
Sigma J Eng Nat Sci, Vol. 39, No. 5, Supp 22, ICOMAA 2021, pp. 56–63, December, 2021

ABSTRACT

In this work, we analyze the influence of the logarithmic source term on solutions to quasilinear 
riser equation. Firstly, we prove blow up results. Later, we obtain that solutions are global with 
negative initial energy.
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INTRODUCTION 

In this work, we consider the following riser equation 
with logarithmic nonlinearity
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where a, b, α, β are nonnegative constants and p ≥ 4.
In the absence of the logarithmic nonlinearity 

that is, if source term is taken as f(u), the problem (1) 
becomes
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where f(u) is a C(R) function satisfying some conditions.
The problem (2) leads to the dynamics of a riser vibrat-

ing due to effects of current and waves [17, 33]. Results con-
cerning the global existence and blow-up of solutions for 
the problem (2) are discussed by many mathematicians, see 
[1, 5, 7-9, 12, 14, 21, 35] and the references therein.

Wave equations with logarithmic nonlinearity have 
many applications in many branches of physics, such as 
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optics, geophysics and nuclear physics [3, 13]. In recent 
years, hyperbolic wave equations with logarithmic source 
term have attracted much attention. We refer the concerned 
reader to for the study of different kinds of this type prob-
lem (see [2, 4, 6, 10, 15, 18-20, 22-25, 29, 31, 32, 36]).

To the best of our knowledge, quasilinear riser problem 
involving logarithmic nonlinearity has not been studied 
yet. Our aim in the present paper is to extend the existing 
blow-up results to our logarithmic nonlinearity quasilinear 
riser problem.

This paper consists of three sections in addition to the 
introduction: In Section 2, we prepare some lemmas and 
notations. Section 3 is concerned with blow up result with 
negative initial energy. Our approach is similar to the in 
[14, 18]. In section 4, we establish global existence of the 
solution.

PRELIMINARIES

In this part we give some some material which will be 
used in the proof of our results. We denote (.,.)₂ the inner 
product in L2 = L2 [0,1] and ||u||p is the norm in Lp = Lp 
[0,1].

We define the following total energy functional
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and the initial total energy functional
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Lemma 1.  Let u be the solution of the problem (1). Then 
the E(t) is decreasing with respect to t and

E´(t) = –α||ut||
2 ≤ 0.	 (5)

Proof.  We multiply both sides of the equation (1) by ut 
and then integrating from 0 to 1, we obtain
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By direct calculation, we obtain
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By using integration by parts and boundary value of the 
problem (1), we get:
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By using
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Lemma 5. There exists a positive constant C>0 depending 
on [0,1] only such that

u C u up
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p
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for any u ∈ Lp [0,1], and 4 ≤ s ≤ p.

BLOW UP RESULT

In this part, we state and prove a blow up result for 
problem (1) in finite time with E(0) < 0.
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By replacing (7)-(14) in (6), we have
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By inserting (3) in (15), we have

E´(t) = –α||ut||
2 ≤ 0	 (16)

By integration (16) from 0 to t, we obtain
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We give some lemmas which be used in our proof. For 
proof of Lemmas 2-5 and Corollary 4, we refer the readers 
to Kafini and Messaoudi [18].
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Corollary 4. There exists a positive constant C > 0 
depending on [0,1] only such that
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For estimating the fifth term of the (27), by using 
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where C and C1 are positive contants.
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By associatining (36) and (41) we arrive at

′( ) ≥ ( )−L t L tξ σ
1

1 , (42)

where ξ is a positive constant depending only on λ, ε and C. 
Integration of (42) over (0,t), we arrive at

L t
L t

1
1

1
1

1

0
1

−

−

( ) ≥
( ) −

−( )

σ

σ ξσ
σ

.
(43)

Moreover (43) shows that L(t) blows up in a finite time

T T
L

≤ ≤
−

( )

∗

−

1

01

σ

ξσ
σ
σ

. 	

GLOBAL EXISTENCE

In this part, we state the global existence of the problem 
(1) without damping terms (for α = 0).

Theorem 7. Assume that u0 ∈H0
2(0,1) and u1 ∈ L2 [0,1]

Assume further that

u lnu dxp( ) ≤∫ 0
0

1

and the initial value satisfy E(0) < 0. Then, the problem (1) 
admits a global weak solution.

Proof. Set

B t E t
p

u lnu dx
p

u dxp p( ) = ( ) + ( ) −∫ ∫
1 1

0

1

2 0

1
. 	 (44)

Since h and m are fixed, taking ε small enough yields

(1 – σ) – hε ≥ 0,

and

L H u u dx0 01
0 10

1
( ) = ( ) +− ∫σ ε . 	 (35)

Therefore, (34) takes the form

′( ) ≥

( ) + + +

+ +( ) + +( )∫ ∫L t

H t u u u u

ax b u dx ax b u dx

t xx x xx

x xλε

2 2 2

2

0

1 4

0

1
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











∫u u lnu dxp

p p

0

1

, 	 (36)

in which λ > 0 is the minimum of the coefficients of H(t), 
||ut||

2, ||uxx||
2, ||uxuxx||

2, ∫0
1(ax + b)ux

2dx, ∫0
1 (ax + b)ux

4dx, ||u||p
p, 

∫0
1(|u|p lnu)dx.

Consequently we obtain

L(t) > L(0), t ≥ 0.	 (37)

Next, we esimate L t
1

1− ( )σ  Using Hölder inequality, we 
obtain

uu dx u u C u ut t p t
0

1

∫ ≤ ≤ ( ),

which implies

uu dx C u ut p t
0

1
1

1 1
1

1
1∫

−
− −≤





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σ
σ σ . 	

Applying Young’s inequality we get for 
1 1

1
µ κ

+ =

uu dx C u ut p t0

1
1

1 1 1∫ − − −≤ +




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σ
µ
σ

κ
σ . 	 (38)

To be able to use Lemma 5, we take = 2/(1 – σ), to get μ 
= 2(1 – σ)/(1 – 2σ). Therefore (38) has the form

uu dx C u ut p
s

t0

1
1

1 2∫ − ≤ +( )σ , (39)

where s = 2/(1 – 2σ) ≤ p. By using Lemma 5 we get

uu dx C u u u

C u u ax b u dx
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p

x
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1
1

1 2
4
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2 4
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∫
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≤ + + +( )( )

σ

.
(40)
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Then by definition of E(t) and (44) we reach

B t u u ax b u dx u u

ax b u dx

t xx x x xx

x

( ) = + + +( ) +

+ +( ) ≥

∫

∫

1
2 2

1
4

2 2 2

0

1 2

4

0

1

β β

00.
	(45)

By using E(0) < 0 and (23) with α = 0, we obtain

dE t
dt

( )
= 0, (46)

E(t) = E(0) = 0.	 (47)

By taking a derivation of B(t) and using of the (46), we 
have

′( ) = ′( ) + +

− =

− −

− −

∫ ∫

∫

B t E t u u lnudx
p

u u dx

p
u u dx u

p
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p
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p
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1 1
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1 11

0

1
u lnudxt∫ .

	 (48)

Since x < ln|x| and in wiev of using Hölder and Young’s 
inequality, definition of the B(t), (48) replaces

′( ) < ≤ ≤ +

≤ ( ) − ( ) +

∫B t u u dx u u u u

E t B t
p

u ln

p
t p

p

t p
p

t
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1
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2
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1
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4

1

ρ
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ρ
uudx ut0

1 2 2∫
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





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	(49)

where ρ is a positive constant.
Because of (45), (47) and ∫0

1|u|p lnudx ≤ 0, we attain

E t B t
p

u lnudxp( ) − ( ) + ≤∫
1

0
0

1
, 	 (50)

which means

|B´(t)| ≤ ρ2 ||ut||
2.	 (51)

On the other hand, by using (45), we deduce

2 2 2

1
2

2 2 2

0

1

2 4

0

1

B t u u ax b u dx

u u ax b u dx

t xx x

x xx x

( ) = + + +( )

+ + +( )

∫
∫

β

β .

It follows that

||ut||
2 ≤ 2B(t). (52)

From (51) and (52), we have

|B´(t)| ≤ 2ρ2B(t).	

Therefore

B(t)exp(–2ρ2t) < B(t) < B(t)exp(2ρ2t).	

With the last estimate, the definition of B(t) and con-
tinuation principle, the proof was completed.

CONCLUSION

As mentioned earlier in the introduction nonlinear 
equations with logarithmic source term and their analytical 
solutions have  received much attention from physicists and 
mathematicians.  However, in the last time, many authors 
have made great progress and adopted various techniques 
to study the analytical side of these problems(see, for exam-
ple;[16, 22, 26, 27, 28, 30, 34, 36]).

The result of Theorem 6 tells us the blow up property 
at in finite time of the solution, but we don’t know whether 
the solution blows up infinitely time. We conclude that the 
normal Georgive-Todorova method (e.g.[11]) no longer 
emploies in this specific situation when the logarithmic 
source term appears, for blow-up in finite time of the solu-
tions. Theorem 6 shows us that there is quite a difference in 
cases of the equations with polynomial nonlinear term or 
logarithmic nonlinear term.
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