)[t—tz—tsz]+( ki (2) )—1]d2(Tz,z)

—lez(Tz,z)

and hence
This implies d*(1%, z) = 0 i.e. Tz = z, showing that the set
of fixed points is closed and convex.

Case 2: Now if min(t*,(1-1)*)=(1-t), (t >%j then
(3.2) becomes,

k, (2)
(1-a,(2))
—tc,, (1-t)’d* (x,y)—c,, 1—1)’d* (x, y)
—c, 1=ty d*(x,y).

d*(Tz,z)<2t(1-t)d* (%, )+ d’(Tz,z)

From the above inequality, we get

k, (2) 2
[l—m]d (TZ,Z)
<[2t(-t)—te, (1=1) =), (1-1)’ — ¢, (1—1) |d* (x, y)

<[2t(1-1)-2¢,,(1-1) |d* (x, ),
which implies
0<2(1=1t)(t+c,, A—t)d*(x,y)

k1 (2) 2
+[—1 + —(1 e, (z))Jd (Tz,2)

0<2(1-t)(t+c, A—t)d* (x,y)— %dz (Tz,z),

1 t
that is, if E<t<1 then ¢, =—-——— which cannot be

(1-1)

the case as we have C, > 0.

The next result is the demiclosed principle for general-
ized hybrid mappings.

Theorem 4: Let (M, d) be a complete and 2-uniformly
convex hyperbolic space and C be a nonempty, closed, con-
vex and bounded subset of M. Let T:C - M be a general-
M. Let {x } be a
1-a,(x)
d(x,,Tx,)=0. Then

ized hybrid mapping with 2c,, >

sequence in C with x —x and lim

n—oo
x € Cand Tx = x.
Proof: Since x, > x so x € C and define the function

7(x)=lim,,_d(x,,x). Since, T is a generalized hybrid
mapping, we compute

d* (Tx,Tx,) < a,(x)d* (x,x,)+a, (x)d* (Tx,x,)

+a, (x)d’* (Tx,,x)+k, (x)d* (Tx,x) + k, (x)d* (Tx,,x,)

<a (x)d*(x,x,)+a, (x)(d(Tx,Txn )+d(Tx, . x, ))2

+a, (x)d* (x,,x)+k, (x)d* (Tx,x)

<(a,(x)—a,(x))d* (x,x,)+a, (x)d* (Tx,Tx, )

+k, (x)d’* (Tx,x)(1-a, (x))d* (Tx,Tx,)

<(1-a,(x))d* (x,x, )+ k (x)d* (Tx,x)

k, (x)
(1-a,(x)
limsup d° (Tx,x, ) < limsup d* (x,x, )

k, (x)
e ()

d* (Tx,Tx,) < d* (x,x,)+ d* (Tx,x)

n—oo

d* (Tx,x).
Since M is 2-uniformly convex,
1 1 1
a (xn,—x ® —Tx) <=d*(x,,x)
2 2 2
1
+5d2 (x,,Tx)—c,d* (x,Tx)

limsup d* (xn ,%x ® %ij < élimsup d*(x,,x)

n—oo n—oo

+§limsup d* (x,,Tx)—c,d* (x,Tx)

n—oo

limsup, . d*(x,.x)+

1., 1
< —11rg3p d(x,x)+=|  k(x) & (T, x)
(1-a,(x))
—c,d* (x,Tx)
. k, (x)
<limsup, ,_d’*(x,,x)+ ————d" (Tx,x)
( ) 2(1-a,(x))
—c,d’ (x,Tx)
k, (x)

<1 2 i _ 2 T
imsup, ,_ d*(x, x)+[—2(1—a2 @) chd (x,Tx)
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(_%4_ Cu ]dz (x>Tx) <limsup, .., 42 (xn)x)

1 1
—limsup, ,_d* (xn 5% ® ETx)

<(z(x)y —(r@x@%n)]z <.

Hence Tx = x.
Recall that Mann iterative process is defined by

xn+l = tnTxn @(l_tn )xn

for any n > 1 where {t} € (0,1) and x, € C is the initial
point. Now we investigate the connection between F(T) and
the Mann iterative process.

Theorem 5: Let (M, d), C and T be as in Theorem 4. Let
{x } be defined by the Mann iterative process as given above
with liminf, |t >0 for all w € F(T). Then {x } converges

n—oo’n

strongly to a fixed point of T.
Proof: Note that

d’(x,,,0)<t,d* (Tx,,0)+(1-t,)d* (x,,0) (3.3)
Now,
d* (Tx,,0)<d* (Tx,, Tw)

<a (w)d’(x,,0)+a,(0)d* (Tx,,0)+a,(0)d’ (Tw,x,)

+k, (w)d* (Tx,,x, ) +k, (0)d* (To,0)

<’ (xn,a))+Lf1a(—a()()u)}d2 (Tx,x,)
<d? (xn,a))+%d2(Txn x,).

Putting value of d,(T"(x ), w) back in (3.3),

d*(x,.,.@)<t, |:d2 (x, @)+ [%}dz (Tx,,x, )}
—a,
+(1 - tn )dz (xn’a))

d’(x,,,@)<d’ (x,,0)+t, {%}dz (Tx,.x,).

By assumption, there exists § > 0 and N € E such that

t{ﬂ}25>0,
1-6!2((1))

for all Without loss of generality, we may assume that,

tn {M} >0
1_az ((l))

forall n € N And since Cis bounded, so is x and d(Tx , x ).
Hence {d’(x , w)} is decreasing and so is {d(x , w)}. Hence

lim, ,_d(x,,®) exists.
Next we prove that lim _,_d*(Tx,,x,)=0.

Let r=lim,,_d’(x,,®). Without loss of generality, we
may assume 1 > 0.
Moreover,

d*(Tx,,®)=d’ (Tx,,Tw)
4 (@)d’ (x,,0)+a,(0)d* (Tx,, @)+ a,(@)d* (Tw,x,)
- +k, (@)d* (Tx,,x,)+k, (0)d* (Tw,0)

ki (@)

Sdz(xn,a))+
l_az (w)

d*(Tx,,x,)
<d*(x,,o)
=d* (Tx,,0)<d*(x,,).

limsup,_,_d*(Tx,,®)<lim,__ [d2 (x, ,a))] =r.
Let u beanon-trivial filter over N Then li;n t, =te|ab].
Then by

d’(x,,, o)<t d*(Tx,, )
+(1-t,)d* (x,, @) forany n 21,

we have

r= li;nd2 (x,.,0)< l‘lilllnd2 (Tx,,0)+(1-1)r.
Since  # 0 we have lim d*(Tx,,w)=r. Hence

r <liminf d* (Tx, ,®) < limsupd® (Tx,,w)<r.

n—eo n—eo

Hence lim, ,_d°(Tx,,@)=r. Since M is 2-uniformly

convex, Theorem 2 implies

Cy mén(tj,(l —t,))d* (Tx,.x,)<t,d* (x,,®)

+(1-t,)d* (Tx,, @) - d* (x,,,, @).

n+l?

where C, > 0 depends only on M. Since
min(t2,(1-t¢,)*) = min(a’,(1-b)*) >0,

and lim[t,d* (x,,0)+(1-t,)d* (Tx,,0)-d*(x,,,0)] =

0, we have lim,__ d*(Tx,,x,)=0

Now applying Theorem 4, we have T = x and hence {x }
converges strongly to a fixed point of T.
Now we give an example to validate Theorem 5.
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Example 2: Let C= {(0,0{) : ae [0,2]} cR?. Then Cis
closed, convex and bounded.

Proof. Define T:C — R? by T(O,a):(o,%} Let (0,

), (0, «)) € Cand now calculating the one side of the gen-
eralized hybrid mapping, we have

(o rion)-{(o2 o)

Y 2
[ e e | (o)
2 2 4
For the other side, we have

@ ((0.1).(0,)) =

&’ (T(O,afl),(o,az))zdz((o,%

al_az)2>

N~— —~
—
£
K
~
N—
Il
—
K
|
[\
K
~
o

1

3
and letting a, =a, =a, = g’kl =—k,= 4> Wecansee that

1
4’
T is a generalized hybrid mapping.

Let {(0, «)},_, be a sequence in C with (0, &) - (x,

neN

y) and @, =l, then limd((O,an),(O,%D:limﬂzo_
n

Nn—eo n—eo )

Then we have (0,0) =(0,«) € Cand T(0,0) :(0,%): (0,0).

CONCLUSION

We introduce generalized hybrid mappings in hyperbolic
metric spaces. We first show that the set of fixed points of
such mappings is closed and convex. We then prove the exis-
tence of fixed point of these mappings and finally approxi-
mate the fixed point using Mann iterative process. We have
also provided an example of generalized hybrid mappings in
the setting of -trees for the first time in the literature.
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