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ABSTRACT 

In this article, we study a plate equation with frictional damping, nonlinear source and time 
delay. Firstly, we establish the local existence by using the semigroup theory. Then, under 
suitable conditions, we prove the nonexistence of global solutions for positive initial energy. 
Time delays often appear in many practical problems such as thermal, economic phenome-
na, biological, chemical, physical, electrical engineering systems, mechanical applications and 
medicine.
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INTRODUCTION 

In this work, we deal with the following plate equation 
with time delay
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where p > 2, μ1 is a positive constant, μ2 is a real number, 
τ > 0 represents the time delay and the functions u0, u1, f0  
are the initial data to be specified later. v is the unit outward 
normal vector. 

Problems about the mathematical behavior of solutions 
for PDEs with time delay effects have become interesting 

for many authors mainly because time delays often appear 
in many practical problems such as thermal, economic 
phenomena, biological, chemical, physical, electrical engi-
neering systems, mechanical applications and medicine. 
Moreover, it is well known that delay effects may destroy 
the stabilizing properties of a well-behaved system. In the 
literature, there are several examples that illustrate how 
time delays destabilize some internal or boundary control 
system [6,7].

In 1986, Datko et al. [5] indicated that delay is a source of 
instability. In [12], Nicaise and Pignotti considered the fol-
lowing wave equation with a linear damping and delay term.

utt – ∆u + μ1ut(x,t) + μ2ut(x,t – τ) = 0.	 (2)
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PRELIMINARIES

In this part, we introduce some needed materials for 
the proof of our result. As usual, the notation ‖.‖p denotes 
Lp norm, and (.,.) is the L2 inner product. In particular, we 
write ‖.‖ instead of ‖.‖2.

Let Bp > 0 be the constant satisfying [1, 21] 

‖∇v‖p ≤ Bp‖∆v‖p, for v ∈ H0
2 (Ω.)	 (7)

Similar to the [12], we introduce the new function

z(x,ρ,t) = ut(x,t – τρ), x ∈ Ω, ρ ∈ (0,1), t > 0.	

Hence, we have

τzt(x,ρ,t) + zρ(x,ρ,t) = 0, x ∈ Ω, ρ ∈ (0,1), t > 0.	

Thus, the problem (1) transforms into:
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The energy functional related to the problem (8) is 
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Now, we give the technical lemmas as follows:

Lemma 1. The solution of (8) satisfies 

( ) 22
0( ) ,1, ,0tE t C u z x t dx
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for some C0 > 0.
Proof. We multiply the first equation in (8) by ut and 

integrating over Ω, and use integration by parts, to get
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They obtained some stability results in the case 0 < μ2 < 
μ1. In the absence of delay, Zuazua [27] looked into expo-
nentially for the equation (2).

In [8], Kafini and Messaoudi considered the wave equa-
tion with nonlinear source term and constant time delay as 
follows

utt – ∆u + μ1ut(x,t) + μ2ut(x,t – τ) = |u|p–2u.	 (3)

They established the local existence and blow up of 
solution for positive initial energy of the equation (3).

In [11], Messaoudi studied the equation as follows

utt + ∆2u + |ut|m
–2ut = |u|p–2u, (4)

and obtained the existence results and obtained that, if 
m ≥ p, the solution is globally and blows up in finite time 
if m < p. Later, Chen and Zhou [4] extended this result. In 
the presence of the strong damping term (–∆ut), Polat and 
Pişkin [22] proved the global existence and decay of solu-
tions for the equation (4).

Xu et al. [23], studied the plate equation with nonlinear 
damping and source term as follows

utt + ∆2u + μ|ut|
q–2ut + au = |u|p–2u,	 (5)

with 2 < q < p, μ > 0,  and they proved the well-posedness, 
decay estimates and blow-up of solution at both subcriti-
cal (E(0) < d) and critical (E(0) = d) initial energy levels. 
Furthermore, when p > 2, q = 2 and μ > 0, they established 
that the solution blows up in finite time at the supercritical 
initial energy level (E(0) > d).

In [2], Al-Gharabli and Messaoudi concerned with the 
plate equation with logarithmic term as follows

utt + ∆2u + u + h(ut) = kuln|u|. (6)

They established the existence results by the Galerkin 
method and obtained the explicit and decay of solutions 
utilizing the multiplier method for the equation (6). In 
recent years, some other authors investigate hyperbolic type 
equations (see [3, 14–20, 24–26 ]).

To our best knowledge, there is no research on the plate 
equation with frictional damping, nonlinear source and 
time delay. The aim of the present paper is to establish the 
sufficient conditions for the local existence and nonexis-
tence of global solutions to the plate equation with time 
delay.

The paper is organized as follows: In section 2, we give 
some materials that will be used later. In section 3, we estab-
lish the local existence by using the semigroup theory sim-
ilar to the work of Kafini and Messaoudi [8]. In section 4, 
we prove the nonexistence of global solutions for positive 
initial energy.



Sigma J Eng Nat Sci, Vol. 39, No. 5, Supp 22, ICOMAA 2021, pp. 23–32, December, 2021 25

where B is the constant of the Sobolev embedding 
H0

2(Ω) ↪ Lp(Ω).

Lemma 2. Let u be a solution of (8), with initial data, 
such that
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We see that, h is increasing for 0 < ς < α, decreasing for 
ς > α,

h(ς) → –∞ as ς → + ∞	
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Also, we multiply the second equation in (8) by (ξ/τ)z 
and integrate over Ω × (0,1), ξ > 0, to have
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By combining (12) and (13) and taking into consider-
ation (14), we obtain
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for t ∈ (0,T).
Utilizing Young’s inequality, we estimate
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From (10), for some C0 > 0, we have
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from which (22) follows.
Similar to the work of [10] and by using Sobolev 

Embedding theorem, we have the following lemma:
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Thus, since E(0) < E1, there exists β > α so that h(β) = 
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Proof. For all Φ ∈ D(Ă), we obtain
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Utilizing Young’s inequality, estimate (32) becomes 

( )

2 2 22 2
1

2
1 2

| | | |
| | | | | |

| |

Ã ,
2 2

| | 0.

v dx v dx v dx

v dx

µ µ
µ

µ µ
Ω

Ω

Ω

Φ Φ ≥ − −

≥ − ≥

∫ ∫

∫

∫H

Hence, Ă is a monotone operator.
To show that Ă is maximal, we prove that for each

( , , ) ,TF f g h= ∈H

there exists V = (u,v,z)T ∈ D(Ă) so that (I + Ă)V = F. 
Thus,

2
1 2 (1,.)

.    

u v f

v u v z g
z z hρ

µ µ
τ τ

− =


+ ∆ + + =
 + =

(33)

We note that v = u – f, from the third equation of (33), 
we conclude that

0

( ,.) ( ) ( ,.) .z u f e e h e d
ρ

ρτ ρτ γτρ τ γ γ− −= − + ∫ 	 (34)

By substituting (34) in the second equation of (33), we 
have

ku + ∆2u = G,	

Where

1
2

1 2 2
0

1 , ( , .).) (k e G g kf e h e d Lτ τ γτµ µ τµ γ γ− −= + + = + − Ω∈∫
(35)

LOCAL EXISTENCE

In this part, we establish the local existence result 
by using the semigroup theory. Assume that v = ut and 
denote by

( )
T

0 0 1 0

2

(( , , ) , (0) ( , , ., )

and ( ) 0 ,0 .

)

,

T

Tp

u v z u u f

J u u

ρτ

−

Φ = Φ =Φ = −

Φ =

Hence, (8) can be written as an initial-value problem:

t

0

( )
(0) ,

A J∂ Φ + Φ = Φ
Φ =Φ

�
(30)

where the linear operator : ( )A D A →
� �

H is defined by

( )2
1 2 1,.Ã .
1

v

u v z

zρ

µ µ

τ

− 
 
∆ + + Φ =
 
 
 

The state space of Φ is the Hilbert space

2 2 2
0 ( ) ( ) ( (0, ) ,)1H L L= Ω × Ω × Ω×H

equipped with the inner product

1

2
0

, ( ) ,u u vv dx zzdxdτ µ ρ
Ω Ω

Φ Φ = ∆ ∆ + +∫ ∫∫ �� � �H

for all ( , , )Tu v zΦ =  and ( , , )Tu v zΦ =� �� �  in H. The domain 
of Ă is

4 1 2
0

2

: ,   ,   (1,.) ( ),
( ) .

, (0,1) ,  (0,

( )

.)

( )

( )

u H v H z L
D A

z z L z vρ

 Φ∈ ∈ ∈ Ω ∈ Ω =  
∈ Ω× =

Ω



� H

Now, we give the local existence theorem as follows:

Theorem 5. Suppose that μ1 ≥ |μ2| and 

2( 2)2 , 5.
4

np n
n
−

< ≤ ≥
−

(31)

Then, for any 0 ,Φ ∈H  the problem (30) has a unique 
weak solution ( ; ).C R+Φ∈ H



Sigma J Eng Nat Sci, Vol. 39, No. 5, Supp 22, ICOMAA 2021, pp. 23–32, December, 202128

As u, ũ̃ ∈ H0
2 (Ω) utilizing Sobolev embedding 
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Hence, J is locally Lipschitz. Similar to the theorems in 
Komornik [9] (See also Pazy [13], we completed the proof.)

NONEXISTENCE OF SOLUTIONS

In this part, we prove the nonexistence of global solu-
tions for positive initial energy of the problem (8).
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Now, we define, over H0
2(Ω), the bilinear and linear 
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We see that B is coercive and continuous, and L is con-
tinuous on H0

2 (Ω). Then, Lax-Milgram theorem specifies 
that the equation 

B(u,w) = L(w), ∀w ∈ H0
2 (Ω),	 (36)

has a unique solution u ∈ H0
2 (Ω). Therefore, v = u – f ∈ 
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2 (Ω). As a result, by (34), we have z, zρ ∈ L2(Ω × (0,1)). 
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From the elliptic regularity theory, we have u ∈ H4(Ω) 
and utilizing Green’s formula and the second equation of 
(33) give
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Thus, 

(1 + μ1)u + ∆2u + μ2 z(1,.) = g ∈ L2(Ω).	

Hence,
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we estimate the last two terms as follows
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Similar to [10], the estimates (42) and (43) remain valid 
even if δ is time dependent. Hence, taking δ such that

δ–2 = kH–σ(t), (44)

for large k to be specified later, we obtain
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By taking a derivative of L(t) and utilizing (8) and (18), 
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By exploiting (37), we have
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where, thanks to (29), c̃ > 0.
Reminding Young’s inequality
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and from Young’s inequality
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As a result, we obtain
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By combining (49) and (52), we conclude that
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where γ > 0. Then, choosing ε small enough, such that
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As a result, we conclude that

L(t) ≥ L(0) > 0, t ≥ 0.	

Now, we get, from Hölder’s inequality
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Thus, L(t) blows up in time
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Hence, the proof is completed.

CONCLUSION

In recent years, there has been published much work 
concerning the wave equations (Kirchhoff, Petrovsky, 
Bessel,... etc.) with different state of delay time (constant 
delay, time-varying delay,... etc.). However, to the best of 
our knowledge, there were no local existence and nonex-
istence of global solutions for the plate equation with time 
delay. Firstly, we have been obtained the local existence by 
using the semigroup theory. Later, we have been proved the 
nonexistence of global solutions for positive initial energy.
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