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ABSTRACT

Fractional Bagley-Torvik differential equations can be used to model a variety of natural 
phenomena in many branches of applied mathematics and engineering in general. The focus 
of this study is on solving the fractional Bagley-Torvik equations by using sine-cosine wavelet. 
To this end, the operational matrix of fractional integration is obtained for sine-cosine 
wavelets. By utilizing this matrix, fractional Bagley-Torvik differential equation is transformed 
to a system of linear algebraic equations with unknown coefficients, which in turn can readily 
be solved using numerical solution methods. Test examples are provided to demonstrate the 
validity and efficiency of this approach.
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INTRODUCTION

Many physical and engineering problems are mod-
eled accurately via fractional order differential equa-
tions (FDEs). [1–11] Therefore, applied mathematicians 
and scientists focus on analyzing FDEs. The paper is 
focused on the numerical solution of fractional Bagley–
Torvik (B-T) equation because it plays an important 
role in modelling dynamic physical phenomena. One 
such field is fluid mechanics, in particular, the analysis 
of the motion of a rigid plate soaked in a Newtonian 
fluid.

Analytical, semi-analytical and numerical algorithms 
have been established for the solution of B-T equations. 

To name a few, a fractional linear multistep method was 
considered in [12]. The Hybrid functions method was pro-
posed in [13]. Legendre artificial neural network method 
[14] was studied for solving B-T equations. Bagley-Torvik
equations was examined with Fermat Operational Tau
Method [15]. Sumudu transformation method [16] was
applied to solve B-T equations. Legendre collocation
method was used for solving the B-T equations [17]. The
operational formulation of collocation methods [18],
wavelet methods [19–20] and fractional Taylor methods
[21] are implemented for the solution of this fractional
equation.
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The basis functions used to obtain sine-cosine wave-
lets have compact support and they are orthogonal. 
Therefore the resulting operational matrices for frac-
tional integration using sine-cosine wavelets end up 
being sparser. Which in turn is important for less com-
putational load and speed considerations which is the 
reason why we intend to explore the sine-cosine wavelet 
in this study.

In this paper, the following form of Bagley-Torvik (B-T) 
equation is analyzed:

mD y t cD y t ky t g t2
3
2( ) + ( ) + ( ) = ( ), 	 (1)

with initial conditions

y y0 0 0 0( ) = ( ) =′, , (2)

where m, c, k and g(t) represent the mass, damping, 
stiffness coefficients and external force, respectively. y(t) is 
the displacement function and Dα is Caputo fractional dif-
ferential operator of order 3/2. We utilize a new operational 
matrix method based on the sine-cosine wavelet (SCW) to 
solve initial value problem of B-T equation. By means of 
operational matrix of fractional integration, we obtain a 
system of linear algebraic equations.

The paper is organized as follows. The fundamental 
concepts and definitions are provided in section II. The 
definition and the properties of sine-cosine wavelets are 
covered in section III and also the operational matri-
ces for fractional integration for sine-cosine wavelets are 
obtained. In section IV the method is applied to the frac-
tional B-T equation. The numerical results are presented 
in section V.

PRELIMINIARIES

In this section we provide the definition and the basic 
properties of the Caputo fractional derivative which are 
used in this paper as follows:

The Caputo definition of fractional derivative operator 
is expressed in the form:
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For the Caputo derivative, we have
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SINE-COSINE WAVELET APPROXIMATION
Sine-Cosine Wavelet

Wavelets involve a mother wavelet and dilated and 
translated versions of the mother wavelet. If the dilation 
parameter a and the translation parameter b vary continu-
ously, family of continuous wavelets is written as follows 
[22]:
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When the dilation parameter and the translation param-
eter are chosen 2 and 1, the family of discrete wavelets are 
obtained:
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where ψkn (t) forms an orthonormal basis [23].
Sine-cosine wavelets ψnm = ψ(k,n,m,t) consist of four 

arguments: k = 1,2,3,…, n = 1,2,3,…,2k–1, the values m are 
given in (9) and t represents normalized time. Sine-cosine 
wavelets defined as follows:
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where ∈[0,1), L ∈ Z+. It is obvious that the set of sine-cosine 
wavelet forms orthonormal set.

Approximating a function
A function f defined over [0,1) is given by the following 

expanding
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where C and ψ(t) are m' × 1 (m' = 2k (2L + 1)) vectors 
expressed as:
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DESCRIPTION OF THE METHOD

We solve the Bagley–Torvik equation (1) and (2) via 
sine-cosine wavelet method and we approximate D2y(t) and 
g(t) as follows:

D y t C tT2 ( ) ≈ ( )ψ (21)

and

g t G tT( ) ≈ ( )ψ , (22)

where G = [g0, g1, … gm'–1]. By equations (4) and (20), we 
have

D y t I D y t C P tT
m xm

3 2 0 5 2 1 2/ . /( ) ,( ) = ≈ ( )′ ′ψ 	 (23)

Dy t C P tT
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y t C P tT
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by substituting Eqs. (21), (22), (23) and (25) in Eq. (1) we 
obtain a system of algebraic equations as:
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The vector of unknown coefficients C is computed. By 
using Eq. (25), we can obtain y(t).

We give sine-cosine wavelet matrix as follows:

φ ′ ′ ′= ( ) ( ) ( ) ( ) m xm mt t t tΨ Ψ Ψ Ψ1 2 3 � , 	 (13)

where t i
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−
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0 5.  are collocation points. (i = 1,2,3,...,m')

Operational matrix of the fractional integration
We determine the operational matrix of fractional order 

integration by means of block pulse functions (BPFs). The 
set of BPFs is defined as
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For t ∈ [0,1), bi(t) has following properties:
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The sine–cosine wavelet may be expanded in terms of 
BPFs as:

ψ φt B tm xm m( ) = ( )′ ′ ′ , (17)

where Bm'(t) = [b1(t), b2(t),..., bm'(t)]T. The operational matrix 
of the fractional integral Fα related with the BPFs vector can 
be represented as:
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with ξk = (k + 1)α+1 – 2kα+1 + (k – 1)α+1. [24]
By using Fα, sine-cosine wavelet operational matrix of 

the fractional integration Pm xm′ ′
α  can be expressed

P Fm xm m xm m xm′ ′ ′ ′ ′ ′
−≈α αφ φ 1 . 	 (20)

The error estimate of the SCW basis is provided by [25].
Figure 1. Sine-cosine wavelet and the exact solution for 
Example 1.
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ILLUSTRATIVE EXAMPLES

In this section, we apply the method to two examples 
and we have carried out all of the numerical calculations 
using Matlab R2020a. 

Example 1: We first consider following B-T equation

D y t D y t y t t t
t

y y t

3 2 2 3
0 56

8
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0 0 0 0 1

/
..

,

, ,

( ) + ( ) + ( ) = + +
( )

( ) = ( ) = ∈[′
Γ o
)),

with exact solution is y(t) = t3.
By applying the method described in section IV, the val-

ues of the unknown matrix CT are obtained. Figure 1 repre-
sents the sine -cosine wavelet solution for k = 6, L = 1 and 
the exact solution. From Figure 1, it is clear that sine-cosine 
wavelet solution provides good approximation with exact 
solution.

The absolute errors for different k values of sine-cosine 
wavelet solution (L = 1) are given in Table 1. As results 

suggest, when the values of k increase, the absolute error 
decreases and our solution converges to the exact solution 
which proves the validity of the method.

Example 2: In this example, we consider the following 
B-T equation:

D y t D y t y t t t t t

y y t

3 2 2 215
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π

with exact solution is y(t) = t2.5.
By using the proposed technique presented in sec-

tion IV, we obtain the approximate solution of B-T equa-
tion. Table 2 represents absolute errors for k = 6, 7, 8 and 
L=1. In addition, the comparison of the numerical solu-
tions and the exact solutions for k = 6 and L=1 is given 
in Figure 2. As can be seen, numerical results show the 
efficiency of our solution. Numerical results also demon-
strate that the method is fast and can be applied to real-
time problems.

CONCLUSIONS

In this study, we propose sine-cosine wavelet method 
with block pulse functions to solve fractional Bagley–
Torvik differential equations. This method converts this 
fractional differential equation to system of linear alge-
braic equations. We obtain the numerical solutions of 
the Bagley-Torvik equations by solving this system. Since 
the basis functions of sine–cosine wavelets are orthogo-
nal, the implementation of present approach is simple 
and easy. Numerical examples are included to illustrate 
the validity and the accuracy of the proposed numerical 
method.
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Table 1. The absolute errors of sine-cosine wavelet method 
for different k values for Example 1

t (k=6, L=1) (k=7, L=1) (k=8, L=1)
0 1.6248E-06 2.0329E-07 2.5428E-08
0.2 1.2640E-04 1.1938E-05 3.0823E-05
0.4 9.5463E-04 2.4670E-05 2.3622E-05
0.6 2.1195E-04 5.5888E-04 5.3325E-05
0.8 1.9748E-04 1.8901E-04 4.9591E-05

Figure 2. Sine-cosine wavelet and the exact solution for 
Example 2.

Table 2. The absolute errors of sine-cosine wavelet method 
for different k values for Example 2

t (k=6, L=1) (k=7, L=1) (k=8, L=1)
0 1.2881E-05 2.2776E-06 4.0270E-07
0.2 2.3397E-04 2.2190E-05 5.7513E-06
0.4 1.2548E-04 3.2547E-04 3.1143E-05
0.6 2.2836E-04 6.0073E-04 5.7348E-04
0.8 1.8421E-04 1.7620E-04 4.6190E-04
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