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ABSTRACT 

In order to effectually improve the performance of parabolic trough solar collector system and 
homogenize the temperature distribution on the absorber tube, an innovative convergent- 
divergent tube was designed as the absorber tube of PTR. The finite volume method (FVM) 
and the Monte Carlo ray tracing method (MCRT) are combined to simulate the heat transfer 
process in parabolic trough collector. The average relative error between the numerical results 
and the experimental results conducted in the Spanish DISS test facility is 1.103%, which con-
firms the reliability of the simulation results in this paper. The heat transfer characteristics and 
flow characteristics of PTR and convergent-divergent PTR are compared in the inlet velocity 
range of 0.05–0.75m/s, and the effect of the number of zoom sections(N) for CD-PTR per-
formance is also studied. The simulation results show that the parabolic trough collector with 
convergent-divergent tube has significantly enhanced heat transfer capability. The average Nu 
of CD-PTR increases as the number of zoom sections increases, and is always higher than that 
of PTR. When Re=86400 and N=25, the average Nu increased by 66%. 
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INTRODUCTION 

Eliminating the negative environmental impact of using 
fossil fuels, meeting the growing energy demand brought 
about by development, and seeking renewable and envi-
ronmental friendly alternatives have become topics of great 
concern in recent years [1,2]. Although renewable energy, 
especially solar energy, accounts for only a small part of 

today’s energy supply, it has various direct or indirect 
advantages that make it a key to sustainable development 
program [3]. The great potential of solar energy to satisfy 
the energy needs in many fields is increasingly recognized 
by relevant researchers [4–6].

In the past decade, the application of direct (photo-
voltaic) and indirect (concentrated solar) solar power 
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generation has been steadily increasing [7,8]. The use of 
solar energy for electricity production promises to be one 
of the most viable options to replace fossil fuel power plants 
[9–11]. The concentrated solar power (CSP) system that 
focuses solar radiation energy onto the receiver can reduce 
the requirement of collector materials and provide lower 
heat losses due to the reduced target area [12–14]. The par-
abolic trough collector (PTC), as a CSP technology that has 
been extremely developed, has already had relatively abun-
dant operational experience, and currently has great pros-
pects [15,16]. Due to the characteristics of wide distribution 
and low energy flow density of solar energy, centralized 
solar power plants generally occupy a large area. Parabolic 
trough mirrors, receivers (PTR) and related power genera-
tion equipment are usually the three main components of 
their facilities [17,18].

Parabolic trough receiver (PTR) is the major part of the 
traditional PTC. The receiver is a concentric sleeve struc-
ture, with its outer layer is a thin transparent glass envelope, 
and the inner layer is a metal absorber tube [19]. And a 
vacuum environment is set between the two layers, which 
can effectively reduce the heat loss of convection. The input 
solar radiation is reflected and converges at the focal line 
of the parabolic mirror. The concentrated solar radiation is 
received by the receiver located here and stored as thermal 
energy into heat transfer fluid (HFT) [20,21].

The demand for more efficient energy conversion 
equipment has promoted the development of solar energy 
utilization technology [22,23]. The method of optimizing 
the structure to improve the thermal performance of the 
system is widely used in scientific research and production 
[24–27]. The research on structure modification of PTR 
absorber tube is earlier and the technology is more mature 
[28,29].In order to improve the heat transfer performance 
and reliability of the PTR system, Wang et al. [30] numer-
ically calculated the thermal performance of the system 
using symmetrical outward corrugated tube as the metal 
tube of the PTC. The effect of various detailed parameters of 
the bellows on the heat transfer performance of the system 
is studied, including corrugation height (H), corrugation 
spacing (p), corrugation wave crest radius (R) and corru-
gation groove radius (r). The results show that when Re = 
81728 and p/D=4.3, the effective heat transfer coefficient 
using symmetrical outward corrugated tube can increase by 
8.4%. Zhang et al. [31] conducted experiments on natural 
convection boiling heat transfer in smooth tube, ordinary 
convergent-divergent tube and improved convergent- 
divergent tube. The improved convergence-divergence tube 
has better heat transfer performance than ordinary conver-
gence-divergence tube, and its enhancement ratio is about 
1.18 times. Jin et al. [32] simulated the heat transfer and flow 
resistance performance in particular convergent-divergent 
tube with different structural parameters. It is pointed out 
that fluid separation near the solid wall effectively strength-
ens heat transfer, changes in fluid flow line enhance fluid 

mixing, and the drop of fluid resistance increases signifi-
cantly. Pandey et al. [33] numerically calculated the effect 
of inserting an arc plug into the PTR absorption tube on the 
heat transfer performance of the system. In order to obtain 
the optimal size R of the arc plug, a series of calculations are 
carried out. It is observed that for arc plugs with factors R=1 
and R=0.879, PTC has the highest thermal efficiency.

Another approach to improve the thermal performance 
is related to improving the thermophysical properties of 
the materials [34–37]. Due to good properties of radiation 
absorption and high thermal conductivity, nanofluid are 
often used as the working medium in the heat exchange 
equipment [38]. Hussein et al. [39–41] gave comprehensive 
overviews of theories, simulations and experiments related 
to the application of nanotechnology in different types of 
solar collectors. The reviews pointed out the importance 
of accurate selection of nanoparticle volume fraction and 
diameter for the performance of the collector, and further 
guided that future research must be devoted to inventing 
efficient energy transport methods of nanofluid in solar 
collectors.

The temperature distributed around the circumference 
of the absorber tube is inhomogeneous. This is because 
the upper half of absorber tube directly receives incident 
solar radiation, while the lower half receives the light that is 
concentrated by the reflector, resulting in not-uniform dis-
tribution of circumferential flux [42]. The not-uniform tem-
perature distribution will cause deformation and bending 
of the absorber tube, which may further damage the PTR. 
The optical performance analysis on PTC by Jebasingh et al. 
[43] showed that the optical efficiency should be optimized 
to withstand against environmental conditions, many opti-
cal factors have been studied to improve the heating condi-
tions of the absorber tube [44]. To reduce the temperature 
gradient of the absorber tube, scholars also have conducted 
many studies on certain specific heat transfer processes in 
PTR technology [45–47]. A new type of perforated plate 
inserts was proposed for use in parabolic trough collec-
tor, and the thermodynamic performance of the system 
was simulated [48]. The geometric parameters of different 
perforated plates are analyzed. Studies have shown that the 
thermal conditions of the receiver have improved signifi-
cantly. Wang et al. [49] applied the elliptical-circular sec-
tion glass cover in the solar energy absorber system. The 
influence of the refractivity and cross-sectional parame-
ters of the glass cover on the heat flux distribution is also 
studied by Monte Carlo Ray Tracing (MCRT) method. The 
numerical simulation results show that using glass cover 
with an elliptical-circular cross-section with a high refrac-
tivity for the receiver can minimize the heat flux distri-
bution gradient and effectively reduce thermal stress. The 
work of Manikandan et al. [50] includes numerous tech-
niques for enhancing the optical and thermal efficiency of 
parabolic trough collectors. A series of factors that affect 
the optical efficiency of the parabolic trough collector are 
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summarized, including coating of selective surface on 
receiver tube, reflectivity of the mirror, intercept coefficient 
of the absorber tube, Incorporating secondary reflector, 
etc. In addition, they recommended the black body cavity 
receiver to reduce heat loss and improve optical and ther-
mal efficiency.

To enhance the collection and utilization performance 
of PTR technology for solar energy and improve the avail-
ability of the system, the authors proposed to apply con-
vergence-divergence structure to PTR technology to obtain 
a novel parabolic trough receiver (CD-PTR). The Monte 
Carlo ray tracing (MCRT) method is used to determine 
heat flux distribution on collector tubes in the study [51]. 
The numerical simulation is carried out using the concept 
of Finite Volume Method (FVM) to investigate the advan-
tages of CD-PTR compared to ordinary PTR system [52]
[53]. The influence of the geometric parameters variation 
on the system performance was also studied, which also 
provides theoretical instructions for further research and 
practical application.

PHYSICAL MODEL 

The simplified schematic diagram of general PTC sys-
tem [51] is presented in Figure 1. As we can see, solar radi-
ation is incident along the y axis in the negative direction, 
and then it is reflected by the trough condensing system and 
collected on the receiver. Highly concentrated solar radia-
tion accumulates at the bottom periphery of the receiver, 
while other part is directly irradiated by sunlight with low 
heat flux density. 

The parabolic trough receiver (PTR) is an important 
component of the PTC system, and Figure 2 is the schematic 
cross-sectional view of PTR and describes the complete 
heat transfer process within the system [51]. The solar col-
lector is concentric sleeve structure, which the outer layer 
is a thin transparent glass envelope, and the inner layer is 
a metal absorber tube. A vacuum environment is provided 
between the sleeves, and the heat transfer fluid flows into 
internal metal absorber tube from the inlet. The absorber 
tube is coated with selective coating for higher solar spec-
tral absorption. And the selective coating on glass envelope 
can increase the solar radiation transmitted into the PTR 
system, thus reducing the heat loss outside the receiver. The 
vacuum environment was set to reduce heat loss caused by 
convection during heat transfer process. 

Table 1 lists some detailed parameters of the RTC sys-
tem. They are obtained by the existing PTR system, which 
are the same as the reference [54].

Some researchers have studied various tubes as PTR 
absorber tubes to obtain higher solar energy utilization 

Figure 1. Schematic diagram of parabolic trough solar col-
lector (PTC) system [51].

Figure 2. Schematic diagram of the heat transfer process of 
PTR [51].

Table 1. Detailed parameters of the PTC studied by the 
 authors [54]

Geometric and optical parameters Values

Length of PTR 4.06m

Outer diameter of glass envelope 0.14m

Outer diameter of metal tube 0.07m

Thickness of metal tube 0.003m

Aperture of PTC 0.525m

Rim angle 15°

Non-parallelism angle 16′

Reflectivity of PTC 0.90

Absorptivity of metal tube 0.95
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efficiency and convergent-divergent structure have been 
applied in various engineering practices. But no researchers 
had proposed to apply convergent-divergent tube as the PTR 
absorber tube in solar thermal power utilizations. In this 
study, an innovative convergent-divergent tube is proposed 
to enhance the heat transfer and homogenize the tempera-
ture distribution in PTR system. The structural schematic of 
convergent-divergent tube used for simulation in this study 
is presented in Figure 3, and the relevant dimensions are 
added to the diagram. The convergent-divergent tube simu-
lated in this study is the structure of contraction-expansion.

MATHEMATICAL MODEL 

In computational fluid dynamics (CFD) analysis in this 
paper, governing equations that reflect the dynamic char-
acteristics of PTR solar thermal utilization process include 
continuity equation, momentum and energy conserva-
tion equation and radiation transfer equation. The Finite 
Volume Method(FVM) is used to discretize the computa-
tional domain and governing equations.
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Where v is the fluid velocity, ρ is the fluid density, x rep-
resents the length direction of the tube, r and φ represent 
the radial and circumferential directions of tube cross sec-
tion, respectively.

By comparing the numerical results with the experi-
mental test conducted by Roldán et al. [55] in DISS, Wang 
et al. [30] proved that the standard k-ε model can not only 
agree well with the experimental test, but also reduce the 
average deviation between the simulation results and the 
experimental test temperature. Therefore, the standard k-ε 
model was chosen for numerical analyses. Taking turbulent 
kinetic energy (k) and its dissipation rate (ε) as important 
parameters, the standard k-ε model is a classic turbulence 
model in practical engineering calculations. The above two 
parameters are obtained by following two separate trans-
port equations [56]: 
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The calculation method of the turbulent kinetic energy 
(TKE) generated by the fluid average velocity gradient 
is analyzed with reference to the Modeling Turbulence 
Generation of k-ε model. This part of TKE is represented by 
the symbol Gk [56]. With reference to the effect of Buoyancy 

(a)

(b)

Figure 3. 3D view and axial section schematic of CD-PTR 
studied in this paper.
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on turbulence in k-ε model, the TKE generated by buoy-
ancy is analyzed and represented by the symbol Gb. YM 
characterizes the effect of fluctuating dilatation on overall 
dissipation rate in compressible turbulence, and it was ana-
lyzed by referring to the effect of compressibility on turbu-
lence in k-ε model. C1ε, C2ε, and C3ε are definite constants 
determined by physical model and flow characteristics. σk is 
defined as turbulent Prandtl numbers of k, and σs is defined 
in the same way. Sk and Sε are source terms.

Energy Conservation Equation 
The solid and fluid phases follow different governing 

equations.
For the solid phase
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For the fluid phase
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where Φ is the dissipation function, and αv is the expan-

sion coefficient which is defined as 1
v

PT
ρα

ρ
∂ = −  ∂ 

. T is 

the fluid temperature, P is the absolute pressure, cp and k 
represent the heat capacity and thermal conductivity of the 
heat transfer fluid, respectively.

This paper studies incompressible fluids and dissipa-
tion effect is ignored, which allows us to simplify the above 
equation as:
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BOUNDARY CONDITIONS FOR ANALYSIS 

The boundary conditions of the numerical calcula-
tion are listed in Table 2 [57]. As described in Table 2, the 
numerical calculation in this paper defines the tube inlet 
as velocity inlet, the outlet side as fully developed condi-
tions, and the inner wall of metal tube is set to be non-slip 
boundary.

The upper half of the circumference of the metal tube 
is directly irradiated with uniform solar irradiation. The 

average incident solar irradiance is 1000 W/m2, and is pro-
jected through the glass envelope with the transmissivity 
of 0.96. The absorption rate of absorber tube coated with 
selective coating is 0.95. The lower half of the circumference 
of the metal tube is irradiated by concentrated solar radia-
tion reflected from collector:

In this paper, the Finite Volume Method(FVM) is used 
to discretize the governing equations, and the steady-state 
implicit scheme is used to solve them. The SIMPLE scheme 
is used to solve the pressure-velocity coupling equation, 
the discrete format of the convection term is QUICK, and 
the momentum equation adopts the second-order upwind 
style. The convergence criterion of the residual of the energy 
equation is set to be 1×10–8, and the criterion of other equa-
tions are set to be 1×10–6.

Model of Concentrated Ray
Solar radiation is distributed outside the receiver to pro-

vide thermal energy to heat transfer fluid(HTF). And the 
heat flux field is extremely inhomogeneous, where the top 
is exposed to direct sunlight and the bottom is exposed to 
sunlight focused by optical elements. The distribution of 
heat flux collected by optical elements was predicted by 
MCRT method.

When the MCRT method is applied to calculate the 
radiation field, the radiation input of the system is realized 
by the ray input, which is set to carry the same energy. The 
change in the direction of the ray projection is determined 
by the optical characteristics of the elements and appro-
priate probability density functions [49]. The method of 
combining the fitting curve and the user-defined functions 
introduces the obtained concentrated heat flux distribution 
to CFD models to further analyze heat transfer and flow 
performance, which causes tiny interpolating error.

Thermophysical Properties of D12
In this paper, the D12 thermal oil is applied as PTR heat 

transfer fluid(HTF), whose physical properties are sensitive 
to temperature changes within its operating temperature 
range. To obtain accurate simulation results, the thermophys-
ical properties of D12 are fitted to make its physical param-
eters become polynomial functions of temperature [29,51] 
and imported into CFD analysis through UDF method. The 
thermophysical properties of the HTF used in the numerical 
calculations in this paper are shown in Table 3.

Table 2. Boundary conditions of analysis [57]

Zone Boundary conditions
L = 0, 0 ≤ R ≤ Ri Vx = Vin, Vr = Vφ = 0m/s, Tf =Tin = 400K
L = 4.06, 0 ≤ R ≤ Ri Fully developed conditions
R = Ri, 0 ≤ L ≤ 4.06 Vx = Vr = Vφ = 0 m/s
R = Ro, 0 ≤ L ≤ 4.06 0° ≤ φ ≤ 180°, qu = 1000 × 0.96 × 0.95 = 

912W/m2 180° ≤ φ ≤ 360°, ql = qcal
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MESHING AND VERIFICATION OF  
GRID INDEPENDENCE 

Meshing
During the grid generation process, a structured O-grid 

was generated for PTR and CD-PTR, the meshes of zoom 
area of convergent-divergent tube were generated by using 
the method of separate block association and were refined. 
Figure 4 and Figure 5 are schematic diagrams of the cross 
section and axial section (partial) of the mesh.

Verification of Grid Independence
The average heat flux of the absorber tube inner surface 

is adopted as an evaluation parameter to verify the grid inde-
pendence due to its importance in characterizing the heat 
transfer conditions of the coupled-wall. Furthermore, it is 
suitable to use Nu as another evaluation parameter for grid 
independence verification because the average Nu at the tube 
outlet is a key parameter that investigates heat transfer per-
formance. Considering the denser grid in the zoom area of 
convergent-divergent tube, in addition to the grid indepen-
dence verification of the smooth tube, this study also verified 
the grid independence of convergent-divergent tubes.

For the smooth tube, seven cases with different numbers 
of grids were set for the grid independent verification tests, 
respectively: 580,000, 760,000, 950,000, 114,000, 155,000, 
183,000, 202,000.

For the convergent-divergent tube, seven cases with dif-
ferent numbers of grids were set for grid independent ver-
ification tests, respectively: 850,000, 1,020,000, 1,260,000, 
1,550,000, 1,830,000, 2,020,000, 2,210,000.

Figure 6 presents the coupled-wall heat flux and Nu 
variation as the number of grids changes in PTR and 
CD-PTR, which are marked as symbols qw-f and Nu. It can 
be seen that when the grid numbers of the smooth tube and 
the convergent-divergent tube reach 950,000 and 1,830,000, 
respectively, the values of evaluation parameters remain 
almost constant. Considering comprehensively computa-
tional time and accuracy, the PTR model with 950,000 grids 
and the CD-PTR model with 1,830,000 grids were selected 
for further CFD simulation.

MODEL VALIDATION 

An experimental study on temperature distribution of 
PTR absorber tube with superheated steam as HTF has 

Table 3. Thermophysical properties of D12 thermal oil [29],[51]

Properties Values

ρ(kg/m3) –6.96982 × 10-1 × T – 1.31384 × 10-4 × T2 – 2.09079 × 10–6 × T3 + 776.257
Cp(kJ/kg·K) 3.86884 × 10–3 × T + 2.05029 × 10–6 × T2 – 1.12621 × 10–8 × T3 + 3.8628 × 10–11 × T4 + 2.01422
λ(W/m·K) –1.4781 × 10–4 × T – 1.6142 × 10–7 × T2 + 1.1299 × 10–1

v(m2/S) exp[530.944/(146.4 + T) – 2.68168)] × 10–6

Figure 4. Diagram of cross section of PTR mesh.

Figure 5. Axial section diagram of CD-PTR mesh.

been carried out by Roldán et al. [55]. In order to verify 
the model used in the numerical calculations in this study, 
Table 4 lists the detailed test information of several groups 
of PTR in the Spanish DISS used for model validation. The 
maximum and minimum temperature on the PTR out-
let outer surface were taken as research indicators using 
the initial conditions of the experiments for numerical 
simulation. 



J Ther Eng, Vol. 7, Supp 14, pp. 1843–1856, December, 2021 1849

where the relative error is defined as .The maximum relative 
error in the cases is 3.823%, and the average relative error 
is just 1.103%, which proves the reliability of the numerical 
calculation model in this study. 

RESULTS AND DISCUSSION 

Analysis of PTR Heat Transfer Performance
To achieve the goal of improving system thermal con-

ditions and enhancing the heat transfer performance, it is 
necessary to first study heat flux distribution outside PTR 
metal absorber tube. 

Figure 8 represents the distribution of heat flux outside 
PTR absorber tube for Re= 65000. Obviously, the heat flux 

Figure 7 depicts the comparison between the exper-
imental [55] and the CFD simulation results when the 
maximum and minimum temperature at the outlet are 
respectively used as parameters. It can be clearly seen that 
the maximum and minimum temperatures of the PTR out-
let simulated by the author are almost consistent with the 
experimental results.

Table 5 lists the specific experimental results in Spanish 
DISS [55] and the simulation results obtained in this study 
under the above initial conditions. Numerical simulation 
always cannot accurately describe the real flow. For exam-
ple, although the turbulence model has been verified with 
experimental results, there are still calculation errors [30]. 
Furthermore, the experimental temperature of Roldán et al. 
was measured by thermocouples, the experimental results 
may also contain measurement errors. These factors have 
accumulated errors between the simulation results and the 
experimental results. Table 5 also listed the relative errors 
between numerical calculations and experimental results, 
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Figure 6. The heat flux (qw) and Nu variation with the increase of number of grids.

Table 4. Specific experimental conditions for PTC thermal 
performance test conducted by Roldán et al. [55]

case Pin (MPa) Tin(K) Esum(W/m2) CR M(kg/s)

1 6.0 566.3 766 45 0.51
2 6.0 573.0 627 45 0.56

3 6.1 613.0 627 45 0.56

4 6.0 607.3 635 45 0.55

5 6.1 598.1 761 45 0.62

6 6.0 643.0 627 45 0.56

7 6.0 632.9 635 45 0.55

1 2 3 4 5 6 7
450

500

550

600
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700

T(
K

)

case

 Max-Experimental[55]
 Min-Experimental[55]
 Max-Numerical
 Min-Numerical

Figure 7. Comparison of temperature between experimen-
tal [55] and numerical results.
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shows a highly uneven distribution. Specifically, the bot-
tom of absorber tube is distributed with highly concen-
trated solar heat flux, the maximum value of which is close 
to 40,000 W, while the other parts only exposed to non- 
concentrated rays with an average heat flux is only about 
100W. According to the operating experience of solar ther-
mal power stations, the high non-uniformity of the heat flux 
may seriously compromise the operation safety of the PTR.

Figure 9 displays the distribution of temperature out-
side PTR absorber tube for Re=65000. Determined by the 
distribution characteristics of heat flux, the part of absorber 
tube that receives concentrated solar radiation has a much 
higher temperature than other parts. Heat transfer fluid 
(HTF) is continuously heated as it flows, causing the tem-
perature of the fluid to continue to rise, and finally reach the 
maximum value at the outlet.

Figure 10 presents the temperature distribution at PTR 
outlet section in the cases with Reynolds numbers of 18900 
and 65000 respectively. By comparing the two figures, we 
can see that as Reynolds number increases, the tempera-
ture distribution becomes more uniform. This shows that 
increasing the Reynolds number leads to increased flow 
mixing, which effectively reduces the temperature difference 
and provides better thermal conditions for absorber tube.

Figure 11 presents the change trend of maximum tem-
perature difference of PTR absorber tube as Re increases. 
The maximum temperature difference decreases grad-
ually as Re increases, which also means better thermal 

Table 5. Comparison between the experimental results of Roldán et al. and the results simulated in this paper

Case 1 2 3 4 5 6 7
TMax.Exp (K) 604.7 635.5 646.8 647 649.1 681.5 681.6
TMax.Num(K) 612.8 613.6 654.1 649 648.6 685.5 681

1.34% 3.446% 1.129% 0.309% 0.077% 0.597% 0.088%
TMin.Exp (K) 571.4 604.3 612.2 612.2 616.6 646.4 646.8
TMin.Num (K) 574 581.2 619.8 616.5 608.2 650.1 644.9

0.455% 3.823% 1.241% 0.702% 1.362% 0.572% 0.294%

Figure 8. Heat flux distribution outside PTR absorber tube 
for Re = 65000.

Figure 9. Temperature distribution outside PTR absorber 
tube for Re=65000.

Figure 10. Temperature distribution of PTR outlet with dif-
ferent Re.

(a) Re = 18900

(b) Re = 65000
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Figure 11. The trend of maximum temperature difference 
of PTR with the increase of Re.
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Figure 12. The trend of TKE of PTR with the increase of Re.

conditions. And the decreasing in maximum temperature 
difference slows down gradually.

Turbulent Kinetic Energy (TKE) is an important indica-
tor to measure the development or decline of turbulence. In 
general, TKE can simultaneously reflect the changes in fluid 
heat transfer performance and resistance performance. The 
variation of mass-weighted average TKE of heat transfer 
fluid in PTR absorber tube with the increase of Reynolds 
numbers is demonstrated in Figure 12. It can be seen that 
the TKE of heat transfer fluid increases with the increase of 
Re. And as Re increases, the relationship between the TKE 
and the Reynolds number is close to a linear relationship.

Analysis of CD-PTR Heat Transfer Performance
For higher system heat transfer efficiency, a tube 

adopted convergent-divergent structure is introduced for 

(a) PTR

(b) CD-PTR

Figure 13. Temperature distribution on the inner wall of 
absorber tube.

PTR absorber tube. Figure 3 has previously illustrated 
the schematic diagram of the convergent-divergent PTR 
(CD-PTR) described in this paper. The temperature distri-
bution on the inner surface of the absorber tube of both 
PTR and CD-PTR(N=5) with Re=65000 are presented in 
Figure 13. It can be found that the average temperature is 
significantly reduced when convergent-divergent structure 
is used for PTR absorber tube, and the temperature around 
the zoom segment is lower than that of the straight segment 
for CD-PTR.

Figure 14 presents the turbulent kinetic energy (TKE) 
field of PTR and CD-PTR axial section for Re = 65000. As 
we can see, flow mixing is enhanced, and the turbulent 
intensity of the boundary layer is significantly increased 
because of the variable cross section channels in the con-
vergent-divergent tube, thus accelerating heat transfer from 
tube surface to HTF.

Effects of N on CD-PTR Heat Transfer Performance 
The number of zoom sections (N) of CD-PTR absorber 

tube has an effect on heat transfer process coupled with 
flow resistance characteristics, this part is a specific study. 
Five groups of different models of convergent-divergent 
tube are investigated: N=0, N=5, N=10, N=20, N=25. The 
case N=0 indicates the PTR model.
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In order to study the heat transfer performance in the 
collector tube, the average Nusselt number of the fluid is 
used as a parameter for description and analysis.

 eh d
Nu

λ
⋅

=  (10)

Where h represents the convective heat transfer coeffi-

cient of the coupled wall which is defined as .w f

t a f a

q
h

T T
−

− −

=
−

Figure 15 presents the effect of increased Re on Nu in 
models with different number of zoom sections (N). It can 
be seen that when the value of N is determined, Nu grad-
ually increases with the increase of Re. This is because the 
increase of Re means the increase of the fluid velocity of 
the HTF in the heat collecting tube for a certain model. 
The higher the velocity, the thinner the thermal bound-
ary layer thickness of the fluid was, which further reduced 
the smaller the wall thermal resistance and intensified the 
convection heat transfer. In addition, the increase of the 
number of zoom sections leads to intensified disturbance 
to the flow, and Nu, which characterizes the thermal perfor-
mance, increases. When Re=86400 and N=25, the average 
Nu increased by 66%.

Figure 16 presents the trend of the heat flux of cou-
pled wall as Re increases, and it is obvious that heat flux 
increases continuously because of the eddy current in the 
zoom sections, which strengthens the heat transfer inten-
sity. And as the value of N increases, the average heat flux 
on coupled wall increases gradually, meaning that the heat 
transfer is enhanced.

Figure 17 exhibits the effect of increased Reynolds num-
ber on pressure drop () of the HTF between tube inlet and 
outlet of the models for both the PTR and CD-PTR with 
different numbers of zoom sections (N). Obviously, the ∆P 
between the inlet and outlet of CD-PTR absorber tube is 
always higher than that of PTR absorber tube. The change 
in the cross section of the flow channel caused by the 
convergent- divergent structure will affect the velocity and 
greatly reduce the fluid pressure in the CD-PTR absorber 
tube. The introduction of convergent-divergent structure 
inevitably brings an increase in pressure drop, which will 
lead to a significant increase in operating power consump-
tion, thereby affecting the improvement of system efficiency.

The evaluation of heat exchanger efficiency should not 
only focus on its heat transfer performance, but also con-
sider its resistance performance which are characterized by 
Fanning friction factor(f).

(a) PTR

(b) CD-PTR

Figure 14. TKE distribution of axial section of PTR and 
CD-PTR.
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Figure 15. The trend of Nu of CD-PTR with different num-
ber of zoom sections(N).
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Figure 16. The trend of heat flux(q) of CD-PTR with differ-
ent number of zoom sections(N).



J Ther Eng, Vol. 7, Supp 14, pp. 1843–1856, December, 2021 1853

Figure 18 shows the trend of friction factor (f) in sev-
eral set of models with different numbers of zoom sections 
(N) as Re increases, and the case where the N value is zero 
indicates the PTR model. In both PTR and CD-PTR, the 
Fanning friction factor(f) decreases with the increase of 
Re. And the f in CD-PTR absorber tube are always much 
higher than that in PTR. As the number of zoom sections 
(N) increases, the friction factor in CD-PTR absorber tube 
increases rapidly, which is caused by the obvious rise of the 
pressure drop caused by the introduction of the conver-
gent-divergent structure.

Based on the analysis, when the N is increased, Nu is 
higher but pressure drop down is also enhanced. In order to 
comprehensively consider the influence of Nu and friction, 
the authors proposed the Thermal Efficiency Factor(TEF) 
to further analyze the evaluation of the thermal perfor-
mance of the PTR system. The TEF is defined as follows:

Figure 19 presents the variation of the system thermal 
efficiency factor(TEF) with the increase of Re for CD-PTR 
with different number of zoom sections(N). It can be seen 
from the figure that the thermal efficiency factor decreases 
with the increase of Re, since rather than the increase of 
Nu, the increase of the friction factor has a more signifi-
cant effect on the efficiency. It can also be seen that as the 
value of N increases, the thermal efficiency factor gradu-
ally decreases, which means that as the number of zoom 
sections increases, the impact of the sharply increased fric-
tion factor on the system efficiency is much greater than 
the increase of Nu. Figure 19 also shows that the thermal 
efficiency of CD-PTR is not always higher than that of PTR. 
For models with different N, within a certain Re range, the 
TEF of CD-PTR is higher than 1.0, which means that the 
overall thermal efficiency of CD-PTR is higher than that 
of PTR. If Re exceeds this range, the introduction of the 
convergent-divergent structure cannot improve the system 
thermal efficiency. Take the thermal efficiency factor of 
CD-PTR with N=10 as an example, when the Re is less than 

26000, the introduction of convergent-divergent structure 
can enhance the overall thermal efficiency and the thermal 
efficiency factor reaches 1.51 when Re=7000.

CONCLUSIONS 

This study proposed to apply convergent-divergent tube 
as PTR absorber tube (CD-PTR) for improving heat trans-
fer performance of PTC system. The FVM method coupled 
with MCRT method was adopted to investigate the heat 
transfer performance and flow characteristics of parabolic 
solar collector system. The simulation results draw the 
conclusions.

1. With the increase of Re, the temperature distribu-
tion of cross-section become more uniform, thereby 
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Figure 17.The trend of pressure drop (∆P) of CD-PTR with 
different number of zoom sections(N).
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Figure 18. The trend of friction factor (f) of CD-PTR with 
different number of zoom sections(N).
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providing better thermal conditions for absorber 
tube.

2. The TKE of HTF increases as the Re increases. At the
same Re, the variable cross-section of the CD-PTR
significantly increases local TKE, thereby accelerat-
ing the heat transfer of the coupled surface.

3. The average Nu of CD-PTR increases as the number
of zoom sections increases, and is always higher than 
that of PTR. When Re=86400 and N=25, the average
Nu increased by 66%.

4. The friction factor (f) gradually decreases as Re increases. 
And as the number of zoom sections increases, f in the
CD-PTR absorber tube increases rapidly.

5. The improved CD-PTR that applied the conver-
gent-divergent structure in PTC technology pro-
posed in this paper has higher heat transfer efficiency 
than PTR within a certain range of Re.

NOMENCLATURE 

D Diameter of receiver, m
Cp Heat capacity, J/(kg∙K)
ρ Density, kg/m3

YM Contribution of the fluctuating dilatation in com-
pressible turbulence to the overall dissipation rate

Gb Generation of turbulent kinetic energy due to 
buoyancy

Gk Generation of turbulent kinetic energy due to the 
mean velocity gradients

Sk SƐ User-defined source term
Esun Solar irradiance, W/m2

P Pressure, Pa
T Temperature, K
v Velocity, m/s
Re Reynolds number
Nu Nusselt number
q Heat flux, W/m2

h Heat transfer coefficient, W/(m2∙K)
f Fanning friction factor
Pr Prandtl number

Greek symbols
v Kinematic viscosity, m2/s
α Absorptivity of receiver
αv Coefficient of expansion
Ф Dissipation function
σk Turbulent Prandtl numbers for k
σε Turbulent Prandtl numbers for ε

Subscripts
Max Maximum temperature
Min Minimum temperature
Exp Experimental test
Num Numerical simulation

s Refers to smooth tube
f Refers to fluid
a Refers to environment
g Refers to glass envelope
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