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ABSTRACT 

Control of vibrations, induced by magneto-electric load, by using piezoelectric actuator in a 
magneto-electroelastic micro beam is taken into account. Wellposedness and controllabili-
ty properties of the system is discussed. Performance index functional to be minimized on 
control duration is chosen as a modified kinetic energy of the micro beam. By means of a 
maximum principle, optimal vibration control problem is transformed to a solving of a system 
of partial differential equations linked by terminal-initial-boundary conditions. Solutions are 
obtained by means of MATLAB and for indicating the effectiveness and robustness of the 
applied control actuation, results are presented in tables and graphical forms.
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INTRODUCTION 

The definition, magneto-electro-elastic solid, is widely 
used to address to a kind of smart materials have capacity 
to transform reversibly their properties to respond external 
excitation such as temperature, moisture, stress, electric or 
magnetic fields. Since last two decades, magneto- electro-
elastic (MEE) composites have gained great importance 
due to their ability of transforming one form of energy to 
another, having simple geometry and economic design and 
being useful in smart or intelligent structure applications. 
Much studies are done for examining on several proper-
ties of Magneto-electro-elastic structures. In [2], the state- 
vector method is applied to examine the free vibration of 

MEE laminate plates. The natural frequencies and corre-
sponding mode shapes are calculated and compared with 
results existing in the literature. [3] aimed computation-
ally investigatation for effects of thermal and mechanical 
loads on dynamic characteristics of intelligent composite 
structures. In [4], the numerical calculations are made for 
investigating the nonlinear vibration, nonlinear bending, 
and magneto- electric potential distributions through the 
thickness of the beam in different thermal environmental 
conditions. In [5], the non-local theory solution to a three- 
dimensional rectangular permeable crack in MEE materials 
is showed by using the generalized Almansi’s theorem and 
the Schmidt approach. The problems are modeled through 
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is subjected to thermal and mechanical loads, and the 
piezoelectric face sheets are subjected to an applied elec-
tric potential. Twovariable sinusoidal shear deformation 
plate theory is used for the description of the displace-
ment components. The governing equations of motion are 
derived using Hamiltons principle by calculation of strain 
and kinetic energies and energy due to external forces. In 
[15], authors proposed the cell-based smoothed finite ele-
ment method (CS-FEM) for superior calculations, in which 
the strain smoothing technique is introduced into FEM. 
Also, it is shown that CSFEM possesses high accuracy, low 
mesh restriction, much less computational-cost than FEM, 
and stronger handling ability when encountering strong 
mesh distortions and large deformations. In [18], Wave 
propagation analysis of a nanobeam made of functionally 
graded MEE materials with rectangular cross section rest 
on Visco-Pasternak foundation is studied in this paper. For 
modeling the axial, rotation and transverse deformations, 
Timoshenko beam model is used. Fundamental MEE equa-
tions of the model are derived for a general functionally 
graded beam excited to electric and magnetic potentials. 
Surface elasticity is employed for more confident model-
ing the behavior of nanobeam. Using Hamilton principle 
and calculation of kinetic and strain energies, the equations 
of motion are derived. In [19], A dynamic solution is pre-
sented for the propagation of harmonic waves in inhomo-
geneous (functionally graded) MEE composite plates. The 
materials properties are assumed to vary in the direction 
of the thickness according to a known variation law. The 
Legendre orthogonal polynomial series expansion approach 
is employed to determine the wave propagating character-
istics in the plates. In [13], authors presented for the first 
time the thermal effect on dynamic characteristics of MEE 
intelligent structures by combining the coupled multiphysic 
(CP) CS-FEM with the modified Newmark method. The 
precision and converging of CPCS-FEM were proved by 
the comparing with FEM. In [20], The general solution of 
three-dimensional problems in transversely isotropic MEE 
media is obtained through five newly introduced potential 
functions. The displacements, electric potential, magnetic 
potential, stresses, electric displacements and magnetic 
inductions can all be expressed concisely in terms of the 
five potential functions, all of which are harmonic. The 
derived general solution is then applied to find the fun-
damental solution for a generalized dislocation and also 
to derive Green’s functions for a half-space MEE solid. In 
[14], authors aimed to conduct the research on studying 
the hygrothermal effect on the MEE-based structure using 
CS-FEM.

In [21], Two independent state equations are established 
for transversely isotropic magneto-electro-elastic media by 
introducing proper stress and displacement functions. The 
free vibration problem of simply supported rectangular 
plates with general inhomogeneous (functionally graded) 
material properties along the thickness direction is then 

Fourier transform as three pairs of dual integral equations, 
in which the unknown variables are the jumps of elastic dis-
placement, electric and magnetic potential jumps across the 
crack surfaces. In [6], the effect of hygrothermal environ-
ment on the free vibration characteristics of (MEE) plates 
is presented by using finite element method. For this aim, 
higher order shear deformation theory is employed to eval-
uate the displacement fields. In [7], In order to estimate the 
first natural frequency and the critical angular velocity of 
a thermo-electro-magneto-elastic single-layer cylindrical 
nano-shell resting on a Winkler foundation, the governing 
equations of motion are derived based on the Hamiltonian 
Principle and by using first shear deformation theories in 
conjunction with modified couple stress theory. The effects 
of the centrifugal acceleration are considered in the for-
mulation. In [8], Exact solutions are obtained for three- 
dimensional, anisotropic, linearly magneto-electroelastic, 
simply-supported, and multilayered rectangular plates sub-
jecting to static loadings. While the homogeneous solutions 
are obtained in terms of a new and simple formalism that 
resemble the Stroh formalism, solutions for multilayered 
plates are presented in terms of the propagator matrix. In 
[9], analytical solutions are presented for free vibrations of 
three-dimensional, linear an isotropic, MEE multilayered 
rectangular plates under simply supported edge condition 
and the dispersion equation that characterizes the relation-
ship between the natural frequency and wave number can be 
obtained in a simple form. In [10], Free vibration studies of 
multiphase and layered MEE beam is carried out. In-plane 
plate finite-element analysis is used to obtain the behav-
ior of MEE beam. In [11], a partial mixed layerwise finite 
element model for adaptive plate structures is presented. 
Static analysis of MEE laminated plate structures is consid-
ered. The mixed finite element formulation is presented by 
considering a Reissner mixed variational principle. In [12], 
authors considered size-dependent geometrically nonlinear 
free vibration of magneto-electro-thermo elastic (METE) 
nanoplates using the nonlocal elasticity theory. The math-
ematical formulation is developed based on the first-order 
shear deformation plate theory, von Krmn-type of kine-
matic nonlinearity and nonlocal elasticity theory. In [16], 
Thermo-electro-magneto-mechanical bending analysis of 
a sandwich nanoplate is presented by Kirchhoffs plate the-
ory and nonlocal theory. The sandwich nanoplate includes 
an elastic nano-core and two piezomagnetic face-sheets 
actuated by applied electric and magnetic potentials. The 
governing equations for the electro-magneto-mechanical 
bending are derived in terms of the displacement com-
ponents and electric and magnetic potentials. Then, the 
problem is solved analytically by using Naviers method. 
In [17], Thermo-electro-mechanical transient analysis of 
a sandwich nanoplate is studied in this paper. The sand-
wich nanoplate consists of a KelvinVoigt viscoelastic nano-
plate and two integrated piezoelectric face sheets resting 
on a visco-Pasternak foundation. The sandwich nanoplate 
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side of the MEE micro beam is partially covered by elas-
tic but non conductive rubber and two piezoelectric 
path actuators are perfectly deployed on these rubbers 
on the both side of a MEE micro beam as it is seen in 
Fig. 1. Initially, it is assumed that micro beam subject-
ing to magneto-electric load is undeformed and at rest 
position. Piezoelectric patch actuators are put on the 
same points of the micro beam for effective control actu-
ation. The vibrations in a magneto-electro-elastic micro 
beam subjecting to magneto- electric load is given by as 
follows [1];

 ζ ρ− + = +( ) ( , )XXXX XX TTDIu u Au q X C T X  (1)

where state variable u transverse displacement at 
{ }( , )   (0, ),  (0, )fT X T T X l∈Ω = ∈ ∈ , T is time variable, Tf is 

predetermined terminal time, X is space variable, l is the 
length of the MME microbeam, D = B + ea + fb in which B 
is the elasticity coefficient, e is the piezoelectric coefficient, 
a is height of MEE micro beam, f is piezo magnetic coef-
ficient, b is the width of MEE microbeam, ζ = eδ1 + fδ2, in 
which δ1 and δ2 are electric potential and magnetic poten-
tial, respectively, between lower and upper surfaces of MEE 
microbeam, q(X) is external magneto-electric load func-
tion, C(T,X) = κV(T)(H″ (X – X1) – H″(X1 – X2)) in which 
κ is the elasticity coefficient of the rubber, V is the control 
voltage function to be applied to piezoelectric actuator, H is 
Heaviside function, (X – X2) is the location points of piezo-
electric actuators. Eq. (1) is subject to the following initial 
conditions

 u(T,X) = u0(X), uT(T,X) = u1(X) at T = 0, (2)

and boundary moment conditions

 U(T,X) = 0, UXX(T,X) = 0  at X = 0,l. (3)

considered. An approximate laminate model is employed 
to transform the state equations with variable coefficients to 
the ones with constant coefficients. As understood from lit-
erature review, there are very few and limited studies inter-
ested on vibration control of MEE micro beam. The original 
contribution of this paper and the reason making this paper 
is important is that vibrating control of MEE micro beam 
by using piezoelectric patch actuator is firstly considered in 
this paper and maximum principle is employed for deter-
mining the control voltage function optimally. In particu-
larly, in the present paper, active vibration control of a MEE 
micro beam is taken into account and vibrations based on 
magneto-electric load are suppressed by means of piezo-
electric patch actuators bonded on the surface of the micro 
beam. Before control actuation of the system, wellposed-
ness and controllability properties of the System are stated 
and proved by a lemma and a theorem. The main aim of 
this study is to minimize the performance index functional 
of the system, which is defined a modified kinetic energy 
of the system, by using minimum control voltage function 
to be applied to piezoelectric patch. For determining the 
control voltage function, maximum principle is employed 
due to existence of Heaviside function in the equation of 
motion. By means of maximum principle, optimal control 
problem is transformed to a solving of system of partial dif-
ferential equations including state and adjoint variables and 
they are linked to each other via terminal-boundary-initial 
conditions. The solution of the system is obtained by means 
of MATLAB and obtained results are presented in tables 
and graphical forms for indicating the effectiveness of the 
introduced control actuation.

DEFINITION OF THE PROBLEM

Consider a five-layer structure which consists of a 
central host layer, which is a MEE microbeam, and both 

Figure 1. A MEE microbeam diagram with patches in a thermal environment.
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Because of the right hand-side of Eq. (5) is zero, we 
observe

 

( ) ( )0 ,That is constant
d T

T
dt
ε

ε= =
 

Taking the initial conditions defined by Eq. (7) into con-
sideration, we obtain that

 

4 2
2 2

4 2
0
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∫
 (10)

Then, it follows from Eqs. (7)–(10) that W(T,X) is iden-
tically equal to zero in Ω  that is u1 = u2. Hence, proof is 
completed.

For convenience, let us introduce nondimensional 
parameters as follows;

( ) ( )

2

2 4 4

1,  ,  ,       

,      ( ) ,     ( )  .

X u DIx w t T
l l Al

l l lf x q x T V T
DI DI DI

ρ
ζξ

= = =

= = =

 (11)

In the light of Eq. (11), nondimensional equation of 
motion is stated as follows;

 wxxxx – ξwxx + wtt = f(x) + C(t,x) (12)

in which w is the transversal displacement at (t,x) 
∈ Ω = (0,tf) × (0,1) and C(t,x) = κѴ(t)(H″(x - x1) – 
H″(x – x2)). Eq. (12) is subjected to following boundary 
conditions

 w(t,x) = 0,     wxx(t,x) = 0  at  x = 0,1 (13)

and initial conditions

 w(t,x) = w0(x),      wt(t,x) = w1(x)     at     t = 0. (14)

OPTIMAL CONTROL PROBLEM

The main goal of this study is to determine voltage func-
tion optimally to be applied to piezoelectric actuator which 
minimizes a given performance index at a predetermined 
terminal time tf with a minimum expenditure of control 
voltage energy. Before defining the performance index 
functional of the system, let us define the admissible control 
voltage function set as follows;

 Ѵad = {Ѵ(t) |Ѵ ∈ L2(Ω),       |Ѵ(t)| ≤ Ѵ0 < ∞}. (15)

Ѵ

Let solution of the system satisfies followings:

 ( )2 ,  ,     0,1,2,      0,1, ..,4
i j

j i

uu L j i
T X

+∂
∈ Ω = = …

∂ ∂
 (4a)
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X
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∂ 
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∈

 (4b)

where 2 )(L Ω  denote the Hilbert space of real-valued 
square-integrable functions defined in the domain Ω in the 
Lebesque sense with norm and usual inner product defined by

 

2  , , , .dη η η ρ η ρη
Ω

= Ω = Ω∫
 

Then, the system under consideration has a solution [23].

Lemma 1. With Eq.4, the system defined by Eqs. (1)–(3) has 
a unique solution.

Proof. Let us assume that in the same physical condi-
tions, u1 and u2 are two different solutions to the system 
under consideration. Then, the difference

 W(T,X) = u1(T,X) – u2(T,X) 

satisfies the following homogeneous equation

 DIWXXXX – ζWXX + ρAWTT = 0 (5)

and following homogeneous boundary and initial con-
ditions, respectively.

 W(T,X) = Wxx(T,X) = 0    at        X = 0,l (6)
 W(T,X) = WT(T,X) = 0    at     T = 0. 

Let us show that W(T,X) is identically equal to zero in 
( , ).T XΩ  Then, consider the energy integral as follows;

( )
24 2

2 2
4 2

0

1   ( ) ( )
2

l WT DI W W A dX
TX X

ε ζ ρ
 ∂ ∂ ∂  = − +  ∂∂ ∂    
∫

 (8)

and let us show that ε(T) is independent of T. 
Differentiating ε(T) with respect to T, we obtain

 

4 2

4 2
0

2

2

( )    
ld T W WDI W W

dt T TX X
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Applying integration by parts and using boundary con-
ditions given by Eq. (6), one observes Eq. (9) as follows;
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in which, Hamiltonian function is presented by

 H[t;w,ν,Ѵ] = κѴ[νx(t,x1) – νx(t,x2)] – ϑ3Ѵ
2(t), (22)

then

 I[Ѵo(t)] ≤ I[Ѵ(t)],  ∀Ѵ ∈ Ѵad (23)

where Ѵo(t) is the optimal control voltage function.
Proof. Before starting to proof, let us define following 

operator

 φ(w) = wxxxx – ξwxx + wtt (24)

and its adjoint operator as follows;

 φ*(ν) = νxxxx – ξνxx + νtt (25)

The deflections in the state variable and its derivatives 
with respect to the time variable are defined by

 ∆w = w – wo,  ∆wt = wt – wt
o. 

The operator

 φ(∆w) = ∆C(t,x) 

is subject to the following homogeneous boundary and 
initial conditions, respectively;

 ∆w(t,x) = ∆wxx(t,x) = 0  at  x = 0,1 (26)

and initial conditions

 ∆w(t,x) = ∆wt(t,x) = 0  at  t = 0. (27)

Now, note that the following functional

 
{ } { } { }1 2( ) * ( , )  w w d I I d C t x dνϕ ϕ ν

Ω Ω Ω

∆ − ∆ Ω = + Ω = ∆ Ω∫∫ ∫∫ ∫∫
 

  (28)
in which

 ( ) ( ){ }1 tt ttI w w dν ν
Ω

= ∆ − ∆ Ω∫∫  (29)

 2 { ( ) ( )}xxxx xxx xxxxI w w w xx dν ξ ν ξν
Ω

= ∆ − ∆ − ∆ − Ω∫∫  (30)

Applying the integration by parts to each term in the I1 
and I2 in Eq. (28) and employing boundary and terminal 
conditions, respectively, given by Eq. (19) and Eq. (20), Eq. 
(28) becomes as follows;

{ }

1 2

1

1 2
0

( ) *( )

2 ( , ) ( ( ) (, ) , ,

( , )

)f f t f t f

w w d I I

w t x w t x w t x w t x dx

C t x d

νϕ ϕ ν

ϑ ϑ

ν

Ω

Ω

∆ − ∆ Ω = +

= ∆ + ∆

= ∆ Ω

∫∫

∫

∫∫

 (31)

Then, the performance index functional of the system is 
given by as follows:

2 2
1

2
2 3

0 0

( ) ( ) (( ( )) , , )
ftl

f t ft w t x w t x dx t dtϑ ϑ ϑ = + + ∫ ∫I  (16)

in which ϑ1, ϑ2 ≥ 0, ϑ1 + ϑ2 ≠ 0 and ϑ3 > 0 are weight-
ing constants. First integral on the left-hand side in Eq. 
(16) represents the modified dynamics response of the 
magneto-electro micro beam. First and second terms in 
this integral are quadratic functional of the displacement 
and velocity of the beam, respectively. Second term on the 
left-hand side in Eq. (16) is the measure of the total control 
voltage energy on the (0,tf) Then, optimal control problem 
is stated as follows;

 ( )( ) ( )o

ad

min
t =

∈
I  I  (17)

subject to the Eqs. (12)–(14). In order to achieve the 
Maximum principle for obtaining optimal control voltage 
function, let us introduce an adjoint variable ν ∈ L*, L*  is 
the dual to L2(Ω) and has the same norm and inner product 
like in L2(Ω) Adjoint system corresponding to Eqs. (12)–
(14) is expressed as follows;

 νxxxx – ξνxx + νtt = 0 (18)

subjected to following boundary and terminal condi-
tions, respectively;

 ν(t,x) = 0,     νxx (t,x) = 0      at    x = 0 (19) 

2ϑ1 w(t,x) = νt(t,x),     –2ϑ2 wt(t,x) = ν(t,x)       t = tf. (20)

The existence and uniqueness of the solutions to 
adjoint system defined by Eqs. (18)–(20) is shown similar 
to Eqs. (1)–(2). Note that  is the unique solution to system 
given by Eqs. (12)–(14) and also convexity properties of the 
performance index functional guarantees the uniqueness of 
the control voltage function V(t). Hence, it is easy to observe 
that the system under consideration has a unique state and 
control function. Then, the system is called as observable, 
which equal to controllable [22]. Namely, the system Eqs. 
(12)-(14) is controllable. Maximum principle is derived 
a necessary condition for the optimal control function in 
terms of Hamiltonian functional. In case of some convexity 
assumptions, satisfied by Eq. (16), on performance index 
functional of the system, maximum principle is also suffi-
cient condition for optimal control function. Let us derive 
the maximum principle as follows;

Theorem 1. (Maximum principle) The maximization prob-
lem is presented as follows;

 
max

If ;  , ( ; ,, ) ,  
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o o o
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t w V t t w V
t
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H H  (21)

ѴѴ

Ѵ

ѴѴ

Ѵ Ѵ
Ѵ



Sigma J Eng Nat Sci, Vol. 39, No. 4, pp. 404–413, December, 2021 409

which leads to

 κѴ(t)(νx (x2,t) – νx(x1,t)) + ϑ3Ѵ
2(t)    

   ≥ κѴo(t)(νx(x2,t) – νx(x1,t)) + ϑ3Ѵ
o2(t) (38)

that is,

 H[t; wo,νo,Ѵo] ≥ H[t; w,ν,Ѵ]. 

Hence, we obtain

 I[Ѵ] ≥ I[Ѵo],  ∀Ѵ ∈ Ѵad. 

Therefore, the optimal control voltage function is given by

 1 2

3

( ), ,
(

(
2

)
) .x xt x t x

t
ν ν

κ
ϑ
−

=  (39)

NUMERICAL RESULTS AND DISCUSSIONS

In this section, in order to indicate the effectiveness 
and robustness of the introduced control algorithm for 
damping excessive vibrations in a magneto-electro-elastic 
micro beam by optimally determined control voltage func-
tion to be applied to piezoelectric patch actuator, obtained 
theoretical results are presented in tables and graphical 
forms by solving following system of equations linked by 
terminal-initial-boundary conditions via MATLAB.

 wxxxx – ξwxx + wtt = f(x) + C(t,x), (40a)
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,( ,

  
2
) ( )x x

C t x t H x x H x x
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ϑ
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−

=
 (40b)

 w(t,x) = 0,wxx(t,x) = 0     at    x = 0,1 (40c)

 w(t,x) = w0(x),   wt(t,x) = w1(x)      at    t = 0. (40d)

 νxxxx – ξνxx + νtt = 0, (41a)

 ν(t,x) = 0, νxx(t,x) = 0,      at     t = 0,1, (41b)

 2ϑ1w(t,x) = νt(t,x) (41c)

 –2ϑ2wt(t,x) = ν(t,x)       at     t = tf. (41d)

Before expounding the results in graphs and tables, 
consider the optimal control voltage function given by 
Eq. (39), in which, it is easy to see that as the value of 
ϑ3 is decreasing, the value of the control voltage func-
tion is increasing. As a conclusion of this status, dynamic 
response of the beam given by first integral on the left side 

Ѵ

Ѵ

Ѵ

For the right-hand side of Eq. (31), employe the proper-
ties of dirac-delta function
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in which prime denotes spatial derivative. In the light of 
Eq. (32), the right hand-side of Eq. (31) is observed
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Focus on the difference of the performance index 
functional
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Expanding w2(tf,x) and wt
2(tf,x) in Taylor series around 

wo2(tf,x) and wt
o2(tf,x), yields

 w2(tf,x) – wo2(tf,x) = 2wo(tf,x)∆w(tf,x) + r, (35a) 

 wt
2(tf,x) – wt

o2(tf,x) = 2wt
o(tf,x)∆wt(tf,x) + rt (35b)

where r = 2(∆w)2 + higher order and positive terms > 
0 and rt = 2(∆wt)

2  + higher order and positive terms > 0. 
Substituting Eq. (35) into Eq. (34) gives 

 

{
}

1

1
0

2

2 2
3

0

( )

( ) ( )

( ) 2 , (

( ) (

, )

2 , ,  

.)
f

o
f f

o
t f t f t

t
o

t w t x w t x r

w t x w t x r dx

t t dt

ϑ

ϑ

ϑ

  ∆ = ∆ +   

 + ∆ + 

 + − 

∫

∫

I

 (36)

From Eq. (31) and due to ϑ1r + ϑ2rt > 0, one obtains
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and used voltage energy over (0,tf)

 2

0

( ) .( )
ft

tt d= ∫I  (43)

The dynamic response of the MEE micro beam system 
is given by table forms and it seemed from tables that as 
weighted coefficient ϑ3 in optimal control voltage function 
decreases, dynamic response of the micro beam decreases 
due to an increasing in the value of control voltage function. 
These observations show that introduced control actuation 
for undesirable vibrations in a MEE micro beam system is 
successful and effective.

ѴѴ

of the Eq. (16) is minimized by using minimum control 
voltage energy. Effectiveness of the introduced control 
actuation is examined in two cases. Both of two cases, tf 
is taken into account as 5. Weighted coefficients are taken 
into account as ϑ1,2 = 1 and ϑ3 =103 and ϑ3 =10–3 for uncon-
trolled and controlled case, respectively. All figures are 
plotted in the middle point of the MEE micro beam, x = 
0.5. In the first case, called a, followings are considered;
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= =  

For case a, controlled and uncontrolled displacements of 
the beam at the midpoint of the beam are given by Fig. 2 and 
it can be clearly observed that excessive vibrations induced 
by external magneto-electric load in the MEE micro beam 
system is suppressed successfully. Same observation is also 
valid that the velocities of excessive vibrations is also effec-
tively suppressed by using minimum control voltage energy 
via introduced control actuation. In the second case, called 
b, control actuation is applied by considering followings;
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x x f x x

w x x w x x

ξ

π π

= = = = −

= =  

For case b, controlled and uncontrolled deflections of 
the MEE beam is given in Fig. 4. It is easy to see that exces-
sive vibrations, due to magneto-electric load, in the MEE 
micro beam system are effectively suppressed by means of 
optimal control voltage function. In Fig. 5, the velocities of 
the MEE micro beam corresponding to case b are plotted 
and it can be easily seen that decreasing of velocities for case 
b is successfully obtained. In cases c and d, negative mag-
neto electric potential and different locations of piezoelec-
tric patches are taken into account as follows, respectively;
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For cases c and d, un/controlled displacements and 
velocities are plotted in Figures 6–7 and Figures 8-9, respec-
tively. It is observed that introduced control actuation is 
very effective and suppress the undesirable vibrations in the 
micro beam. Let us give the dynamic response of the MEE 
micro beam as follows;

 
1

2 2

0

( ) , ,( ) ( )f t fw w t x w t x dx = + ∫I  (42)

Figure 2. Uncontrolled and controlled displacements for 
case a.

Figure 3. Uncontrolled and controlled velocities for case a.
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Figure 4. Uncontrolled and controlled displacements for 
case b.

Figure 5. Uncontrolled and controlled velocities for case b.

Figure 6. Uncontrolled and controlled displacements for 
case c.

Figure 7. Uncontrolled and controlled velocities for case c.

Figure 8. Uncontrolled and controlled displacements for 
case d.

Figure 9. Uncontrolled and controlled velocities for case d.



Sigma J Eng Nat Sci, Vol. 39, No. 4, pp. 404–413, December, 2021412

ETHICS

There are no ethical issues with the publication of this 
manuscript.

REFERENCES

[1] Vaezi M, Shirbani MM, Hajnayeb A. Free vibra-
tion analysis of magneto-electro-elastic microbe-
ams subjected to magneto-electric loads. Physics E 
2019;75:208–86. [CrossRef]

[2] Chen J, Chen H, Pan E, Heylige PR. Modal analysis 
of magneto-electro-elastic plates using the state-vec-
tor approach. Journal of Sound and Vibration 
2007;304:722–34. [CrossRef]

[3] Zhou L, Li M, Cai Y, Zhao H, Zhao E. The multi-
physic cell-based smoothedfinite element method 
for dynamiccharacterization of magneto-elec-
tro-elastic structures under thermalconditions. 
Composite Structures 2020;240:112045. [CrossRef]

[4] Zhang XL, Xu Q, Zhao X, Li YH, Yang J. Nonlinear 
analyses of magneto-electro-elastic laminated beams 
in thermal environments. Composite Structures 
2020;234:111524. [CrossRef]

[5] Liu HT, Qie YH, Zhou YG. Investigation of non-lo-
cal theory solution to a three- dimensional rectan-
gular permeable crack in magneto-electro-elastic 
materials. Int J Mech Sci 2017;134:460478. [CrossRef]

[6] Vinyas M, Kattimani SC. Finite element evaluation 
of free vibration character- istics of magneto-electro-
elastic rectangular plates in hygrothermal environ-
ment using higher-order shear deformation theory. 
Composite Structures 2018;202:13391352. [CrossRef]

[7] Shojaeefard MH, Mahinzare M, Safarpour H, Saeidi 
GH, Ghadiri M. Free vibration of an ultra-fastro-
tating-induced cylindrical nano-shell resting on a 
Winkler foundation under thermo-electro- magneto-
elastic condition. Appl Math Model 2018;61:25579. 
[CrossRef]

[8] Pan E. Exact solution for simply supported and 
multilayered magneto-electro-elastic plates. J Appl 
Mech 2001;68:608–18. [CrossRef]

[9] Pan E, Heyliger PR. Free vibrations of simply sup-
ported and multilayered magneto-electro-elastic 
plates. J Sound Vib 2002;252:429–42. [CrossRef]

[10] Annigeri AR, Ganesan N, Swarnamani S. Free vibra-
tion behaviour of multiphase and layered magneto-
electro-elastic beam. J Sound Vib 2007;299:44–63. 
[CrossRef]

[11] Lage RG, Soares CMM, Soares CAM, Reddy JN. 
Layerwise partial mixed finite element analy-
sis of magneto-electro-elastic plates. Composite 
Structures 2004;82:1293–301. [CrossRef]

[12] Ansari R, Gholami R. Size-dependent nonlin-
ear vibrations of first-order shear deformable 

CONCLUSION

In this study, wellposedness and controllability results 
of the Magneto-electro-elastic beam system is discussed 
and results are presented by a lemma. Damping out of 
undesirable vibrations based on magneto-electric load in 
a magneto-electro-elastic micro beam system is taken into 
account and control voltage function to be applied to piezo-
electric patch actuator is optimally determined by means of 
maximum principle, which transforms the optimal control 
problem to solving a system of partial differential equa-
tions, including state and adjoint variable, linked by termi-
nal-boundary-initial conditions. The optimal solution of 
this system of partial differential equations are obtained by 
means of MATLAB and for indicating the effectiveness and 
robustness of the introduced control actuation, obtained 
results are presented in graphical and tables forms. 

AUTHOR CONTRIBUTION 

KY completed this study and wrote the manuscript. KY 
read and approved the final manuscript. 

FUNDING INFORMATION 

There are no funders to report for this submission. 

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the 
findings of this study are available within the article. Raw 
data that support the finding of this study are available from 
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest 
with respect to the research, authorship, and/or publication 
of this article.

Table 1. The values of I(w) and I(Ѵ) for different values of 
ϑ3 in case a

ϑ3 I(w) I(Ѵ)

103 71.4 3.4 e–5

100 5.2 2.06
10–3 1.1 e–4 2.4

Table 2. The values of I(w) and I(Ѵ) for different values of 
ϑ3 in case b

ϑ3 I(w) I(Ѵ)

103 115 4.7 e–4

100 0.08 0.26
10–3 1.1 e–4 0.28



Sigma J Eng Nat Sci, Vol. 39, No. 4, pp. 404–413, December, 2021 413

containing a KelvinVoigt viscoelastic nanoplate and 
two piezoelectric layers. Acta Mech 2017;228:475493. 
[CrossRef]

[18] Arefi M, Zenkour AM.Wave propagation analy-
sis of a functionally graded magneto-electro-elas-
tic nanobeam rest on Visco-Pasternak foundation. 
Mech Res Com 2017;79:51–62. [CrossRef]

[19] Bin W, Jiangongab Y, Cunfu H. Wave propagation in 
non-homogeneous magneto-electro-elastic plates. J 
Sound Vib 2008;317:250–64. [CrossRef] 

[20] Wang X, Shen YP. The general solution of three-di-
mensional problems in magneto-electro-elastic 
media. Int J Eng Sci 2002;40:10691080. [CrossRef]

[21] Chen WQ, Lee KY, Ding HJ. On free vibration of 
non-homogeneous transversely isotropic magneto-
electro-elastic plates. J Sound Vib 2005;279:237251. 
[CrossRef]

[22] Pedersen M. Functional Analysis in Applied 
Mathematics and Engineering. Florida: CRC Press; 
2018.

[23] Zachmaonoglou EC, Thoe DW. Introduction to 
Partial Differential Equations with Applications. 
New York: Dover Publications; 1986. 

magneto-electro- thermo elastic nanoplates based 
on the nonlocal elasticity theory. Int J Appl Mech 
2016;8:1650053. [CrossRef]

[13] Zhou L, Li M, Cai Y, Zhao H, Zhao E. The multi-
physic cell-based smoothed finite element method 
for dynamic characterization of magneto-elec-
tro-elastic structures under thermal conditions. 
Composite Structures 2020;240:112045. [CrossRef]

[14] Li M, Liu M, Zhou L. The static behaviors study of 
magneto-electro-elastic materials under hygrother-
mal environment with multi-physical cell-based 
smoothed finite element method. Composites 
Science and Technology 2020;193:108130. [CrossRef]

[15] Zhou L, Li X, Li M, Zur KK. The smoothed finite 
element method for time-dependent mechanical 
responses of MEE materials and structures around 
curie temperature. Computer Methods in Applied 
Mechanics and Engineering 2020;370:113241. 
[CrossRef] 

[16] Arefi M, Zenkour AM. Thermo-electro-magneto-
mechanical bending behavior of size-dependent 
sandwich piezomagnetic nanoplates. Mechanics 
Research Communications 2017;84:27–42. [CrossRef]

[17] Arefi M, Zenkour AM. Nonlocal electro-thermo- 
mechanical analysis of a sandwich nanoplate 


