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INTRODUCTION

ABSTRACT

Linear and nonlinear numerical techniques are the most popular techniques for finding
approximate solutions to initial value problems in numerous scientific fields. Due to the
substantial importance of ordinary differential equations, an attempt has been made in
the present research study to obtain a new nonlinear hybrid technique based upon contra-
harmonic and harmonic means having fourth-order accuracy. Theoretical analysis in terms of
consistency, stability, asymptotic errors (local and global truncation errors), and
convergence has also been carried out. The newly formulated technique is compared with
some existing techniques having the same characteristics and observed to be much better
because of errors, CPU time, and stability region. The adaptive step-size approach improves
the performance of the proposed technique, and strategies to control the errors are
developed. Some numerical experiments for scalar and vector initial value problems,
including logistic growth, sinusoidal and industrial Robot Arm systems, are presented to
show better performance of the proposed technique.

Cite this article as: Soomro A, Qureshi S, Shaikh A A. A New Nonlinear Hybrid Technique
with fixed and adaptive step-size approaches. Sigma J Eng Nat Sci 2022;40(1):162-178.

Initial value problems in ordinary differential equations like mathematics, physics, biology, fluid mechanics, and
have always been significant in different scientific subjects  other various fields. Initial value problems play an essential
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role in modeling various phenomena in biological science
and the physical laws of nature. The theory of ordinary dif-
ferential equations is being used in physics to study the
earth’s rotation, studies about stars, electric current, gravita-
tional laws, and electrical circuits. The laws of Newton about
masses and forces are also expressed in terms of ordinary
differential equations. Other studies include the vibratory
motion of springs in mechanical engineering, transmis-
sion dynamics of diseases in epidemiology, and many other
areas. In biology, study about blood pressure, sugar, medi-
cines, DNA, and RNA molecules is also based upon mod-
els under the theory of ordinary differential equations. In
computational fluid dynamics, measurement of flow of the
different fluids, velocity profile of the fluids, share the stress
and pressure distribution in the Poiseuille and Coutllie flow
are all shown in terms of ordinary differential equations. In
chemistry, synthetic response energy, study about different
reactions of metals, and kinetic energy are all based upon
ordinary differential equations. In population dynamics
(Verhulst-Pearl model), in engineering (beats of a vibrat-
ing framework) and a lot more can be found in [1-8] for
applications of ordinary differential equations. For applica-
tions of partial differential equations, one can consult the
recently published works in [9-12]. The most recent appli-
cations can be found in [13-17].

Despite the frequent occurrence of these mathematical
models in several interesting areas, it cannot be denied that
most of these models are not exactly solvable, mainly due to
the involvement of nonlinear terms and the stiffness of the
problem in hand. In other words, their solutions can neither
be represented in terms of elementary mathematical func-
tions nor can they be found in analytical expressions. This is
where numerical techniques come to our rescue. With the
advent of digital computers, getting accurate approximate
solutions to mathematical models once considered unfath-
omable has become straightforward. Instead of producing
a closed-form solution for a model, numerical techniques
generate a sequence of results in a discrete fashion which is
easily tabulated for graphical interpretation of the solution.

One mathematical model is different from another in
many respects, such as physical interpretation of the model,
characteristics of parameters contained therein, and given
conditions. Therefore, one numerical technique is not suf-
ficient to serve the general purpose, thereby leading to
have much research works on developing new numerical
techniques [18-22]. These are the techniques suitable for
a particular set of problems, and this search continues to
the day. Various scholars have either devised new numeri-
cal techniques for solving initial value problems or improv-
ing existing ones in many aspects such as convergence rate,
order of accuracy, stability, efficiency, computational cost,
number of slope evaluations per integration step, speed,
and implementation.

Standard numerical techniques to solve initial value
problems in ordinary differential equations include linear

explicit and implicit Runge-Kutta techniques, linear explicit
and implicit Adams-Bashforth-Moulton techniques, expo-
nential techniques, multi-derivative techniques, backward
differentiation formulae, and a few others. The nonstandard
techniques such as improved linear explicit Runge-Kutta
schemes with reduced slope evaluations, accelerated Runge-
Kutta schemes, singly implicit Runge-Kutta schemes,
A-stable Runge-Kutta schemes, collocation schemes, two-
derivative Runge-Kutta schemes, semi-implicit hybrid
schemes, explicit and implicit block techniques have been
developed in the available literature. Apart from these, non-
linear/rational numerical techniques to solve mathematical
models having characteristics of stiffness and singularity
have also been developed.

A few strategies have been created utilizing the possi-
bility of various techniques, for example, the mathematical
mean, centroidal mean, symphonious mean, power means,
Lehmer mean, and the heronian mean. The three-phase
strategy (3-stages and third-order), depending upon the
combined means, and multiderivative techniques in the
average mean were developed in [23-32].

One of the difficulties in implementing the standard
4-stages fourth-order Runge-Kutta technique is the absence
of control of errors’ procedure in the computation of the
numerical results. Several techniques have been adopted
to overcome these weaknesses, specifically this is done
by introducing the procedure that can control the errors
in the results. Amongst them are techniques developed
by Merson, Scraton, and Fehlberg. Related work was car-
ried out by Sanugi, who introduced a fourth-order AGM
(Arithmetic Geometric Mean) technique, which is based on
geometric mean plus a fourth-order technique based on the
arithmetic mean [33].

The present article is structured as follows: Section 2
contains formulation and derivation of the proposed non-
linear fourth-order technique based upon contra-harmonic
and harmonic means. Detailed analysis having stability,
consistency, convergence, error control, and error bounds
are given in Section 3. The proposed technique is also tested
via an adaptive step-size approach as discussed in Section 4.
The performance of the proposed technique is checked in
Section 5 under numerical simulations, and finally, conclu-
sion with future remarks are provided in section 6.

FORMULATION AND DERIVATION

In this section, we will derive a new four-stage fourth
order nonlinear RK technique for solving initial value prob-
lems of the type

d
d_}t, = g(t,Y(t)), Y(to) =Yo (1)

The general s-stage of the proposed non-linear tech-
nique can be written as follows:
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Table 1. Butcher arra 3 2 3
' e[ 82008 8,88 88
@1 n 24 6 24
x2 Y21 Y22 R
a.s 'Y:!l Y:\z Y33 S8 . 7(gy)y)yg gy)
; ; ; : 120 120 (7)
Xs—1 | Ys—1,1  VYs-1,2 Vs-33 Ys—1,5-1 11 1
X Ys,1 Ys,2 Ys.3 Ys.s-1 Ys.s 4 _— 2524~ 52 3 5 6
o o o e ~ h* + +120gwg gy+30gwg h +O(h )
g
120 &8
Y1 =Va +zi:1(°iki ) Next, all the four slopes k, k, k,, and k, have been
expanded into the Taylor series about t and substituted
where in the equation (6) for comparing the coefficients as given
in the equation (7). One can obtain a nonlinear system
k, =g(t +ohy, +hY y..k.) (3)  of algebraic equations (order conditions) based upon 10
e unknowns and 7 equations.
and )
-0, - o, —“—?3+1=0, (8)
o=, Yy i=0.123,.8, (4)

with a and w are s-dimensional vectors and A(y,) be the s x
s matrix. Based upon above notations, the Butcher tableau
given in the Table 1. Butcher array can be formulated in the
following way:

Since we intend to formulate a four-stage fourth order
technique, above equations are simplified as follows:

k1= g(tn, yn),
k2= g(tn + 62h, yn + y21hk1), (5)
k3= g(tn + 63h, yn + (y31k1 +y32k2)h),
k4= g(tn + o4h, yn + (y41k1 + y42k2 + y43k3)h),
SRk kK
Ckotk ks k kg +k,
omy bl bRk (6)
kik, + kk, + kyk,
cop Rk
k.k, +k,k, +k,k,

The unknown parameters w (q =1, 2, 3, 4) and iz (i, j
=2, 3, 4) have to be calculated. Without losing complexity,
and for the sake of clarity, the function g is taken to be the
function of only the dependent variable, y. The true solu-
tion via the Taylor series expansion is expressed below up
to fifth order:

hz 2 2
=l g A, £

(_674,3 _672,1 _673,1 _67/3,2 _67/4,1 —67/“)&)2
18
+(_274,3 _27/2,1 _273,1 _273,2 _274,1 —2}/4’2)604
18 9)
+ (—6&)1 _203)72,1 + (—6&)1 —2&)3)]/3’1
18 18

. (—6a, —2w,)7,, LI
18 2

_37;1 _673,173,2 _37;2 - 3%21,1
+(_674,3 _67/4,2)7/4,1 _37;4,3 @,

_674,37/4,2 - 37;,1 - 3731,2
18

~V51 =2V Ys2 = Yon — Vs
+(—2;/4,3 —27/4,2)7/4,1 @,
n _J’i,s _274,374,2 - 7’;1 - 72,2
18
LBa-w)p, (@ (@)3),
18 3

+ (—30)1 - a)s)}é
18

(10)

2 +1/6+

1

_(_127;1 _367;173,2 _367/3,17:,2 _12};3,2)

216
_12(74,3 +Voa TtV t 74,2)(7121,1 +(274,3 — 7
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+274,2)74,1+ 4,2+(2743_721)742+ 43
VsV T 21)d)+ ( 4};31 12];31732

_1273,17/32,2 _4}/33,2 - (74,3 t7a TVt 74,2)}/1,1
+(27/4,3 — 721 +274,2)74,1 + 4,2 +(274,3 - 72,1)7/4,2
tVis = Vas?on T 2,1))0)4"'((_120)1_40)3)7/;1) (11)

_((01 + (503)%)7/3,27:,1)%— (a)l + a)a)}/:,zyu)

216

1 1

—+(—12.@—1—4@3);/j,z)ﬁ—(a)1 z,l)ﬁ
11

_(w3)}/23,1)§ ﬂ_ ’

1
a(—12;/;1 +(127,, +127,, —67,, +127,,
_674,2)72,1 _12732,1 +(_67/4,3 _2473,2 + 1274,1
+1274,2)73,1 _127;,2 +(_674,3 +1274,1 +127/4,2)
1
+§(47§1
+(_474,3 - 473,1 _1073,2 _474,1 _1074,2)72,1

+47}3,1 + (_107/4,3 + 87/3,2 - 47/4,1 - 474,2)73,1
+4732,2 +(_10743 _4741 _4742)732 +4(74,3

V32 _12(74,3 + 7 +74,2)2)w2

(12)
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1 1
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(a)—1 )731( +1/6+5i4( 120, +4w,)

7/;2 =0,

- 473,2

648( 3273, +(-247,, +120y,, —967,, +247,,

+247,,) 7, + (=247, +(-216y,, + 144y,
_967/4,1 - 1447/4,2 ) Yor— 96}’5,1 + (_4874,2 + 4874,1

1
+4874,2)7/3,1 + 120(74,2 TVt 7/4,2)(74,3) +E74,1
1
+g74,2))732
_2474,2)72,1 + (247;3,1 +(_9674,2 + 4874,1 _9674,2)
Vor +Q4(7as + 700) +570)) (P + 7ar = 7))

=325, +(247,, +24y,, +247,,

Vo1 T 327/33,1 + (_2474,2 + 247/4,1 + 247/4,2 ) 7;1 + (120
(Zar + 70+ 702)) (700 + (U5) 70, + (115) 7)) 74,
1
32(7/4’2 + YtV )3)0)4 +E(48a)1 +48w,
+32m,)73, Jrﬁ((—zssa)1 -288@, +120@,)7,,
+(1440, +1440, - 960,) 7, +1440, 7,,) 74,
+L((144w +1440, —24,)
648 1 2 3 2,1
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+((-2880,

+(144@, + 144w, - 96w, 15, +288@,7, .7,

1
_2880)274,2(74,2 + 7 +74,2))732 8(48w (13)

1
+48w, +32@,) 73, +Ts(2473"w3 +144y,, @,)
};21 648 (24&)]/51 144&)2)}/3,1}/4)1—288@2}/4’2
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+74z)731 +2w7}42 +26¢) (74,1+74,2)7/<21,1_

9
20, (74,1 + 74,2) Vi 5"'20)272,1 (1/27)2&)2}/:1
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74,2§+a)274,17/i2§+w2 4,254'5:0’

i(—n Var (<3705 +67,, =367, +67,,
+67,,) 7 (=367, +(—67,, =674, +127,,
+127,,) 75, +672,) - (12(715 - 11271,
—(2) 7)) (Zas + Vs + 742)) 701 —1272,
(=374 =120, +67,, +67,,) Van + (=374,
~(02(7, —(112) 72, = (112)7,,)) (7 + 74
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h
(}/4,3 + Var + Vi ))73,1 + 47’;,2 + (_574,3 - 872,1 where
_274,1 _274,2)732,2 +(_5722,1 _(8(74,3 +(1/4) kl g(tn’y )
1 =
Var 2 Ve))(Pas + as + 742) Vi + 475, k2=g(t, +h/2y, +hi2k,),
4 k3 (10

+(_274,3 _274,1 _574,2)75,1 - 2(74,3 + 7
+470,))(Fas + Var + 7a2) Van + 475 + 74
+;/4,2)3)a)4 +(1/54)(-120, + 4@,) 73,
+(1/9) (@, - (13)@,)(7,, —67;,) 7,
+(1/54)((-360, +12,) 72, - (6(, + 5,
(1/3))) 70,75, + 675, (0, —(1/3),)) 75,
+(1/54)(-120, +4,) 73, - (1/9)(2( o,
+20,113)) 7,74 - 7o(@ +50,13)

VaiVsn +116+(1/54)(-120, + 4@, )

7, =0.

(14)

Having solved the above nonlinear system (8-14),
the unique real valued solution is obtained and has been
arranged in the Butcher array shown in the Table 2:

After substituting all the computed values in the equa-
tions (5) and (6), we obtained the following four-stage
fourth-order nonlinear Runge-Kutta technique based on
Contra-Harmonic and Harmonic means:

h
yn+1:yn+Z

2 2 2
(kl GG s

k, +k,+k,
k k,k,
kk,+k k,+k,k,

Ko +k:+k; 3
k,+k,+k,

L kkk, ’
k,k,+k,k, +k,k,

Table 2. Butcher array for the proposed non-linear RK(4,4)
technique.

(
g(tn +h/2,y, +h/2k )
ka=g(t, +h,y, +hk,).

It is also worth to be noted that the slopes (16) of the
proposed technique have same parameters’ values as that of
found in the classical linear RK technique. However, despite
having such simple slopes the proposed technique is com-
putationally more accurate having smaller errors which is
shown in the forthcoming sections. Moreover, a pseudo-
code for the proposed technique has been provided in the
algorithm 1 given below.

X

Figure 1. Comparison of stability regions (shaded in yellow
color) for the four-stage fourth-order nonlinear Runge-
Kutta techniques based on CoMHM, 4sHERK, MCHW,
CoM, and HM.

Table 3. Ranges of the stability regions for the techniques
under consideration.

0
1/2
1/2

1

0
1/2
0
0

0
1/2
0

0
1

0

1/4

1/4 3/4 3/4

Real axis Imaginary
Technique Negative  Positive = Negative Positive
CoMHM -3.472 0.749 -3.286 3.286
4sHERK -2691 0.691 -2.887 -2.887
MCHW -1.147 0.593 -0.139 0.139
CoM -2.436 0.710 -2.649 2.649
HM -2.539 0.612 -2.463 2.563
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Algorithm 1: Pseudo-Code of the proposed CoMHM method.
procedure CoMHM(g, t,y,h,n)
integerj,n; real ki, k2,k3, ks, h,t,to,y
external function g
Output 0, t,y
to—t
for(j =1ton)
k1 & g(tn,Yn)
k2 &« g(tn + 3, yn + 3k1)
k3 « g(tn + i‘-,yn + %kz)
kK4 ¢ g(tn + h,yn +k3)

h|(k}+k3+k3  k3+ki+K3
LA RS | e e vy
3 kik2k3 + k2k3ks
kika + kiks + kaoks  kaoks + Kok + kaks
te—to+jxh
Output j, t,y
end for
end procedure CoMHM
THEORETICAL ANALYSIS

STABILITY ANALYSIS

In this section, we discuss and compare the stability
region for the newly proposed four-stage fourth-order
nonlinear Runge-Kutta technique based on Contra-
Harmonic and Harmonic means with stability regions of
some existing four-stage fourth-order nonlinear RK type
techniques having different means. To evaluate stability
polynomial, we use simple test equation y'(t) = py(t) where
B is a complex constant. The stability polynomials for the
techniques considered in the present investigation are as
follows:

1. Stability polynomial for the newly proposed four-
stage fourth-order nonlinear Runge-Kutta tech-
nique based on Contra-Harmonic and Harmonic
means (CoMHM):

1 1 1 1
P(z)=1+z+~z+ -2+ —z'+ —7°.  (17)

6 24 864

2. Stability polynomial for the four-stage fourth-order
nonlinear Runge-Kutta technique based on Contra-
Harmonic Explicit mean (4sHERK) [32]:

1 1 1
P(z)=1l+z+—-z+ -2+ —z'+ —72".
2 6 24 960

(18)

3. Stability polynomial for the four-stage fourth-order
nonlinear weighted Runge-Kutta technique based
on Contra-Harmonic mean (MCHW) [34]:

1 1 1 141
P(z)=1+z+~z+ 7"+ —z*+ —7°.
2 6 24 124

(19)

4. Stability polynomial for the four-stage fourth-order
nonlinear Runge-Kutta technique based on Contra-
Harmonic mean (CoM) [29]:

1 1 1 21
P(z)=1+z+~z+ 2"+ —z*+ 2. (20)
2 6 24 1280

5. Stability polynomial for the four-stage fourth-
order nonlinear Runge-Kutta technique based on
Harmonic mean (HM) [30]:

1 1 1 3
P(z) =1+z+—-z+ -2+ —z'+ —72".
2 6 24

21

The condition must be satisfied in order to find the sta-
bility region for any nonlinear RK type techniques in the
complex plane. With the help of stability polynomials, the
stability regions for all the techniques under consideration
have been obtained via Maple 20 wherein it can be observed
in Figure 1 the largest region is given by the newly proposed
four-stage fourth-order nonlinear Runge-Kutta technique
based on Contra-Harmonic and Harmonic means and
similarly ranges under real and imaginary axes for the pro-
posed technique are much greater than other techniques,
as depicted in Table 3. This is the more powerful feature of
the technique proposed here. The graphic surface for the
proposed technique is shown in Figure 2 whereas tech-
niques taken for comparison have graphic surfaces shown
in Figure 3.

Jut|_ p(z) <1, (22)

n

CONSISTENCY ANALYSIS

Definition 4.1. For a given initial value problem y'(t) =
g(ty), y(t,) = y, a numerical technique is said to be consis-
tent if the following criteria is satisfied:

(23)

lim, o u(tn,yn; h) = g(ty).

Figure 2. Graphic surface given by newly proposed four-
stage fourth-order nonlinear Runge-Kutta technique based
on Contra-Harmonic and Harmonic means (CoMHM).
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-
Sl

“© Rey

TR L,

Figure 3. Graphic surfaces for the techniques (top left = 4sHERK, top right = MCHW, bottom left = CoM, bottom right =

HM) under consideration for comparison purpose.

Based upon the above criteria, we have carried out the
consistency analysis for the newly proposed technique in
the following manner:

limh_)ou(tn,yn; h) = ilimh_)0
ﬁ+@+@+
k +k, +k,

k§+k§+k§)+3 -

k, +k,+k,

k,k,k N k,k,k
ki, +kk, +kk, Kk, +kk, +kk,
Using slopes as defined in the Equations (16), we obtain
the following:
hmh—)O u(tn ’yn; h) = g(t’Y) (25)

Thus, the newly proposed technique is proved to be
consistent with fourth order accuracy.

ASYMPTOTIC ERROR ANALAYSIS

In four order to obtain the local truncation error and
global truncation error of the newly proposed nonlinear
technique (6), a usual functional associated to the tech-
nique has been considered as given below:

L(o(t),h) = o(t+h) -y, (26)

where y  is the proposed technique presented in (15-
16) and o(t) is an arbitrary function defined on the interval

[t,t,] and is taken to be differentiable as many times as
required. Having expanded o(t) by the Taylor series about
t under the local assumption and collecting the terms con-
taining powers of h, the local truncation error of (15-16)
has been obtained below that ensures at least fourth order
accuracy of the proposed technique.

8., =0,+h{g(t,y.)-8(t.r(t.))}

: 8(t7(8,)}

+Z—!{gyg( oY) 8
(t.y(t)}

s (tn,yn)—g;‘g“ (t.(t,))

Tl g

4,
8640

h3
+188(tn)-g @)

Next, we will evaluate global truncation error (GTE)
associated with the proposed technique (15-16). In order
to do this, we first write

(28)

and similarly

é;wl =Vur1 y(tnﬂ )’ (29)

The way we found LTE in (27), we will follow the same
routine to evaluate the GTE as shown in the following
computations:
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Assuming the Lipchitz condition on g with an arbitrary
constant k and that |y(t)"| < T, Vt € [t t ], we can write the
above equation in the following manner:

2 3 4
|o"m|s(1+hk+h—k+h—k+h—kj
2t 31 Al

S,

hS 4 hr—l hS
+——T, o°n+1|s 1+hkz — |0, |+ ——T,
8640 =orl 8640
Assuming
+ B /N
S=hk —,$, =1+S, §,=——-T,
2 7 > 8640

we can have the following

o,

n+

)

n

1|SSI

+8,. (30)

Hence the total error 8, consists of two parts. One part
is the local truncation error, which is no more than S2 and
which is present even if we start the step with no error at all,
i.e. with |8 | = 0. The other part is due to the combined error
from all previous steps. At the beginning of step number n
+ 1, the combined error is |§ |. During the step, this error
gets magnified by no more than a factor of S1. The second
half of the derivation is to repeatedly apply (30) n=0,1,2.
.., by definition y(t ) = y, so that [§,| = 0, so

|6, <A+8)"7"'S, +---+(1+85)S, +8,,
S=Y " (1+8)'S,.

Using the concept of geometric series, we obtain

Table 4. Comparison of techniques with respect to maximum error, final error, norm and CPU time for numerical

experiment 1 with step-size h = 102 over [0, 10].

Techniques Maximum Final Norm Time

CoMHM 1.5432e-04 3.2972e-05 1.9114e-03 1.8834e-03
4sHERK 3.4291e-04 7.6547e-05 5.0303e-03 2.4730e-04
MCHW 4.8578e-04 1.1031e-04 4.9255e-03 2.3210e-04
CoM 5.6414e-04 1.0956e-04 7.0232e-03 2.2880e-04
HM 5.6423e-04 1.0958e-04 7.0247e-03 2.3450e-04

Table 5. The performance of proposed technique with respect to number of steps, maximum error, final error, norm and
CPU time for numerical experiment 1 with adaptive step-size over [0, 0.5] under different values of the tolerance.

tol Steps Maximum Final Norm Time

1.0000e-02 38 2.7779e-02 1.6255e-02 8.4925e-02 7.3660e-04
1.0000e-03 69 8.5799¢e-03 3.1241e-03 3.6898e-02 1.6822¢-03
1.0000e-04 139 8.5145¢e-04 3.7795e-04 5.0607e-03 6.3503e-03
1.0000e-05 289 1.3873e-04 5.5867e-05 1.1818e-03 9.6650e-03
1.0000e-06 622 2.3165e-05 6.0401e-06 2.5032e-04 1.3933e-02
1.0000e-07 1356 5.1783e-06 1.1697e-06 8.5147e-05 1.6271e-02

Table 6. Comparison of techniques with respect to absolute percent relative global truncation errors for numerical experi-

ment 1 with step-size h = 107 over [0, 10].

t CoMHM 4sHERK MCHW CoM HM

0 0 0 0 0 0
2.0000e+00 8.0535e-04 6.2238e-03 4.7452¢-04 6.3842¢-04 6.3753e-04
4.0000e+00 8.0536e-04 8.0025e-03 1.0099¢-03 9.4253e-04 9.4114e-04
6.0000e+00 4.3565e-03 1.4492e-02 1.6795e-03 1.7981e-02 1.7984e-02
8.0000e+00 5.6807e-03 1.0695e-02 1.8014e-02 1.9443e-02 1.9447e-02
1.0000e+01 5.6808e-03 1.3189e-02 1.9006e-02 1.8876e-02 1.8880e-02
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Table 7. Comparison of techniques with respect to absolute percent relative local truncation errors for numerical
experiment 1 with step-size h = 10~ over [0, 10].

t CoMHM 4sHERK MCHW CoM HM

0 0 0 0 0 0
2.0000e+00 2.6619e-10 2.1728e-05 1.1986e-05 6.8898e-06 6.8827e-06
4.0000e+00 4.3317e-11 1.9598e-05 9.9287e-06 5.7121e-06 5.7027e-06
6.0000e+00 7.8250e-11 1.0108e-05 2.5088e-06 1.4631e-06 1.4667e-00
8.0000e+00 8.3207e-09 8.5859¢e-05 4.9493e-05 2.8545e-05 2.8535e-05
1.0000e+01 4.1317e-11 1.4289¢-05 5.8749e-06 3.3743e-06 3.3672e-06

Table 8. Comparison of techniques with respect to maximum error, final error, norm and CPU time for numerical experi-
ment 2 with step-size h = 1072 over [0, 0.5].

Techniques Maximum Final Norm Time

CoMHM 1.5539¢-06 1.5539¢-06 2.1734e-06 3.3820e-04
4sHERK 8.6035e-03 8.6035e-03 1.3352e-02 1.5100e-04
MCHW 8.1004e-04 8.1004e-04 1.0733e-03 1.1940e-04
CoM 7.9457e-05 7.9457e-05 1.0581e-04 9.2600e-05
HM 1.0303e-04 1.0303e-04 1.3664e-04 1.1350e-04

Table 9. Comparison of techniques with respect to absolute percent relative global truncation errors for numerical experi-
ment 2 with step-size h = 10~ over [0, 0.5].

t CoMHM 4sHERK MCHW CoM HM

0 6.6613e-14 6.6613e-14 6.6613e-14 6.6613e-14 6.6613e-14
1.0000e-01 7.8352e-08 9.8149e-04 9.0105e-06 9.6458e-07 1.1142e-06
2.0000e-01 2.3320e-07 2.8483¢-03 3.4056e-05 3.6036e-06 4.2633e-06
3.0000e-01 6.2642¢-07 7.1615e-03 1.2557e-04 1.3099e-05 1.5898e-05
4.0000e-01 2.1220e-06 2.0410e-02 6.4840e-04 6.6292e-05 8.2732e-05
5.0000e-01 1.7200e-05 9.5234e-02 8.9664¢-03 8.7952e-04 1.1405e-03

Table 10. Comparison of techniques with respect to absolute percent relative local truncation errors for numerical experi-
ment 2 with step-size h = 107 over [0, 0.5].

t CoMHM 4sHERK MCHW CoM HM

0 6.6613e-14 6.6613e-14 6.6613e-14 6.6613e-14 6.6613e-14
1.0000e-01 9.6838e-09 1.2022e-04 1.2737e-06 1.3547e-07 1.5867e-07
2.0000e-01 1.8994e-08 2.2194e-04 3.6068e-06 3.7759e-07 4.5614e-07
3.0000e-01 4.8745e-08 4.9328e-04 1.3857e-05 1.4268e-06 1.7691e-06
4.0000e-01 2.1025e-07 1.5307e-03 9.1370e-05 9.1997e-06 1.1692e-05

5.0000e-01 3.2537e-06 1.0454e-02 2.0990e-03 2.0151e-04 2.6595e-04
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Table 11. Comparison of techniques with respect to maximum error, final error, norm and CPU time for numerical
experiment 3 with step-size h = 10 over [0, 5].

Techniques Maximum Final Norm Time

CoMHM 4.2006e-11 4.2006e-11 4.9380e-10 5.4240e-04
4sHERK 6.1800e-06 6.1800e-06 7.3359e-05 1.9860e-04
MCHW 5.8989%¢-06 5.8989¢e-06 6.9010e-05 1.4030e-04
CoM 3.4158e-06 3.4158e-06 3.9949¢-05 1.3890e-04
HM 3.4098e-06 3.4098e-06 3.9880e-05 1.3990e-04

Table 12. Comparison of techniques with respect to absolute percent relative global truncation errors for numerical
experiment 3 with step-size h = 102 over [0, 5].

t CoMHM 4sHERK MCHW CoM HM

0 0 0 0 0 0
1.0000e+00 4.9668e-10 9.8871e-05 8.2032e-05 4.7377e-05 4.7304e-05
2.0000e+00 5.8807e-10 9.3287e-05 8.3754e-05 4.8441e-05 4.8359¢-05
3.0000e+00 5.8060e-10 8.4694e-05 7.9662e-05 4.6113e-05 4.6033e-05
4.0000e+00 5.6751e-10 8.2106e-05 7.8361e-05 4.5373e-05 4.5294e-05
5.0000e+01 5.5927e-10 8.2281e-05 7.8539e-05 4.5478e-05 4.5399¢-05

Table 5. Comparison of techniques with respect to absolute percent relative local truncation errors for numerical
experiment 3 with step-size h = 1072 over [0, 5].

t CoMHM 4sHERK MCHW CoM HM

0 0 0 0 0 0
1.0000e+00 7.8482e-12 1.2518e-06 1.1063e-06 6.3962e-07 6.3854¢-07
2.0000e+00 6.6207e-12 9.1296¢-07 8.7475e-07 5.0651e-07 5.0561e-07
3.0000e+00 6.0196e-12 8.4839e-07 8.1993e-07 4.7487e-07 4.7403e-07
4.0000e+00 5.7813e-12 8.4074e-07 8.0613e-07 4.6683e-07 4.6602e-07
5.0000e+01 5.6170e-12 8.4264e-07 8.0219e-07 4.6450e-07 4.6370e-07

Table 6. Comparison of techniques with respect to maximum error, final error, norm and CPU time for numerical
experiment 4 with step-size h = 1072 over [0, 5].

Techniques Maximum Final Norm Time

CoMHM 6.3771e-13 6.3771e-13 7.0342e-12 1.2305e-02
4sHERK 6.3807e-07 6.3807e-07 6.9726e-06 1.0512e-02
MCHW 8.7970e-12 8.7970e-12 1.0384e-10 1.2422e-02
CoM 7.7760e-13 7.7760e-13 9.2229e-12 7.3507e-03

HM 1.9602e-12 1.9602¢-12 2.2476e-11 6.8962¢-03
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Table 7. Comparison of techniques with respect to absolute percent relative global truncation errors for numerical
experiment 4 with step size h = 10 over [0, 5].

t CoMHM 4sHERK MCHW CoM HM

0 0 0 0 0 0
1.0000e+00 5.2791e-12 5.1248e-06 9.205%¢-11 8.3308e-12 1.8643e-11
2.0000e+00 1.0067e-11 9.8356e-06 1.6734e-10 1.4989e-11 3.4567e-11
3.0000e+00 1.4264e-11 1.4041e-05 2.2439e-10 2.0023e-11 4.7421e-11
4.0000e+00 1.7794e-11 1.7645e-05 2.6286e-10 2.3329e-11 5.6912e-11
5.0000e+01 2.0546e-11 2.0557e-05 2.8342e-10 2.5053e-11 6.3154e-11

Table 8. Comparison of techniques with respect to absolute percent relative local truncation errors for numerical
experiment 4 with step-size h = 107 over [0, 5].

t CoMHM 4sHERK MCHW CoM HM

0 0 0 0 0 0
1.0000e+00 5.2615e-14 5.0147e-08 8.5938e-13 7.0154e-14 1.7538e-13
2.0000e+00 5.5618e-14 4.6716e-08 6.9523e-13 5.5618e-14 1.5295e-13
3.0000e+00 5.5618e-14 4.6716e-08 6.9523e-13 5.5618e-14 1.5295e-13
4.0000e+00 5.3222e-14 3.8264e-08 3.7256e-13 1.7741e-14 1.0644e-13
5.0000e+01 2.8615e-14 3.3386e-08 2.2892e-13 1.4308e-14 7.1538e-14

Table 17. The maximum error, final error, and norm for numerical experiment 5 obtained with each technique under
discussion with the step-size h = 10~ over the interval [0, 10].

Techniques Sate Variable Maximum Final Norm
CoMHM »,(H) 8.0900e-10 3.876le-11 6.1875e-08
JAG) 5.4154e-09 3.9086e-11 6.3832e-08
4sHERK »,(®) 1.4001e-08 9.3529¢-10 4.1217e-07
7,(8) 9.8184e-09 7.2907e-10 3.6646e-07
MCHW »,(H) 8.8268e-08 7.4676e-10 5.7611e-06
»,(0) 8.5049¢e-08 5.2329e-10 5.8573e-06
CoM y,(H) 4.2317e-09 2.1724e-10 1.2217e-07
7,(t) 3.5108e-09 8.139%-11 1.3650e-07
HM y,(H) 4.2298e-09 2.1719e-10 1.2213e-07
JAG) 6.8925e-09 8.5446e-11 1.3479e-07

Table 9. Maximum error, final error, and norm for Table 19. Maximum error, final error, and norm for
numerical experiment 6 with step-size h = 10~ under the numerical experiment 6 with step-size h = 10 under the

proposed technique CoOMHM. 4sHERK technique

State Variable = Maximum  Final Norm State Variable Maximum  Final Norm
y,(t) 7.6783e-07 6.9957e-07 7.4564e-06 v, () 2.0492e-05 2.0484e-05 1.8972e-04
y,(H) 1.4243e-07 1.4243e-07 8.1162e-07 y,(D) 3.2230e-06 3.2230e-06 1.7524e-05
y3(t) 4.3382e-08 4.3347e-08 4.3354e-07 y3(t) 1.1993e-06 1.1993e-06 1.0779e-05

y, (1) 7.7251e-11 7.7251e-11 4.5419e-10 y, (0 1.0327e-09 1.0327e-09 5.5501e-09
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Table 20. Maximum error, final error, and norm for
numerical experiment 6 with step-size h = 10~ under the
MCHW technique.

Table 21. Maximum error, final error, and norm for
numerical experiment 6 with step-size h = 10~ under the
CoM technique.

State Variable Maximum  Final Norm State Variable Maximum  Final Norm

y,(t) 9.1588e-06 9.1588e-06 8.1441e-05 y,(®) 5.7741e-06 5.7741e-06 5.2138e-05
yz(t) 1.2348e-06 1.2348e-06 6.5814e-06 yz(t) 8.1216e-07 8.1216e-07 4.3640e-06
yS(t) 5.3302e-07 5.3302e-07 4.6293e-06 y3(t) 3.3801e-07 3.3801e-07 2.9722e-06
y4(t) 6.7066e-10 6.7066e-10 3.6747e-09 y4(t) 4.4125e-10 4.4125e-10 2.4386e-09

Table 22. Maximum error, final error, and norm for
numerical experiment 6 with step-size h = 107 under the

HM technique.

State Variable = Maximum  Final Norm

Y1(t) 5.7762e-06 5.7762e-06 5.2155e-05
yz(t) 8.1240e-07 8.1240e-07 4.3652e-06
ys(t) 3.3794e-07 3.3794e-07 2.9717e-06
y4(t) 4.4117e-10 4.4117e-10 2.4382e-09

S -1
o< +—18,. 31

" ( S, - 1) ’ GD

If we use the inequality,503
(1+t)<e, (32)

we obtain the following
S'=(1+S)" =| 1+hk 24 sl

' =0 rl (33)

<% = ek(tn*fo)] ,

hrfl

where ]=24 S Substituting (33) into the inequality
=

(31), we obtain the following inequality for &

ek(tn ~ty)]
e s,.
S -1

n

or

4
<

T(e"(‘"*‘t’)’ - 1). (34)

n

8640]

Thus, the proposed technique possesses the GTE of
Oo(h*)

ERROR CONTROL AND BOUNDS

Using the idea of Lotkin bounds from the research
paper [35], if the bounds given below for the function g(t,
y) and its partial derivatives hold for te [t t ]andy e (—eo,
o), we have

Pm+n
—,(m, n)<r,

g (t.)]
| o"gy" | Q

g(ty)<Q (35)

where P and Q are positive arbitrary constants and r is
order of the proposed technique (15-16). Here r = 4 is the
order of accuracy for the proposed technique. Hence, using
the equations (27) and (35) we have

&8 =8,,,88,=8,,88,

(36)
=g,,8 =8,8=P'Q

Taking coefficients from the equation (4.16), we get

227
|LTE|< ——P*'QH’.
8640

(37)

Now we denote the tolerance as T and taking |[LTE| < T,
the error is controlled where the step-size h is chosen from
the Equation (37) to obtain the following formula:

(2.6273e—02)P*Ql’ < 7, (38)

giving the following error bound on the step-size h:

(39)

1
< [(3.80624e+ 01) r}s .
P Q

ADAPTIVE STEP-SIZE APPROACH

During formulation and theoretical analysis of the pro-
posed technique (15-16), constant step-size h has been
used. However, a numerical technique must be suitable
enough for step-size construction in order to be effective,
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as suggested by many researchers [36]. In this regard, we
have carried a possible step-size approach for the proposed
technique (15-16) by considering a third order technique
given in [33]:

2 2 2 2
yﬂ+1:yﬂ+ﬁ M.FM R (40)
2\ k +k, k,+k,
where
klzg(tn’yn)’
2h 2h
kZ:g(tn-i-?,yn-i-?klj, (41)

2h 2h
k3 = g(tn +?’yn+?k2j’

and employing both techniques as embedded type tech-
niques. Same sort of approaches have also been used in [37,
38]. No additional computational cost will be needed since
the values required by lower order technique are also those
to be employed by the higher order technique. The proce-
dure as adopted in [39] will also be followed by us in the
following way. Generally, suppose that the local error while
using a technique of order r to obtainy,_ be given by

Lﬂ :y(tn+h)_yn+l’ (42)

where y(t) is the true solution for the initial value problem
(1). Now applying a technique of order r + 1 for computing
aresult y* on this step, we obtain the following

Compest zy:Jrl _yn+l :(y(tn +h)_yn+l)
~(y(t,+h)=y5),
comp,, =L, +O0(h™).

(43)

Since L_is O(h™*') and dominating in the above equa-
tion for sufficiently small values of h. The above Eq.is taken
as commutable estimate of the local error of the lower order
technique. One has to look for a possible pair of techniques
(a pair which shares as many slope evaluations as possible)
when it comes to embedded type techniques. In such a situ-
ation, the lower order technique is employed to estimate the
local error and the technique with higher order is employed
to advance the integration procedure. The approach of using
the more accurate result y*_ is known as local extrapola-
tion. A local error tolerance € (tol) must be framed and, if
the estimated error is too large relative to this tolerance, the
step is rejected and another attempt is made with a smaller
step-size.

Having explained the entire process, we discuss the
adaptive step-size approach in the following way. From
(43), we obtain:

y(t, +h)=y,. =h"'A(t,)+O(h™). (44)

Now, if we take a step from t_with a new step-size 6h,
the following would be the error
(6h)" A(t,)+O(h™**)=(6)" h(p)+1A(t,)

45
()= 8 comp,, +O(H"). =

The prediction of largest step-size passing the error test
would correspond to selecting phi so that

| @ comp,,| = &(tol). (46)

This type of new step-size becomes

1

]{ &(tol) }’“ '

Comp est

(47)

Inclusion of a safety factor p in (47) is highly suggested
by various researchers on the basis of extensive numerical
experiments. Thus, we also follow the strategy and obtain
the result as follows:

1
- =ph|: £(tol) }'*l ’
comp,,
where p is a suitable safety factor p = 0.9 [40]. The sole
purpose of this safety factor is to avoid failed integration
steps and r stands for the order of the lower order tech-
nique. In our present scenario, r = 3. This approach has
been applied successively to predict the step-size for the

next step after a successful step is achieved, that is, when
|comp__| < (tol).

(48)

NUMERICAL DYNAMICS WITH RESULTS AND
DISCUSSION

This section is all about the testing of the proposed tech-
nique while using some numerical experiments. We have
chosen different types of initial value problems to check the
performance, including autonomous, non-autonomous,
linear, and nonlinear scalar and vector versions. Constant
and adaptive step-size approaches are employed, and errors
(maximum absolute error, error at final mesh point of the
time interval, norm, absolute percent relative local and
global truncation errors) are computed. For comparison,
we have taken four techniques called 4sHERK [32], MCHW
[34], CoM [29], and HM [30]; each having four stages and
fourth-order of accuracy as that of the proposed tech-
nique. CPU time in seconds is also determined under the
MATLAB environment of version 9.8.0.1323502 (R2020a),
using processor Intel(R) Core(TM) i7-1065G7 CPU @1.50



175

Sigma J Eng Nat Sci, Vol. 40, No. 1, pp. 162-178, March, 2022

GHz with installed memory (RAM) 24.0GB having system
type of 64-bit OS, x64-based processor.

In each Table 4, 8, 11, and 14 for scalar numerical exper-
iments 1-4, one can notice that the maximum absolute
errors, absolute errors at final mesh point of the integration
interval, and the error norms are all smaller in case of the
proposed technique while CPU time is also comparable. As
observed in Table 5 for the first numerical experiment that
the adaptive step-size approach for the proposed technique
utilizes fewer steps than the fixed step-size to yield absolute
errors under consideration. Since the better performance
with the adaptive strategy is obvious, we have solved the
remaining problems via a fixed step-size approach.

Moreover, the absolute percent relative global and local
truncation errors are observed to be much smaller than
errors produced by the techniques taken for comparison
for the scalar numerical experiments 1-4 as depicted in the
Tables 6, 9, 10, 12, 13, 15, and 16. Finally, two linear dif-
ferential systems describing sinusoidal behavior [42] and
dynamics of Robot Arm [41] have also been considered for
comparison purpose whereupon, once again, the proposed
technique has outperformed other techniques as observed
in Tables 17, 18, 19, 20, 21 and 22 for the computation of
maximum absolute errors, errors at final mesh point of the
integration interval, and the error norms. Moreover, the
notations in terms of abbreviations used throughout the
article are listed in the appendix A provided at end of the
conclusion section.

Problem 1. Consider the following first-order linear
IVP of oscillatory behavior:

y' () =y(t)cos(t),y(0)=1t € [0, 10], (49)
with the exact solution y(f) = s

Problem 2. Consider the following first-order IVP of

nonlinear and autonomous nature:

¥ (©=1+y(®)+ y* (0,y(0)= Lt & [0,0.5],

\/gtan(z+ t\fj

2
Problem 3. Consider the following first-order IVP of
nonlinear and non-autonomous nature:

(50)

with the exact solution y () = -3 +

exp(t)
1+ y* (1)

y'(0) = y(0)=1t € [0,5], (51)

with the exact solution

2
4+12 exp(t)+4\/5+6 exp(t)+9 exp(2t) )3 —4)

y(t)= ~-
2((4 +12 exp(t) +4,/5+6 exp(t) + 9 exp(2t) )3j

Problem 4. Consider the following nonlinear IVP for
the Logistic growth [43]

0]

y'(t) .

(1_%),y(o)=1,t e[05], (52)

20
1+19ex (—i)
P 4

Problem 5. Consider the following sinusoidal problem
given in [42],in the range 0 < t < 10.

with exact solution y(t)=

yi(t)==2y,(t)+ y,(t)+2sin(¢),

3, =998, ()~ 999y, (t)+999cos () —999sin(£), )

subject to the following initial conditions:
7,(0) =2, y,(0) = 3, with the following exact solution:

vy, (t)=2exp(—t)+sin(t),
¥, (t) =2exp(—t) + cos(t).

Problem 6. Consider the following autonomous linear
problem for the Robot Arm system [41] with four state
variables:

y )=y, (),

y2(t)=0.2140y, (t)—0.1730y, (t) +0.0265,

Vi =Ye

¥/ (t)=—0.130321y, (t)—0.00191844 y, (t)
+0.00935089,

(54)

subject to the following initial conditions:

N (0)2—1,)/2 (0)20’y3 (0):_1’y4 (0):0>

with the following exact solution:

42693 exp ( 107¢ )\/559 sin

1000
17+/559t
( 1000 )
3288038

07t) cos (17\/@t)
000 1000 53
346 346
399 exp (M) V559 sin (17\/@()
v, (6)= 1000 1000 ’
19006

(—146863035493\/76940521]

Y (t) =

399 exp (11

>

—953774933673023
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< 11t/76940521 ( 130321t )
P 2000000 2000000

324732700835928
146863035493/76940521
—953774933673023

ox 11tv/76940521 _( 130321t )
+( 935089 ) + P 2000000 2000000

Ys (t) =

191844 324732700835928 > (56)

1126933(exp 11t4/76940521
2000000

_( 130321t ) ex —11t/76940521
2000000 2000000

130321t
—(7) 76940521
2000000

84634573100

Y4 (t) =

CONCLUSION AND FUTURE REMARKS

A new nonlinear hybrid technique under Contra-
Harmonic and Harmonic Means has been developed with
fourth-order accuracy and four stages. The proposed tech-
nique has smaller local and global truncation errors despite
using a simple slope structure as used in the classical lin-
ear Runge-Kutta technique. Theoretical analysis for the
stability, consistency, asymptotic errors, step-size control,
and the error bound is also carried out. Four techniques
having similar characteristics as that of the proposed one
do not perform better than the proposed when it comes
to stability, errors, and bound imposed on the step-size h.
Moreover, unlike other research works, we have employed
an adaptive step-size approach to show the improved per-
formance of the proposed technique. Various numerical
experiments with scalar and vector versions of initial value
problems have also confirmed the better performance of
the proposed technique. Future studies would include the
possible extension of the proposed nonlinear numerical
technique in the realm of fractional numerical dynamics.
Moreover, a nonlinear numerical technique based on ratio-
nal approximation of functions will be utilized so that we
can possibly obtain stronger stability features including A—
and L- stability.
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APPENDIX A

RK Classical Runge-Kutta Method.

h Step-size Tolerance

LTE Local truncation error

GTE Global truncation error

est Estimate Error

len Local Error

CoMHM Contra-Harmonic and Harmonic means

4sHERK Four-stage fourth-order nonlinear Runge-Kutta
technique based on Contra-Harmonic Explicit
mean

MCHW Four-stage fourth-order nonlinear weighted
Runge-Kutta technique based on Contra-
Harmonic mean

CoM Four-stage fourth-order nonlinear Runge-Kutta
technique based on Contra-Harmonic mean

HM Four-stage fourth-order nonlinear Runge-Kutta

technique based on Harmonic mean
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