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ABSTRACT

In this report we introduce an extended discontinuous Galerkin (XDG) method. Our XDG 
scheme is based on the Babuska-Zlamal approach and we apply it to a class of prototype elliptic 
boundary value problems that have solutions consisting of smooth functions perturbed by a 
set of high frequency modes which occupy a narrow band. The XDG scheme we study is 
enriched by trigonometric functions that cover the range of these perturbations. A theoretical 
error analysis is provided that shows the method converges and gives specifics on its accuracy. 
Computations with the XDG scheme further demonstrate the efficacy of this approach.
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INTRODUCTION 

A challenging problem when computing the numeri-
cal solution of ordinary and partial differential equations is 
dealing with systems that exhibit highly oscillatory behav-
iors. Highly oscillatory systems have solutions that exhibit a 
combination of a fast solution that oscillates quickly around 
a much more slowly varying solution. These systems can 
arise in many applications from molecular dynamics and 
bridging scale method for nanotubes [1, 2], high intesity 
focused ultrasound for cancer remidiation [3], electrical 
circuits [4], and quantum mechanics [5] among others. 
Due to their fast solution component, standard numerical 

approaches can require a large number of spatial and/or 
temporal steps in their discretization to accurately capture 
the high-frequency behavior. 

Number of classical problems that exhibit high fre-
quency, oscillatory solutions. The linear and nonlinear 
wave equations, Helmholtz equation, and Mathieu’s equa-
tion are some examples. The study of the solution of these 
equations numerically when they exhibit high frequency 
oscillations requires significant computational effort or 
specialized numerical methods that capture the oscillations 
efficiently. For example, finite element methods can resolve 
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the slowly varying component of the solution in space 
with a course to moderately refined mesh but will require 
a highly refined mesh to even resolve the high frequency 
components [6, 7]. It is often suggested it use a grid with 
at least ten mesh elements per wavelength. This can greatly 
increase the computational costs and restrict the ability to 
obtain a numerical approximation to small domains and 
short time intervals. 

To reduce the computational complexity, various meth-
ods have been introduced to capture the highly oscillatory 
behavior without requiring a highly refined grid. For a 
review of finite element methods for time-harmonic acous-
tics, see [8].

One approach is to use known solutions of the given 
problem to extend or enrich the function space used to 
approximate the solution. The partition of unity method 
(PUM or PUFEM) is one such approach where plane wave 
solutions are added to the local finite element basis to 
approximate the solution to the Helmholtz equation [9]. A 
disadvantage of PUMs is ill-contintioning that can occur 
due to the choice of the approximation basis. 

An alternative approach is least-squares methods [10] 
such as the ultraweak variational formulation (UWVF) [11, 
12, 13, 14] where plane waves are used as a local, discontin-
uous basis for each element to approximate the solution to 
the Helmholtz equation. The approximate solution is gener-
ated by minimizing the least-squares difference of the solu-
tion and its normal derivative is minimized across element 
edges. In this approach, calculations are only performed 
on the element edges since the plane wave solutions satisfy 
the Helmholtz equation by construction. This approach 
requires a solution to the governing equation within each 
element, which could be difficult to obtain for more com-
plex equations, and can exhibit ill-conditioning of the sys-
tem matrix. 

The discontinuous enrichment method (DEM), a stan-
dard finite element basis is used with additional discon-
tinuous “enrichments” introduced to the approximation 
space. These enrichments contain the solution to the dif-
ferential equation within the element and are discontinu-
ous across the element boundaries. The continuity of the 
enrichments across the element boundaries are enforced 
weakly using Lagrange multipliers. As with the UWVF, the 
solution to the governing equation is required for each ele-
ment. A comparison between PUFEM and UWVF is given 
by [15] and between PUFEM, DEM, and UWVF are given 
by [16]. 

The approach discussed in this paper uses a combina-
tion of the extended finite element method (XFEM) and 
the discontinuous Galerkin (dG) method [17, 18, 19]. The 
XFEM approach is based on the PUFEM and the general-
ized finite element method (GFEM) [20, 21] and was first 
developed in [22, 23] for the study of crack propagation. 
The GFEM combines the classical FEM with the PUFEM 
by retaining the mesh based nature of the FEM and was 

first applied to elliptic problems with voids [24, 25] and 
the Helmholtz equation [26, 27]. The XFEM strategy is to 
“enrich” a standard polynomial approximation space with 
non-smooth functions that approximate the solution in a 
way that is independent of the mesh. These “enrichment 
functions” add specialized shape function such as functions 
with jumps, large gradients, high-frequency oscillations, or 
singularities to the approximation space. These enrichment 
functions are included in addition to the classical polyno-
mial basis. The enrichments can be either local or global 
in nature. The XFEM was initially developed for crack 
propagation in fracture mechanics but since has been used 
to study various problems such as Stefan problems [28], 
biofilm growth [29], and two-phase and free-surface flows 
[30]. For various reviews of the XFEM, see [32]. Recently, 
the proposed method has been applied to linear hyperbolic 
problem in [33]. 

A limitation of the XFEM is the often loss of the opti-
mal convergence compared to the classical FEM. The sub-
optimal convergence can arise from elements where some 
but not all nodes are enriched. It was shown that these ele-
ments, called blending elements, have parasitic terms that 
limit the accuracy of the XFEM [33]. The effect of these 
terms has been reduced or eliminated using various meth-
ods such as applying an assumed strain method in the 
blending elements [34] or using higher-order spectral ele-
ments [35]. An alternative approach is to use a dG approach 
instead of the classical continuous FEM approach as the 
basis for the XFEM [36]. This approach uses an polynomial 
approximation space that is discontinuous across element 
boundaries. The makes both global and local enrichments 
local to each element, eliminating the effects of the blend-
ing elements. Continuity across element boundaries were 
enforced using a penalty method. This stability and con-
vergence proofs of this approach for fracture mechanics 
was given in [37]. 

In this paper, we analyze an extended discontinuous 
Galerkin (XdG) method with high-frequency enrichments 
for oscillatory problems similar to the the enriched space-
time discontinuous Galerkin methods for coupled atomis-
tic/continuum models in elastodynamics [2,38]. Section 2 
and Section 3 introduce preliminaries and discuss a proto-
type one-dimensional boundary value problem (BVP) with 
a solution that exhibits both slowly-varying and highly-
oscillatory components. Section 4 gives the general XdG 
approach for these problems and Section 5 describes a spe-
cific XdG implementation, the Babuska-Zlamal method. 
Section 6 provides convergence and error results for the 
proposed method and Section 7 provides computational 
error results for the dG method and the XdG method for a 
number of example problems. We discuss conclusions and 
future directions in Section 8. 

This paper is based on the thesis of the third author [39], 
written under the guidance of Professor Donald French and 
Benjamin Vaughan, Jr.
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So using (32), there is constant C, independent of h and 
the ωℓ , so

U U Ch m r qA m q
q m

L
m

j
− ≤ ≤ ≤ ≤ ++ −

, ,
.τ ω1 0 1 	 (5)

Also, since U is continuous, it follows that UA is as well.

EXTENDED DISCONTINUOUS GALERKIN 
METHOD FOR HіGHLY OSCILLATORY 
PROBLEMS

The one-dimensional version of our XdG scheme will 
use the N + 1 nodes, 0 = x0 < x1 < … < xN = 1, that define N 
individual elements τj = [xj-1, xj] with element lengths hj = 
xj - xj-1 for j = 1,2,…, N. More precisely, we assume that there 
exists a family of meshes Jh that depends on the element 
length h. We assume the mesh is quasi-uniform so that hj 
≈ h = N-1. We will use the approximation space Dh

q Ω( )  
that contains functions which are discontinuous piecewise 
polynomials of degree at most q over the family Jh and are 
discontinuous across the element boundaries. We let Pr(S) 
denote the set of polynomials of degree r restricted to an 
interval S.

To approximate the highly-oscillatory parts of the solu-
tion, we enrich the standard dG approximation space with 
a range of Fourier series components. The “enriched” space, 
Eh

q Ω( )  consists of functions of the form
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where s a b Dj j h
q, , ∈ ( )Ω  and nj ∈�  for j = 1,…, L. Note 

that if we know the frequencies ω1, …, ωM a priori, we can 
let L = M and nj = ωj for j = 1,…, M. Otherwise, we note 
that 
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where ∆ωj,k = ωj−nk for a given j and k. If ∆ωj,k is small, then 
the functions

ELLIPTIC PROBLEM

We will consider the following prototype elliptic bound-
ary value problem (BVP): 

Find U = U(x), such that 

− ′′ + = Ω = ( )
′( ) = ′( ) =

U cU f on
U U

0
0 0

, ,
,

π
π

(1)

with 0 < c0 ≤ c ≤ c_1. Here, c0. and c_1. are constants and 
we assume that the functions f(x), c(x) and U(x) are smooth 
functions. We chose this elliptic problem for its simplicity 
and we expect that the following analysis could be extended 
to more general elliptic problems in higher dimensions.

We specifically assume that the solution to this elliptic 
BVP, U(x) belongs to a class of solutions that contain both 
slowly-varying and highly-oscillatory components. Hence, 
we require that the functions f(x) and c(x) are such that the 
solution has the general form:

U x S x j( ) = ( ) + ( ) ( )
=
∑Λ x xj
j

M

cos ,ω
0

	 (2)

where S(x) and Λj(x) for J = 1, …, M are smooth in the 
sense that they have many derivatives, all of which have 
norms that are moderately sized and 0 < ω1 ≤ ω2 ≤ … ωM 
are large numbers. 

We further assume that the band ωM−ω1 is relatively 
small.

SOBOLEV SPACE NOTATION AND 
APPROXIMATION PRELIMINARIES

We use the following inverse inequality for functions 
χ τ∈ ( )Pq j ;  there exists C > 0 which is independent of h so that

χ χτ τ�

�

, , , , ,p rj j
Ch

m
p r
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− + −1 1

	 (3)

for m ≤ ℓ, 1 ≤ p ≤ ∞, and 1 ≤ r ≤ ∞. We also assume there 
is an interpolation operator

πh
q p

j jW I P I: ,+ ( ) → ( )1  (Theorem 4.4.4, [50]) with the
following estimate

I v Ch v r qh p I
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and π ξ ξh ( ) =  for ξ ∈ ( )P Iq j .  Moreover, if v C∈ ( )Ω
then πhv is continuous on Ω  as well. The arithmetic-
geometric mean inequality states that for scalars a and 
b ab a C b, ,≤ +δ δ

2 2  where Cδ = (4δ)-1 and δ > 0.
We now directly approximate the form (2) using inter-

polation in the space Eh
q Ω( )  ; let
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are smooth since their frequencies are small. Hence, they 
can be well approximated by functions in Dh

q Ω( ) . This 
allows us to not know the exact frequencies a priori if we 
have a good approximation of their values as well as not 
requiring us to include all large frequencies if they exist 
subsets that have a small bandwidth, i.e., |ωi − ωj| small for 
the some i j M, , ,∈{ }1 2…  with i ≠ j.

BABUSKA-ZLAMAL XDG METHOD

We use the Babuska-Zlamal (BZ) method \cite{BZ} as a 
simple starting point for our approach since the analysis is 
more straightforward but the BZ method’s use of a “super 
penalty” for stabilization can lead to ill-conditioning, which 
limits its practical use. 

The BZ-XdG method for the problem (1) is defined as: 
Find u Eh

q∈ ( )Ω  such that
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where θ > 0 will be determined later. The bilinear operator 
B(·,·) is given by
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here (f,ϕ) is the inner product,
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and [u] is the jump operator,
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Note that letting u = ϕ leads to a stability estimate 
from which existence and uniqueness can be proved. 
Further, recall that this method is inconsistent in the 
sense that the true solution U of (1) does not satisfy the 
variational form of the differential equation in (6). This 
is because an inter-element term arising from the inte-
gration-by-parts step is left out in BZ schemes. For the 
original BVP, (1) we have, after multiplying by φ ∈ ( )Eh

q Ω  
and integrating-by-parts,
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ERROR ANALYSIS

We begin by denoting that u is the solution to the 
BZ-XdG problem, (6), U is the exact solution to elliptic 
equation, (1), and UA = πhU is the interpolation of U using 
the enriched space Eh

q(Ω), (3).
 We use the error splitting e = u – U = η + (UA – U) where 
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Taking ϕ = η and noting that UA is continuous so that 
[UA(xj) = 0 for j = 1, ..., N, we have 
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We now estimate the second term using the Cauchy-
Schwarz inequality and the Arithmetic-Geometric mean as 
follows:
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If we let δ = 1/2 then there exists C > 0 so
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So, now, there is a C > 0 independent of h and ωL such 
that 



Sigma J Eng Nat Sci, Vol. 39, No. 5, Supp 22, ICOMAA 2021, pp. 64–73, December, 2021 68

	 U x
e

x x
x

( ) =
+

( ) − ( )( )ω
ω ω ω2 1

sin cos . 	

For this problem, our approximation spaces is con-
structed from quadratics (q = 2) with one set of trigono-
metric function, L = 1, with n1 ≈ ω so each element consists 
of m = 3 shape functions for the unenriched dG space and 
m = 9 shape functions (three unenriched and six enriched) 
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Combining this with (5) and the triangle inequality, we 
have our main estimate:

u U Chh
q

L− ≤1, .ω (17)

COMPUTATIONAL RESULTS

To evaluate the practical performance of the proposed 
method, we provide the results of various numerical com-
putations for the model elliptic problem, (1), as well as for 
an alternate BVP that was not analyzed, the Helmholtz 
equation.

For the elliptic problem, we solve

− ′′ + ( ) = ( ) < <U c x U f x in x0 π 	 (18)

with the boundary conditions U(0) = U(π) = 0. For the 
functions c(x) = ω2 + 1 and f(x) = –2ωcos(ωx), the solution 
is 

Figure 1. Numerical solution of (18) for a single oscillatory mode ω = 16, using the dG (dashed blue curve) and XdG 
(solid red curve) approximations with N = 4 elements. The exact solution is shown as the green dotted curve, which closely 
coincides with the XdG solution. The XdG approximation shown in 1a uses the exact mode (n = ω = 16) and 1b uses an 
approximation of the exact mode (n1 = 15). We can see that even with only four elements, the XdG approximations are 
both quite accurate while the dG approximation is unresolved, as expected. The use of an approximate value of ω instead 
does not negatively effect the error in the approximation. The maximum absolute error for the dG approximation in both 
figures is 1.2 × 106 and for the XdG approximations is 4.0 × 10–2 for n = 15 and 4.6 × 10–2 for n = ω = 16.
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where the components of the vector c are ci = c(xi).
The numerical solution of (18) is shown in Figure 1 for 

the dG approximation (dashed blue curve) and the XdG 
approximation (solid red curve) with a single mode ω = 
16 using four elements (N = 4). The exact solution is rep-
resented by the dotted green curve. For XdG method, we 
computed the solution with n = ω = 16 (Figure 1a as well as 
a mode close to the exact mode, n = 15 Figure 1b).

We can see that, as expected, the XdG approximation 
captures the oscillatory behavior quite well even with using 
an approximation of ω (n1 = 15) while the dG approxi-
mation is not able to resolve the oscillations for the given 
discretization. 

Figure 2 show the convergence results for the dG and 
XdG methods.

The observed rate of convergence for both XdG approx-
imations exceed the theoretical rate of convergence with an 
absolute error going below 10–6 for less than 20 elements. 
For the dG approximation, the observed rate of conver-
gence is close to the theoretical estimate (p = 3) for qua-
dratic elements. 

For small values of ω, the practical benefit of the XdG 
approach is lessened since it does not require many ele-
ments to resolve the oscillations. Once a sufficient number 
of elements are used, the dG method does sufficiently good 
job of approximating the solution but for larger values of ω, 
a significant number of elements are needed to resolve the 
highly-oscillatory behavior before convergence is observed. 

Figure 2. Log-log plot of the absolute error for the dG and XdG approximations versus the number of elements for ω = 16. 
We can see that both XdG approximations converge much more rapidly than the dG approximation. The p values indicate 
rate of convergence from linear least-squares fits of the log-log error. For the dG approximation, the observed rate of 
convergence is close to the theoretical order of convergence since we use quadratic elements. For the XdG approximations, 
the observed rate of convergence is significantly higher and similar for both n = ω = 16 and n = 15.

Figure 3.
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In this regime, the XdG approach can lead to a significant 
reduction in the number elements required. 

Figure 3 shows the convergence results for the dG and 
XdG methods when solving the elliptic benchmark prob-
lem for ω = 100. 

We can see that the XdG method resolves the highly-
oscillatory behavior for an order of magnitude fewer ele-
ments than required by the dG method. We additionally see 
a higher rate of convergence using the XdG method versus 
dG. These are both true if we choose n = ω or n = 75, which 
is the same order of magnitude as ω but off by 25%. The 
XdG method still resolves the oscillations as well as when 
n = ω and converges at the same rate. This suggests that the 

exact frequency of highly-oscillatory components does not 
need to be know a priori but can be estimated to retain the 
benefits of the XdG method.

Since the enrichments add additional DOFs to the sys-
tem (nine DOFs per element for XdG versus three DOFs 
per element for the dG), we compare the convergence both 
methods in terms of DOFs, as shown in Figure 4. 

We see that approximately the same number of DOFs 
are required before convergence is observed but the rate of 
convergence is significantly higher for the XdG method, 
with the absolute error approximately 10–6 for 1000 DOFs 
(approximately 100 elements) vs 10–2 when using the dG 
method. 

Since we still observe convergence when n ≠ ω, we com-
puted the absolute error as the value of n is varied. Figure 5 
shows that the absolute error is roughly the same order of 
magnitude when n is near ω and is increasing as n increases 
through ω.

This suggests that if ω is not know a priori, underesti-
mating ω could reduce the error. Additionally, choosing n = 
ω might not be the optimal choice to reduce the error. 

In Figure 6, we study the convergence for an even higher 
frequency, ω = 1000. Again the XdG method starts converg-
ing an order of magnitude sooner than the dG method and 
converges at a higher rate. 

The XdG methods requires 200 elements before con-
vergence begins but, since we included the exact mode 
in our approximation, one might suspect that the highly-
oscillatory component of the solution would be resolved 
sooner and convergence would begin for a smaller number 
of elements. This is not observed here due to our choice of 
the BZ method. This approach is not a consistent numeri-
cal method and would not expect to obtain the exact solu-
tion, which reduces the effectiveness of this version of the 
XdG method. Using an improved version of dG as a base 

Figure 4. DOF v.s. Error. Figure 5.

Figure 6.
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method for the XdG approach, such as symmetric inte-
rior penalty discontinuous Galerkin (SIPG) method, could 
reduce the minimum number of elements before conver-
gence is observed as well as improving the conditioning of 
the resulting linear systems. 

Although our theory does not extend to the Helmholtz 
equations, we measured the convergence of the XdG 
method applied to the benchmark Helmholtz problem:

− ′′ + = < <U U x xω ω π2 2 0for 	 (19)

with the boundary conditions U´(0) – u´(π) = 0 
and ω ∈ +� .  We choose ω ε/ Z to prevent non-uniqueness. 
The solution of (19) is 

U x x
x

x x( ) = +
( )

( ) + −( )( )[ ]1
ω ω

ω ω π
sin

cos cos .

Figure 7 shows the convergence results for the XdG and 
dG methods for our benchmark Helmholtz problem, (19), 
with ω = 100.3. For the XdG solution, we used the near-
est integer value near ω in our approximation, n = 100. As 
before, we see that the XdG method begins converging for 
an order of magnitude less elements than is required for the 
dG method. The rate of convergence is comparable between 
the two methods.

CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced an extended discontinu-
ous Galerkin finite element method for approximating 
highly-oscillatory solutions based on Babuska-Zlamal 
method. We were able to provide an a priori error esti-
mate for a prototype elliptic problem. This error estimate is 
similar to standard dG error estimates except that it scales 

linearly with increasing frequency while the dG approxi-
mation scales as a polynomial of one degree higher than 
the order of approximation basis. This implies that the 
XdG approach requires fewer elements to reduce the error 
below a desired tolerance when compared with the dG 
method. Additionally, it would theoretically allow the use 
of higher-order element basis functions without increasing 
the number of elements to keep the approximation below 
a desired tolerance. 

In addition to the theoretical error bounds, we per-
formed numerical simulations on various benchmark 
problems over a range of frequencies. We see that the XdG 
method, even using the BZ approximation that has poor 
practical performance, is able to resolve the high-frequency 
oscillations using an order of magnitude less elements and 
often shows a faster rate of convergence when compared 
with the dG method. 

While knowing the exact frequency in the solution 
would allow us to generate a function space that contains 
the solution, the XdG method does not require this fre-
quency to be known a priori. If one has a reasonable close 
estimate of the frequency, the XdG method generates highly 
accurate solutions. This could be useful when approximat-
ing problems that have the spatial frequency vary in space 
and time within reasonably small range. Since the exact 
frequency would not be known a priori, the XdG method 
should still provide good results using a reasonable approx-
imation of the frequency. 

In addition to studying our benchmark elliptic problem, 
we also examined a benchmark Helmholtz problem. While 
our analysis is not directly applicable, numerical simula-
tions show that the XdG approach is able to able to resolve 
high-frequency components with fewer elements when 
compared with the dG method. This suggests that solving 
problems with high-frequency components to the solution 

Figure 7. 
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within a larger domain could be more computationally fea-
sible due to the reduced number of elements required to 
resolve the solution. 

The method described and analyzed in this paper is very 
preliminary and has a number of theoretical and practical 
limitations. The analysis is only applicable to the bench-
mark elliptic problem but we believe that it can be extended 
to other problems with highly-oscillatory solution such as 
the Helmoltz equation as well as time dependent problems 
such as the wave equation or problems with frequencies 
that vary in time or space. Additionally, the XdG method is 
an extension of the dG method, which is an extension of the 
continuous finite element method, so it is straight forward 
to adapt to nonlinear problems. These different mathemati-
cal problems have applications in a wide range of area such 
as simulating high-intensity focused ultrasound (HIFU) 
therapy [3] or coupled multiscale continuum/molecular 
dynamics models.

The choice of using the BZ method in deriving our cur-
rent XdG approach was done out of simplicity in both the 
implementation and the analysis. An improvement that will 
greatly increase the usability of the XdG approach would be 
to switch to an alternative dG foundation such as the sym-
metric interior penalty Galerkin (SIPG) method [19]. This 
method is consistent and is better conditioned than the BZ 
method. We plan to extend our analysis and our implemen-
tation to use SIPG as an alternative approach.
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