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ABSTRACT 

We discuss here the stabilization problem for an ordinary differential equation (ODE) dynam-
ical model. To make such a control, one can form a Kolesnikov’s subset attracting the phase 
trajectories to its neighborhood in the phase space via defining the appropriate feedback sig-
nal. Kolesnikov’s target attractor algorithm provides the exponential convergence, but at the 
same time it demands the permanent power supply pumping the energy to the system even if 
the control goal is achieved.

To decrease the power cost of Kolesnikov’s control, we re-formulate the feedback in the 
form of Caputo’s fractional derivative. In this case the solution to the ODE together with the 
feedback control signal could be found with the Rida-Arafa method based on the generalized 
Mittag-Leffler function.

We prove that for the certain constraints over the initial condition and the target stabiliza-
tion level, the integer-dimensional Kolesnikov algorithm can be replaced with the fractional 
target attractor feedback to provide the minimal power cost. 
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INTRODUCTION 

The stabilization problem for an ordinary differential 
equation (ODE) dynamical model is one of the key appli-
cations of control theory. It involves a variety of different 
feedback algorithms, including optimal and sub-optimal 
gradient approaches [1, 2]. From the point of physics the 
basic idea of a gradient method is developing in the dynam-
ical system a sort of friction force at the target level of the 
controlled parameter. This friction-type force provides a 

necessary decay of the system dynamics to achieve the con-
trol goal at the constant level (stabilization) or at the cer-
tain time-dependent function level (tracking). The gradient 
methods are relatively universal and very flexible for the 
adaptation to a wide spectrum of applied problems [3]. The 
typical handicap of gradient algorithms is a certain error in 
the achievement of the control goal.

An alternative way is Kolesnikov’s ‘synergetic’ feedback 
which forms a subset attracting the phase trajectories to the 
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where {x1,…xn} are the set of the n-dimensional phase 
space parameters. Particularly, for our model (1) we con-
sider the goal function as:

( ) 1 ( ) , const 0.d t t T
dt T
ψ ψ= − = > (4)

The constant T stands here for the typical scale of 
Kolesnikov’s control. Eq.(4) has the solution:

ψ(t) = ψ(0)e–t/T. (5)

Now for the purpose of stabilization (2) let’s define the 
goal function ψ as:

ψ(t) = v(t) – v*. (6)

Eq.(6) corresponds to the Kolesnikov’s target attractor 
locking the phase trajectories in the neighborhood of the 
stabilization level v*. The substitution of (6) into (1) pro-
vides the explicit form of the control parameter:

*
1( ) ( ) [ ( ) ] .u t bv t v t v
T

= − − (7)

Thus, the control signal (7) drives the system (1) 
towards the goal (2) exponentially fast. The control prob-
lem is solved.

Let’s now evaluate the power cost of Kolesnikov’s con-
trol. First of all, we can easily see that the control signal is 
not off even if we are closed to our control goal:

u(t) → bv* as t → ∞. (8)

The power cost for the control (7) can be evaluated as:

P(t) = u(t)v(t). (9)

By (7) we obtain:

2
*

1( ) ( ) ( )[ ( ) ] ,P t bv t v t v t v
T

= − −  (10)

with the asymptotic value: P* = bv*
2. Let’s try to minimize 

the control power cost P(t) via re-formulating the feedback 
(4) in the fractal space.

KOLESNIKOV’S FRACTIONAL FEEDBACK

We make the definition of Kolesnikov’s fractional 
feedback:

1( ) ( ) ; const 0,tD t t T
T

α
α ααψ ψ= − = > (11)

target neighborhood in the phase space via the appropriate 
control signals [4]. Kolesnikov’s target attractor algorithm 
provides an exponentially fast convergence of the controlled 
parameters, but at the same time it demands the permanent 
power supply pumping the energy to the system, even if the 
control goal is achieved.

For many practical applications the way to minimize the 
control power supply may lead us to the fractal space [5, 
6]. To decrease the power cost of Kolesnikov’s control, we 
re-formulate here the feedback in the form of Caputo’s frac-
tional derivative [7]. In this case the solution to the ODE 
together with the feedback control signal could be found 
with the Rida-Arafa method [8] based on the generalized 
Mittag-Leffler function [9].

We demonstrate our approach with a simplified toy 
model. We prove that for the certain constraints over the 
initial condition and the target stabilization level, the inte-
ger-dimensional Kolesnikov algorithm can be replaced 
successfully with the fractional target attractor feedback to 
provide the minimal power cost.

TOY MODEL FOR CONTROL

First, let’s define a simplified ‘toy’ model, in which we 
will be able to investigate our approach analytically. Let’s 
consider a car traveling along the straight line with the 
velocity v. We compose the second Newtonian law for the 
car acceleration, via the time-dependent engine accelera-
tion u(t) and the viscous friction term bv in RHS, where b is 
a positive coefficient:

( ) ( ) ; const 0.dv u t bv t b
dt

= − = > (1)

For simplicity we normalized the mass: m = 1. Here the 
engine acceleration u plays a role of control parameter. The 
control goal is to stabilize the velocity v at the certain con-
stant level v*:

v → v* as t → ∞. (2)

We will apply Kolesnikov’s method for the stabilization 
problem (2).

KOLESNIKOV’S TARGET ATTRACTOR 
FEEDBACK AND ITS POWER COST

According to Kolesnikov’s approach, we need to form in 
the phase space of our dynamical system (1) the attracting 
manifolds ψs as functions of control object state variables 
[4]. These manifolds serve as a subset referring the goal 
function:

ψs(x1, …, xn) = 0, (3)
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Mittag-Leffler functions [10], then we obtain the leading 
term as:

/*( ) .t Tv
t eαψ α

−≈  (20)

Making the asymptotic comparison of (19) and (20):

2
/ 2*

*
(0)

(0) ,
2

t T btv
e v eα

α
ψ

ψ
α

− − 
∝ + 
  

 (21)

from the exponents we conclude that:

T = 2b. 22)

The factors multiplied by the exponents in (21) also 
must correspond each to another, such that we should 
chose α as:

2
*

2 2
*

2
.

(0)
v

v v
α =

−
(23)

Thus, we found that the fractional dimension parameter 
minimizing the Kolesnikov’s control power cost (9) for the 
model (1) depends on the target level of stabilization v* (2). 
From another hand, our approach has a fractional dimen-
sion constraint:

*
(0)1, then .
3

vvα < < (24)

Only for such a domain of the target stabilization levels 
our approach can be successful. 

CONCLUSIONS 

For the certain constraints over the initial conditions 
and the target stabilization level, the integer-dimensional 
Kolesnikov algorithm can be replaced with the fractional 
target attractor feedback to provide the minimal power cost.

Our fractional re-formulation of Kolesnikov’s con-
trol can be applied to a variety of physics and engineering 
models.

The approach proposed in the paper is robust. It is sta-
ble under the relatively small external perturbations. The 
choice of the fractional dimension parameter α depends on 
the stabilization level and on the initial conditions for the 
dynamical ODE. The asymptotic behavior of the solution 
defines also the typical control time scale T.
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using here Caputo’s fractional derivative [7]:

0

1 ( ) /( ) ; 0 1,
(1 ) ( )

t

t
df dD f t d

t
α

α
τ τ τ α

α τ
= < <
Γ − −∫  (12)

with the Γ-function:

1

0

( ) .xe x dxαα
+∞

− −Γ = ∫ (13)

The positive constant T in (11) again has the dimension 
of time, as in (4). The goal function ψa(t) corresponds to (6).

To solve (11), we apply here the Rida-Arafa method [8] 
using the generalized Mittag-Leffler functions in the form 
of series [9]:

0

( ) .
( 1)

n
n n

n

xE ax a
n

α

α α

∞

=

=
Γ +∑ (14)

By substitution the Mittag-Leffler series (14) into the 
fractional DE (11) we obtain: 

* *
0

( / )( ) ( 1) .
( 1)

n
n

n

t T tt v v E
n T

αα

α αψ
α

∞

=

   = − = −  Γ +   
∑  (15)

Here the factor v* provides the correct velocity dimen-
sion of the goal function (15).

Now we are ready to fix the free fractional dimen-
sion parameter α by minimizing the power cost (9) for 
Kolesnikov’s fractional feedback. Substituting the (15) into 
(9) we get:

* *
2
*

( ) [ ( ) ( )] [ ( )]

2 ( ) ( ) .

P t bv b t t v t

bv by t y t
α α α α

α α

ψ ψ ψ= + + ⋅ + =

= + +

�

�
 (16)

In (16) we used the notation:

2

*
( )

( ) ( ) .
2

t
y t v t α
α α

ψ
ψ= + (17)

The first term bv*
2 in RHS(16) is a constant. To minimize 

the rest of Pα as a function of time t, let’s get rid of the other 
two terms. We chose:

2byα(t) + ẏα(t) ≅ 0. (18)

that could be evaluated asymptotically as:

yα(t) ≅ yα(0)e–2bt. (19)

From another hand, to evaluate the control power cost, 
we use here the asymptotic properties of the generalized 
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