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exponential growth
INTRODUCTION
Let is a bounded domain with a sufficiently smooth fi(uw) = alu+ v O(u + v) + blululv]™?,
boundary in R"(n = 1). We investigate the exponential growth £(v) = alu + v+ v) + bly|v|ul

of solutions for the following initial boundary value problem:
wherea >0, b >0, and

u, +A2u—‘[0[,01 (t—s)Azu(s)ds+(|u|f +|v|g)|u, |/1_1 u, .
= £ (wv), (1) € QX (0.T), l<s ffn=12, o
t 3—n .
v+ A= py (=) A (s)ds+ (" +lul v, [, Cl<sso— ifn=23
= £, (), (x.t) e Qx(0,T) (1)
u(x,t)=v(x,t)=0, (xt)edQx(0,T), It is easy to show that
u(x,0)=u,(x), u,(x,0)=u,(x), xe€Q,
vix 0;_ v (x; v Ex Oi—v (x)) xeQ uf () + vf,(uv) = 2(s + 2)F(uv), V(uv) € R, (3)
> ) > Yy > =V > >

where
where p,n > 1,f,g,h,j > 0; p(.):R* > R* (i = 1,2) are positive
relaxation functions. Fluv)=
The source terms are defined as follows: ’ 2(s+2)

[a|u+v|2(”2) +2b|uv|”2]. (4)
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Equation (1) can be viewed as a generalization of a plate
model. The following plate equation

u, — JAu, +A2u—J-0th(t—s)A2u(s)ds=0, (5)

have been studied by Rivera et al. [1]. The authors proved
the asymptotic behaviour of solution with the initial and
dynamical boundary conditions. The problem (5) with
source term have been investigated by Alabau-Boussouira
et al. [2] and the authors discussed exponential and poly-
nomial decay results of solutions when the memory h decay
exponentially and polynomially in case y = 0, respectively.

On the other hand, Messaoudi [3] discussed the exis-
tence result and show that the solution is global in case m >
p and also blow-up of solutions with negative initial energy
in case m < p for the following problem

2 m-1 -2
w, + Autfu | =l

Also, Piskin and Polat [4] investigated same problem
with strong dampin (Au,) and obtained decay estimates of
solution.

The importance of the viscoelastic properties of materi-
als has been realized by virtue of the quick developments in
rubber industry and plastic. During the last few decades,
many researchers have been interested in the viscoelastic
equation. For example, Cavalcanti et al. [5] discussed the
following equation

|ut|”u“ —Au—Au, —j;h(t—s)Au(s)ds
—Au, =0, x€Q, t 20,

and studied a global existence result for y > 0 and uni-
form exponential decay result for y > 0 Then, Messaoudi
and Tatar [6] investigated same problem with a nonlinear
source term and proved global existence and an exponen-
tial decay result by using the potential well method. Also,
the authors investigated exponential growth of solutions.

In addition, Tahamtani et al. [7] studied uniform decay
results and exponential growth of solutions with positive
initial energy for the following viscoelastic system with #
>0,j, 5> 1

|u|" u, +A2u—J;hl(t—s)A2u(s)ds—Au“ +‘ut‘j71 u, = f, (u,v),

.| v, +A2v—'[;hz (t—s)A™(s)ds—Av, +|v,[ v, = £, (wv).

During the last few decades, many researchers have
been interested in the nonlinear wave equations with
degenerate damping terms. Now, we state some present
results in the literature: Rammaha and Sakuntasathien [8]
firstly discussed coupled equations with degenerate damp-
ing such as

u, —Au+(|u|f +|V|g)|ut|”_1 u, = f,(u,v),

AR )
v, —Av+(|v| +|u|1)|vt| v, = f, (w,v).
The authors considered the global well posedness of the
solution under some restriction on the parameters. Then, in [9,
10], the authors studied the same problem treated in [8], and
discussed the exponential growth and blow up of solutions.
In recent years, some other authors investigate the hyperbolic
type system with degenerate damping terms see [11-22].
The present work is organized as follows: In Section
2, we present some assumptions, lemmas needed for our
work. In Section 3, the exponential growth of solutions with
negative initial energy is proved.

PRELIMINARIES

In this section, we will present some assumptions, nota-
tions, and lemmas that will be used later for our main result.
Throughout this paper, we denote the standart L*(2) norm
by ||-II = [11],2, and L(Q) norm by ||.||, = [[-[| ;0

To state and prove our result, we need some assumptions:

(A1) Regarding p(.): R* > R*, (i = 1,2) are C' -nonin-
creasing functions satisfying

p(2)>0, p(a)<0, I—J:p,. (@)yda=1,>0,x20.
(A2) For the nonlinearity, we assume that

1< 4,7 ifn=12,

n+

2.
1Su,n< 21fn23.

n—

In addition, we present the following notation:

(p08w)(1)= [ g (t=)[Aw(®) = Aw()] s

Lemma 1 (Sobolev-Poincare inequality) [23]. Let q be a
number with2<g<eo (n=1,2,34)or2<gq<2n/(n-2) (n
> 5), then there is a constant C, = C, (£2,q) such that

|lull, < C.||Aul| for u € HY(Q).
Lemma 2 [24]. Assume that

n—1
n—2

s<2 , n23

holds. Then, there exists a positive constant C > 1 depend-
ing on Q only such that

s < IVl + Dl )
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foranyu € H} (Q2),2<a<s. Sxk sy
We define the energy function as follows XY= p + ;o
Lo e oo ey, L 1.1
E(t)= E(”ut I+, | )+ EE(pIOA”)(t) + (,02<>Av)(t):| where P + l =1 So we have for all §, > 0
t 2 el
(1 [a (s)ds)||Au(t)|| o 5
1 JO : |uut|ut|"’1|S 1+1|u|”71 el ;_1 [ul“",
2| +{(1- [ p ) ds)lavio “ “
heref
—J})F(u,v)dx. and therefore
f g H-1 él/m f £ f+1
By computation, we get JQ(|“| +[vl )|W,|ut| |dx s /1+1-[ﬂ(|u| +vl )|M| dx
1 ’ ’ b‘ u
— <— Ho s 1
B0 [/ 0au) 0+ o 0av)0)| PO Y
1 2 2
_ 5( 2 OlAul +p, (0)]|Av]) ) Similarly, for all 8, > 0
_j (|u|f +|v[¢ )|ut |#+1 dx 7+
. 7-1 6;,”1 7+l 7752 ! 7+l
h i 7+1 w, v, |7 S v+ v )
[ (il Yo | dxe <o R e el
which gives
GROWTH
In this section, we aim to prove that the energy grows up J‘ (Mh +lup )|W[ v, |7 dx < PXaS J_ (|V|h e )|V|'7+1 »
as an exponential function as time as goes to infinity. @ 7+1°e
Theorem Assume that 2(s +2) > max{f+ p+ 1, g+ u + 7 (13)
1,h+#n+1,j+n+ 1}, and the initial energy E(0) < 0. Then, +&J‘ (|V|h +|u|j)|vt|7/+1 dx.
the solution of the system (1) grows exponentially. 7+l e
Proof. Let us define the functional
Inserting the estimates (12), (13) into (11), we have
= 1 2 2 2 2
L(t) H(t) + E(J‘Qutudx + J.QVtVdX) ( 0) L’(l‘) > H'(t)+ g(Hu[H +Her )_g(HA”H +HAVH )
where H(t )= ~E(f) and 0 < e < 1. +28(s+2)JﬂF(u,v)dx+ &‘J.ﬂj.opl (t—s)Au(s)Au(t)dsdx
. o g . ¢ H+1
By differentiating (10) and using Eq.(1), we get +€LJ0/)2 (t_S)AV(S)AV(t)dex_€j+1j‘g(‘u‘f )l dx
n (14)
Vs

L) =0+ [ [ v [ o[ )
+ g(.[ﬂ u, udx + _[Q v, vdx)
= H'(O)+ el [+ ) - ellaul +avf)
+25(s+2)jQF(u,v)dx o
e jo 2, (t = $)Au(s)Au(t)dsdx
el ['p,(t-s)Av(s)Av(t)dsdx
jgu(|u|f + ] Yot Ju, [ dx

—L}v(lvl" +|u|j)vt|v,|’771 dx |

In order to estimate the last terms in (11), we use the fol-
lowing Young’s inequality for X, Y >0, 6> 0, k, [ € R*

—gﬂjg(\u\f +vf* )|y, \*‘*‘dx—gf;:jﬂ(\v\h +[u! ) v|"" dx

a+1

7+l

S, " AL (7
—é‘%]ﬁ(\v\h +\u\1)‘vt"] ' dx.

Now, the seventh term in the right hand side of (14) can
be estimated, as follows (see [25]):

[ au(®)] p(t=s) Au(s)dsdx < L auf
. ? _as)
+%jﬂ(£pl(t—s)(|Au(s)—Au(t)|+|Au(t)|)ds) dx.

Thanks to Young’s inequality and in view of the fact that

[ Ads<[ p(s)ds<1-1,
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we have, for any , > 0,
[ 8u®)]! py (=) Aus)dsdx <~ |auf
Q o/ )

+%(1+ 771)_[.9(.[;,01 (t —s)Au(s)ds)2 dx

1

2(1+ Jj (j 2.(t— )| Au(s) - Au(t)|ds)

(16)
1+(1+7)(1-1 ,
Sw"m["

2

(1+;j(1—ll)(

2

+ POAU)(2).

Similar calculations also yield, for any #, > 0

JﬂAv(t)J;pz (t—s)Av(s)dsdx < WHMF

(1+;j(1—l2) w7
2—(

+ 5 P,0AY)(1).

Then, by (15) - (17) and add 2H(¢) to both side of (14),
we deduce to

()= H' (t)+ 2&{|u [ +[v, )

+g[(1-zl)+ L (14 )(-1) _1JIIAuIIZ

2

+€[(1—lz)+ 1+(1+ 772)2(1—12)2 —1]"Av"2

+2&(s+ Z)JQF(u,v)dx+ 2&H (t)

(1+;J(1—ll) ( (18)
2

POAu)(t)

+é&| 1+

+& 1+ 5 P,0AV)(t)
“ f g
w1 u +
—5(51—.[ (e +[w]* ) uat " dx - £ j (14 +1|V| )
H+1-e VAR e |ut|ﬂ dx

741 )
AT S (LI
_8772+1L>(|VI Hul ™ dx—e e Ju v, dx.

Then, by Young’s inequality, we have

T (tat” ol Yt doe < [l i+ [ vl e dx
Q Q Q

g+u+l

g+u+l
—h e

g+u+l

/1+1 J | |g+/1+1 dx

Sj [u)” " dx + g
Q +Iu

Lo MFL H+1
g+/1+1

gHu+l

g
el ey + m}’l ¢ v

gtu+l
/Ll+1 A+l ” "g+/l+1

g+lll+l 1 g+utl

And

J (vl 1 Yol de < ol dxc+ [ uf o) dx
Q Q Q

j+?7+l

SJ |V|h+7]+1 dx + J J |u|j+17+1 dx
Q i+ Q

17

FAR/an!

+1 i
- 77 7/2 7+l J V]+ﬂ+1dx
j+n+l Q

j+7]+1

= |vllyim + ﬁ?’z N 171
j+77+1

vl

7+l
jrn+1’?

Then, (18) becomes

L(0)2 H () +2¢(Jus [ + |, [ ) + 22 (2)

+g[(1 gy Emizh) -t ’71)(12_ W) - 1]||Au||2

+g[(1-12) L)L) _1J||Av||2 )

2

+26(s+2)[ lulbey + VIR |

(1+;j(1—ll) (

2

+el 1+ POAu)(t)

+e 1+ 7722 (p,0AV)(t)
g gHu+l
1 1
Se el s + m}’l S [ i
_ 1
e A
Tl

g+u+1’’
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45
i it Also, we pick §, §,, y, and y, to find small enough M,,
[V ey, Tl M, M, M, and M.
1 el 2 jratl 2 73 Ay 5
_gé;”+ jrn+l This implies
77+ 1 +1 jHntl .
L amr? L AR - o
jrn+l (0= H' () +2&(Ju, [+, ')+ £(2— dM, ) H(e)
p 5"7“ 1 +eor |Aulf + £a, AV
f A+ s+ s+
_gﬁfg(lul | [ te(2(s+2)—dM, )ulf) + e(2(s +2)—dM, VRS
P +&0 (p,00u)(t)+ &5, (p,0Av)(t) (21)
7o, " N -
—S;lj‘g(lvlh +|u|’)|vt| ™ dx. +(1- ng)J.Q(lulf +|v|g)|ut I dx
n+ o
9, " ; -
Since2(s +2) >max{f+u+ 1, g+u+Lh+n+1,j+1 +(1_8M2)” :_1 J.ﬂ(|V|h +|U|J)|Vz|’] "dx
+ 1} and using the following algebraic inequality 4
s 1+ (1-1)
X' <x+1< (1+lj(x+a), Vx>0,0<v<1a>0, where < =[(‘*4>*7(H”‘)(Iz_l') _lj” and /= ”7( ”zj Zou=)
a
for choosing 7 = : lil .
have for all t > -
we have forall t=0 We can find positive constants K , K, K, and M_such
h p 1 2 3 6
that
W7 < e e <d(VECs) + H (©),
()= (1-eM H (&) +2&(|u || +|v,[")+ ek, H (@)
where d=1+ﬁ. In the same way, we obtain ( o) (" I ) ' (22)

+ea [Aul] + ea, |Av[] + €K, ull;) + €K VIR -

s < e, lulle ) < d(lullss) + H (1)),
WIS < e vl < d (WD) +H(®)),
a7 < c, lullscy' < d(llfs) + H (b)), L(0)=H(0)+ e( [ wudx+ jﬂvtvodx) >0.
lalljens < s Null ' < d(lulbss) + H (D)),

And

We choose ¢ small enough such that (1 - eM, ) > 0 and

Consequently, there exists I' > 0 such that (22) becomes
L'(t)> el

(O + o+ v, + Il + [Av]P + s + IR, (

(s+2) 2(s+2)

23)

WL 7 < e Ivliesy < d(IvEes) + H ().

We choose M, M, M, M, M, such that Therefore, L(t) is strictly positive and increasing for all

t>0.
u 5%1 7 5%1 Now, by using Holder’s and Young’s inequalities, we
M, = : L’ 2 = : 1’ estimate
M+ 7+
41 g+utl s} . o+l
YR Y50 Wl R A B o et < o 1
M1 grutl n+1j+7+1
g1 e < C[Ju el
é"7+1 77+1 J é‘/[+1 g
M4 =—— 1+ . 2 K R N £, C 2 2
n+10 j+p+l L1 g+ 1 < 5("% I+l
And < g ” "2 +(" "2(s+2) )Hl.iz
) Y, Ully(s+2) .
é‘#*l g gtutl ,U+1 gHu+] )
M; = ,ul+1 1+ g+,tl+1% g +—g+/z+17/1 wrl Using (20) for (||u||§$i§§ )E we obtain

7+l + j+Z+1 . L’]*—l C 1 .
COSA PY A2 S B | et < | o | 1 (B3 + H ) |
n+1 jHn+l jHn+1 Q 2 H(0)
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Similarly, we obtain

C 1 o
Uﬂv,vdx‘ < E[”vt ||2 + (1 + %](llvlligﬁg + H(t))j.

Also, by noting that

L(t)=H(t)+ g(jﬂutudx + Jﬂvtvdx)

) C[H(t)+ o, |+ v, ||+l Aulf +||Av||2] (24)

Hlul ) + v

and combining with (24) and (23), we arrive at

dL—(t)z EL(t),Vt =0

o (25)

where ¢ is a positive constant.
Integration of (25) between 0 and ¢ gives us

L(t) = L(0)exp(&t)

and this completes the proof.

CONCLUSION

In this paper, we are interested in the growth of solu-
tions for a viscoelastic system with degenerate damping.
This type of problem is frequently found in some mathe-
matical models in applied sciences, especially in the theory
of viscoelasticity. What interests us in this current work is
the combination of these terms of damping (viscoelastic
term, degenerate damping, and source terms), which dic-
tates the emergence of these terms in the system.
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