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ABSTRACT 

This paper presents the influence of Convective Boundary Condition on heat and mass 
transfer in a Walters’ B fluid over a vertical stretching sheet with the thermal-diffusion effect. 
The coupled nonlinear partial differential equations governing the system are presented in 
the form of coupled ordinary differential equations via similarity transformation variables 
which then solved by the Homotopy Analysis Method. The effect of various parameters on 
velocity, temperature and concentration profiles as well as Local Skin-friction, Nusselt and 
Sherwood numbers are plotted and discussed. The result shows among others that large val-
ues of the thermal buoyancy parameter accelerate the motion of the fluid and cools the ther-
mal layer while the surface heat transfer is boosted when the strength of Radiation improves. 
Also, large values of Biot number constitute strong convective heating which consequently 
maximizes thermal boundary layer thickness and paves way for the penetration of thermal 
effect to the quiescent fluid. Biot number is of great importance in the engineering field for 
drying of the materials.
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INTRODUCTION 

The interaction of heat and mass transfer by natural 
convection in laminar boundary layer flows has received 
significant attention in the years past and extensively 
studied in the literature for both steady and unsteady 
phenomenon of Newtonian fluid due to its numerous appli-
cations in science and engineering field. Among the early 

investigation revealed by Ali et’al. [1] shows that thermal 
radiation interaction enhances the wall shear stress as well 
as the surface heat transfer rate while investigating the natu-
ral convection- radiation interaction in boundary layer flow 
over the horizontal surface. Arpaci [2] studied the effect of 
thermal radiation on the laminar free convection from a 
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heated vertical plate. Recently, other researchers also made 
their contribution to the literature. Afify and El-Aziz [3] 
revealed that the heat transfer rates for both pseudoplastic 
and dilatant nano fluids are insensitive to change in viscos-
ity for lower values of Biot number and declined by rela-
tively strong convective heating with higher values of Biot 
number. Sarafraz et’al. [4] reported that the only influence 
of sub-cooling temperature is found to decrease the corre-
sponding heat flux related to the onset of nucleate boiling. 
El-Aziz and Nabil [5] justified among others that the veloc-
ity slip leads to a faster rate of cooling of the stretching sheet 
only in the case of free convection flow regime. El-Aziz 
[6] investigated thermal-diffusion and diffusion-thermo 
effects on combined heat and mass transfer by hydromag-
netic three-dimensional free convection over a permeable 
stretching surface with radiation. The result shows among 
others that the maximum effect of the thermal- diffusion 
and diffusion-thermo on the velocity occurs in the absence 
of the magnetic field when the plate is impermeable. El-Aziz 
[7] examined the radiation effect on the flow and heat trans-
fer over an unsteady stretching sheet where it was pointed 
out that the effect of radiation parameter on the temperature 
distribution of a steady flow is more pronounced than that of 
unsteady flow. Abo-Eldahab and El Aziz [8] investigated the 
effect of blowing/suction on hydromagnetic heat transfer by 
mixed convection from an inclined continuously stretching 
surface with internal heat generation/absorption. Oahimire 
and Olajuwon [9]  examined the effect of radiation absorp-
tion and thermo-diffusion on MHD heat and mass transfer 
flow of a micropolar fluid in the presence of heat source. 
The result shows among others that in the presence of the 
uniform magnetic field, an increase in the strength of the 
applied magnetic field decelerates the fluid motion along 
the wall of the plate inside the boundary layer, whereas 
the micro-rotational velocity of the fluid along the wall of 
the plate increase. Makinde [10] reported the effect of heat 
and mass transfer on MHD over a moving vertical plate 
with a convective boundary condition. However, the law of 
Newtonian fluid has been proved to be in good agreement 
with Newton’s second law of motion which work very well 
for air, water and other fluid delineated with Navier-Stokes 
and conservation of energy equation but failed while deal-
ing with more complex fluid, especially with the emergence 
of viscoelastic fluid or polymeric liquid. The deficiency 
encountered in the theory of Newtonian fluid and recent 
development in Science and Technology with its numer-
ous biological and industrial applications, such as polymer 
solution, paint ink, and cake butter e.t.c had made its stud-
ies interesting to all and recently studied in the literature. 
El-Aziz [11] found that a viscoelastic fluid is more sensi-
tive to the variable fluid properties effect than a Newtonian 
fluid. Labropulu et’al. [12] examined the stagnation-point 
flow of the Walters’ B fluid with slip where the effect of 
condition and the viscoelasticity were to increase the veloc-
ity near the wall. Shivakumara et’al. [13] reported that the 

effect of thermal modulation disappears at large frequencies 
in all the cases of thermal modulation while investigating 
the effect of thermal modulation on the onset of convection 
in Walters B viscoelastic fluid-saturated porous medium. 
Rana et’al. [14] and (Aggarwal and Verma [15]) reported 
that Walters’ (model B') visco-elastic fluid behaves like an 
ordinary Newtonian fluid due to the vanishing of the visco-
elastic parameter. Pandey  et’al. [16] investigated the char-
acteristic of Walter’s B visco-elastic Nanofluid layer heated 
from below. It is reported among other that the Kinematic 
visco-elasticity parameter destabilizes the oscillatory con-
vection and no has effects on stationary convection. Other 
authors like Thirumurugan and Vasanthakumari [17], 
Sharma et’ al. [18], Kango et’al. [19], Rana [20–21] also con-
tributed to the literature about Walters’ B fluid.

Going by the previous effort of other researchers in the 
literature, much attention has not been given to the impact 
of the Boit number on Walters’ B fluid. On that note, this 
work is set to examine the influence of Convective Boundary 
Condition on heat and mass transfer in a Walters’ B fluid 
over a vertical stretching surface with thermal-diffusion 
effect, having considered unaddressed to the best of our 
knowledge in the literature. The boundary layer equations 
governing the system are then solved via the Homotopy 
Analysis Method being a modern method for solving both 
linear and nonlinear differential equations. 

MATHEMATICAL FORMULATION

In this article, the steady flow of heat and mass trans-
fer over a vertical surface of Walters’ B viscoelastic fluid is 
considered. We assumed that the plate experienced heat by 
convection at a temperature Tf which provides heat trans-
fer coefficient hf. A magnetic field B0 of uniform strength is 
executed in y-direction while the induced magnetic field is 
not taken into account due to the magnetic Reynolds num-
ber that is really small in the most fluid used in industries 
and the joule heating is neglected as it really small to affect 
the motion of free convection. The x-axis is taken along 
the direction of the main flow and y-axis normal to it. The 
temperature and concentration of the fluid is respectively 
considered as T and C, Cw is the plate surface concentration 
while T∞ and C∞ respectively denote the ambient tempera-
ture and concentration. The heat and mass transfer char-
acteristics areconsidered in the presence of non-uniform 
heat generation/absorption and thermal-diffusion effect. 
(See Fig. 1). The stretching sheet is moving with a velocity 
uw(x) = ax and a > 0.

On the account of elastic properties of the fluid which 
are important in extensional behaviors of polymer, the 
stress tensor S* for Walters’ B fluid is expressed as (See 
Nadeem et’al. [22]);

 S k
e
t

* = 2 0η δ
δ

− 2 0  (1)
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where e is the rate of strain tensor and δ
δ

e
t

 is the convected 

derivative of a tensor quantity in relation to the material 

motion, expressed as 
δ
δ

e
t

 = ∂
∂

e
t

 + v.∇e – e∇V – (∇V)T.e, η0 = 

∫0
∞N(τ)dτ denotes the limiting viscosity at small shear rates, 

k0 = ∫0
∞τN(τ)dτ represents the short memory coefficient, 

while N(τ) is the distribution function with relaxation time 
τ. Keeping in mind the short memory, the term involving 
k0 = ∫0

∞τnN(τ)dτ (at n ≥ 2) is neglected. On the account of 
the assumption stated above and under usual Boussinesq’s 
approximation, the governing equation for Walters’ B fluid, 
in agreement with Mihra et’ al. [23] is given by
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The appropriate boundary conditions for the problem 
are expressed as

u(x,0) = uw(x) = ax, v(x,0) = 0, –k ∂
∂

T x
y

( , )0  

= hf[Tf–T(x,0)], C(x,0) = Cw  
 U(x,∞) = 0, T(x,∞) = T∞, C(x,∞) = C∞ (6)

The velocity components acting in x and y directions are 
respectively denoted as u and v, qr is the radiation heat flux, 
Cp is the specific heat at constant pressure, ѵ is the kinematic 
viscosity, βc is the concentration expansion coefficient, Dm 
is the mass diffusivity, α is the thermal diffusivity, g is the 
acceleration due to gravity, ρ is the density, Tm is the mean 
fluid temperature, σ is the fluid electrical conductivity, KT is 

the thermal diffusion ratio, Q0 is the non-uniform heat gen-

eration/absorption coefficient defined by Q0 = 
ku x

C xv
w ( )

ρ ρ

 [A(Tw 

– T∞) f '+ (T – T∞)B], where A connotes thespace- dependent 
and B stands for the temperature- dependent heat gen-
eration/absorption (see Hayat et’ al. [24]) while βT is the 
thermal expansion coefficient. Keeping in mind that the 
boundary layer is optically thick, therefore, the Rosseland 
approximation for heat transfer is considered (See Uddin 
et’al. [25]), hence, the radiative heat flux is modeled as

 qr
k

T
y

=
− ∂

∂
4
3

4σ *
*

 (7)

where k* is the means of absorption coefficient and σ* is 
the Sterfan-Boltzmann constant. We assumed that the tem-
perature variation within the flow is such that the term  T4 
may be simplified as a linear function of temperature by 
expanding T4 in a Taylor series about T∞ and neglecting 
higher-order terms, gives

 T4 ≈ 4T 3∞T – 3T 4∞ (8)

invoking (7) and (8) in equation (3), gives a modified equa-
tion of the form
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The continuity equation (2) is automatically satisfied by 
the application of the stream function ψ defined by

 u
y

v
x

=
∂
∂

= −
∂
∂

ψ ψ
and  (10)

In accordance with Almakki et’al. [26], the similarity 
solution for momentum, energy and concentration equa-
tions are obtained by the application of the appropriate 
transformation method defined as
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Figure 1. Flow configuration and coordinate system.
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Here, η denotes independent similarity variable, θ(η) 
and φ(η) are dimensionless temperature and concentration 
respectively. Introducing (10) and (11) in (3), (9) and (5), 
result in

f '''(η) + f(η) f ''(η) – (f '(η))2 +  β[(f ''(η))2 –  
2f '(η) f '''(η) + f(η) f  (iv)(η)] 

 –Mnf '(η) + λTθ(η) + λMφ(η) = 0 (12)
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	 φ''(η) + Scf(η) φ'(η) + Srθ''(η) = 0 (14)

satisfying the following boundary conditions

 f(0) = 0, f '(0) = 1, θ'(0) = Bi[θ(0) – 1], φ (0) = 1 (15)

 f '(∞) = 0, θ(∞) = 0, φ (∞) = 0 (16)

where the prime symbol denotes the derivate with respect 

to η, Mn = 
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is the Schmidtl number.
Keeping in mind the engineering application of the 

study, the local skin friction coefficient, the local Nusselt 
number, and the Local Sherwood number are respectively 
presented in the form
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By the introduction of (18) in (17) with the above trans-
formation technique, an expression for local Skin-friction, 
the local Nusselt number, and the local Sherwood number 
formulated and given as
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where Rex = uw(x)/ѵ represents the Reynold number, τw is 
the shear stress along with the plate, qw is the surface heat 
and qm is the surface mass.

HOMOTOPY ANALYSIS METHOD

The solution of the differential equation has been the 
utmost priority of every researcher in mathematical model-
ing. They are solved by different methods among which are 
Shooting Techniques with Runge-Kutta method, Variation 
iteration method and Weighted Residual Method e.t.c. 
Homotopy Analysis Method is chosen and used over other 
methods being a modern Method and very efficient in solv-
ing both bounded and unbounded domain of differential 
equations. Subject to the rule of the solution and bound-
ary conditions (15) – (16), we choose the initial guess (See 
Hayat et’al. [24], and Liao [27])
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as the initial linear approximations of f(η), θ(η) and φ(η). 
The auxiliary linear operations Lf , Lθ, and Lφ are;
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Satisfied the following properties
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Lf[C1 + C2 exp(η) + C3 exp(–η)] = 0,  
 Lθ[C4 + C5 exp(–η)] = 0, Lφ[C6 + C7 exp(–η)] = 0 (22) 

where C1, C2, ..., C7 are constants.

ZERO ORDER DEFORMATION PROBLEM.

(1 – r)Lf[f(η;r) – f0(η)] = rℏfHf(η)Nf[f(η;r),  
 θ(η;r), φ(η;r)] (23)

 (1 – r)Lθ[f(η;r) – θ0(η)] = rℏθHθ(η)Nθ[f(η;r), θ(η;r)] (24)

(1 – r)Lφ[f(η;r) – φ0(η)] = rℏφHφ(η)Nφ[f(η;r),  
 θ(η;r), φ(η;r)] (25)

where L and N are called Linear and non-linear function 
respectively (for Algebra Equation) or Linear and Non-
linear operators (for differential Equations) and r∈[0,1] 
is the embedding parameter, with the following boundary 
conditions (See Akinbo and Olajuwon [28]).
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The nonlinear operators Nf, Nθ, and Nφ are defined as
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where r∈[0,1] is the same as the embedding parameter 
defined above. The increase in embedding parameter r 
from Zero to One corresponds to a variation of the function 
f(η;r), θ(η;r) and φ(η;r) from initial guess f0(η), θ0(η) and φ0 
(η) to the solutions f(η), θ(η) and φ(η). Using Taylor series 
with respect to r, we have
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Obviously, the convergence of the series (33) is subject 
to the auxiliary parameter ℏ. Assuming ℏ is chosen such 
that the series (33) converge at r = 1, we have
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Mth-ORDER DEFORMATION PROBLEM

Following Hayat et’al. [29], the mth-order deformation 
are considered as follow
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and χm = 0 for m ≤ 1, χm = 1 for m > 1
having the following as a general solution

  fm(η) = f*m(η) + C1 + C2exp(–η) + C3exp(–η) (41)

 θm(η) = θ*m(η) + C4 + C5exp(η)  (42)

 φm(η) = φ*m(η) + C6 + C7exp(η)  (43)

where f*m(η), θ*m(η) and φ*m(η) represent the particular solu-
tion of equation (35). In agreement with Olubode et’al. 

[30], we consider the rule of coefficient ergodicity and rule 
of solution existence and choose the auxiliary functions as 

 Hf = Hθ = Hφ = 1

CONVERGENCE OF THE HAM SOLUTION

The convergence solution of this present investigation 
is considered in line with Liao [31], Akinbo and Olajuwon 
[28] suggestions. The non-zero auxiliary parameters ℏf, ℏθ 
and ℏφ help to monitor and control the convergence of the 
series solution. By the application of the following param-
eters Bi = λT = Sr = λM = β = 0.1, Sc = 0.62, Pr = 0.72, Ra = 
0.7, Mn = 1, A = B = 0.01. The admissible values of ℏf, ℏθ 
and ℏφ are presented at the range where ℏ – curve becomes 
parallel which in turns give –1.2 ≤ ℏf ≤ –0.3, –1.3 ≤ ℏθ ≤ –0.4  
and –1.5 ≤ ℏφ ≤ –0.4 for ℏf, ℏθ and ℏφ respectively as demon-
strated in figures (2–4) below

The exact approximate solution for the convergence of 
the governing equations which corresponds to momen-
tum, energy and concentration equations are presented 
in table 1. The dimensionless equations meet the far-field 
domains and the iteration series converges at 20th – order 

Figure 4. ℏφ curve of φ'(0) at 10th approximation.Figure 2. ℏf – curve of f ''(0) at 10th approximation.

Figure 3. ℏθ – curve of θ'(0) at 10th approximation.
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Table 1. Convergence of solution

Order of Approximation f ''(0) –θ'(0) –φ'(0)

5
10
12
14
16
18
20
22
24

–1.0183
–1.0126
–1.0118
–1.0112
–1.0110
–1.0108
–1.0106
–1.0106
–1.0106

0.0767
0.0741
0.0737
0.0733
0.0731
0.0729
0.0728
0.0727
0.0727

0.4284
0.4195
0.4193
0.4196
0.4199
0.4202
0.4205
0.4205
0.4205

Table 2. Validation with Hayat et’al.[24] at Mn = 0, λT = 0, 
λM = 0

Parameter Hayat et’al.[24] Present Result
S β

–Rex

1
2C f

–Rex

1
2C f

0.0 0.2 0.870726 0.87072581

for momentum and concentration equations while the 
energy equation converges at 22th – order of iterations 
while table 2 agreed with Hayat et’al.[24]. However, the 
results are validated using Galerkin Weighted Residual 

Table 3. Validation/Numerical result for local Skin-friction coefficient, Local Nusselt number, and 
Local Sherwood number 

Parameters Results with HAM Results with Galerkin 
Weighted Residual Method

β       Mn   λT          λM       Pr       Sc       Bi      Sr      Ra     A       B
Rex

1
2C f   Rex

1
2 Nu  Rex

1
2 Sh Rex

1
2C f   Rex

1
2 Nu  Rex

1
2 Sh

0.1    0.1    0.1    0.1    0.72    0.62    0.1    0.1    0.7    0.01    0.01

0.3

0.5

        1.0

        2.0

                  1.0

                  2.0

                           1.0

                           2.0

                                     1.0

                                     3.0

                                                0.24

                                                0.78

                                                           0.5

                                                           1.0

                                                                    1.0

                                                                    2.0

                                                                             1.0

                                                                             2.0

                                                                                       0.05

                                                                                       0.07

                                                                                                  0.05

                                                                                                  0.07

–0.90956  0.14076  0.42049

–0.80862  0.13897  0.40152

–0.77412  0.13644  0.38047

–1.27062  0.13497  0.35813

–1.58216  0.13101  0.31603

–0.75659  0.14465  0.46315

–0.61330  0.14712  0.48913

–0.41109  0.14803  0.50317

 0.07701  0.15155  0.55698

–0.91448  0.14961  0.41747

–0.92416  0.17035  0.41203

–0.89268  0.14186  0.22676

–0.91384  0.14046  0.49116

–0.88312  0.35047  0.42254

–0.87333  0.43293  0.42290

–0.90632  0.14134  0.38096

–0.90287  0.14189  0.33731

–0.90693  0.16455  0.42211

–0.90107  0.24083  0.42567

–0.90490  0.13092  0.42321

–0.90253  0.12591  0.42459

–0.90599  0.13396  0.42250

–0.90362  0.12949  0.42378

–0.90955  0.14075  0.42046

–0.80861  0.13895  0.40150

–0.77410  0.13643  0.38045

–1.27061  0.13495  0.35811

–1.58215  0.13100  0.31601

–0.75656  0.14463  0.46307

–0.61329  0.14711  0.48911

–0.41106  0.14801  0.50315

 0.07700  0.15148  0.55695

–0.91445  0.14960  0.41746

–0.92415  0.17040  0.41201

–0.89266  0.14185  0.22675

–0.91382  0.14045  0.49115

–0.88307  0.35045  0.42252

–0.87331  0.43291  0.42289

–0.90630  0.14132  0.38095

–0.90285  0.14186  0.33730

–0.90691  0.16448  0.42210

–0.90105  0.24081  0.42565

–0.90489  0.13091  0.42320

–0.90251  0.12590  0.42457

–0.90597  0.13394  0.42249

–0.90361  0.12947  0.42376
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(Bi) and this consequently enhances the rate of heat trans-
fer while the rate of mass transfer  gain more strength for 
large values of mass buoyancy parameter (λM) and Schmidtl 
number (Sc) (see Table 3).

In figures (5–8), we observed that increase in thermal 
and mass buoyancy parameters (λT, λM) boost the buoy-
ancy forces and accelerate the flow of which its aftermath 
effect improves the velocity of the fluid (as well as its 
layer thickness). The results are not the same for temper-
ature and concentration profiles where both thermal and 
concentration layers thicknesses decline for large values 
of λT and λM. In that case, λT > 0 corresponds to the cool-
ing of the plate while λM > 0 justify that the concentra-
tion at the plate surface is higher than the free stream 
concentration.

In figures (9), the influence of Prandtl number (Pr) 
which ranges from 0.72(Air) to 7.1(Water) is presented. 
It is observed from the figures that higher values of Pr 
due to the low thermal diffusivity diminish the average 

Figure 6. Temperature profile for different values of λT.

Figure 8. Concentration profile for different values of λM.Figure 7. Velocity profile for different values of λM.

Figure 5. Velocity profile for different values of λT.

Method, which shows a good agreement with each other 
(See table 3)

DISCUSSION OF RESULTS

In this study, computation analysis is carried out via the 
Homotopy Analysis Method (HAM) at 20th – order to meet 
the far-field boundary conditions. This is done by holding 
Bi = λT = Sr = λM = β = 0.1, Sc = 0.62, Pr = 0.72, Ra = 0.7, 
Mn =1, A = B = 0.01 constant for each varying parameter. 
We observed that almost all the values of the local Skin-

Friction Rex

1
2C f

 quantitatively displayed negative as shown 

in Table 3. This agreed with the expectation as the nega-
tive values justify that a drag force is exerted on the fluid 
by the plate which in turn impede the flow.However, the 
surface heat transfer significantly improve as a result of the 
higher values of thermal buoyancy parameter (λT), Prandtl 
number (Pr), Radiation Parameter (Ra) and Boit number 
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Figure 10. Velocity profile for different values of Mn.

Figure 11. Temperature profile for different values of Mn.

Figure 9. Temperature profile for different values of Pr.

Figure 12. Velocity profile for different values of β.

temperature within the boundary layer which in turn 
reduces the momentum layer thickness. In that wise, 
smaller values of Pr enhance the thermal conductivity and 
enable the heat to diffuse quickly from the heated surface 
than higher values.

Figures (10–11) reveal the influence of magnetic inter-
action (Mn) on velocity and temperature profiles. It is 
noticed from fig.10 that higher values of Mn pioneer resis-
tive forces called Lorentz force that resist the motion of the 
fluid and reduces the velocity profile and its boundary layer 
thickness. However, a reverse phenomenon is observed in 
the temperature of the fluid. An increase in Mn causes fric-
tional heating across the boundary layer which increases 
the layer temperature of which its aftermath increases the 
thermal boundary layer thickness.

Figures (12–13) present the variation influence of local 
Weissenberg number (β) on velocity and temperature pro-
files. It is noticed from the fig. 12 that the fluid velocity 
decline for the large values of β. This result agreed with the 
expectation as higher values of β are to improve the vis-
coelasticity through the tensile stress which opposes the 
fluid velocity and reduces its layer thickness. The effect of 
improving viscoelasticity generates more heat within the 
thermal boundary layer which in turn improves the ther-
mal layer thickness.

The effect of Schmidtl number for most encountered 
chemical in the application is varied in Figure 14 on con-
centration field. At higher values of Sc, the diffusion prop-
erties of the fluid experienced downfall which in turn falls 
the concentration profile near the boundary layer as well as 
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Figure 14. Concentration profile for different values of Sc.

Figure 16. Concentration profile for different values of Sr.

Figure 13. Temperature profile for different values of β.

Figure 15. Temperature profile for different values of Sr.

concentration boundary layer thickness (See Akinbo and 
Olajuwon [32]).

Figures (15–16) present the effect of Soret Number (Sr) 
on temperature and concentration profiles. Physically, we 
observed from figure 15 that an increase in Sr contributes to 
the falling of the temperature which ultimately reduces the 
thermal boundary layer thickness. However, the opposite 
phenomenon is observed in the concentration field which 
ultimately boosts concentration boundary layer thickness 
(see Fig. 16).

Figure 17 addresses the influence of the radiation 
parameter (Ra) on the temperature profile. It is noticed that 
the temperature of the fluid improves due to the increasing 

values of Ra. This is true as higher values of Ra magnify 
the conduction of heat transfer to thermal heat transfer of 
which its aftermath effect strengthens the thermal bound-
ary layer thickness.

Figures (18–19) presents the influence of the internal 
heat generation/absorption parameter (A,B) > 0 on the 
temperature profile. As expected, an increase in (A,B) cor-
responds to the enhancement of more heat within the layer, 
which in turns improves the temperature of the fluid and 
strength the thermal boundary layer thickness

Figure (20) presents the influence of Boit Number 
(Bi) on the temperature profile. An increase in Bi consti-
tutes strong convective heating within the boundary which 
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Figure 17. Temperature profile for different values of Ra.

ultimately maximizes the thermal boundary layer thick-
ness. However, this enhancement paves way for the pen-
etration of thermal effect to the quiescent fluid.

CONCLUSION 

In this work, Homotopy Analysis Method is employed 
to solve the three dimensionless equations corresponding 
to momentum, energy, and concentration which describe 
the influence of Convective Boundary Condition on 
heat and mass transfer in Walters’ B fluid over a vertical 
plate with thermal-diffusion effect. The results of various 
embedded parameters are analyzed through graphs and 
tables. The following conclusions were drawn from the 
results obtained 

•	 Setting β = 0, Walters’ B model behaves like an ordi-
nary Newtonian fluid

•	 The skin-friction quantitatively displayed negative, 
indicating that the drag forces are exerted on the fluid 
by the plate which in turns impede the flow

•	 Higher values of (A,B) enhance the temperature 
which in turn pioneer the lightening of the surface 
and enable the fluid to flow faster.

•	 The tensile stress effect is magnified for large values 
of Weissenberg number which ultimately declines the 
velocity boundary layer thickness.

•	 The temperature distribution and surface heat trans-
fer are boosted when Radiation intensity improves.

•	 Large values of Biot number magnifies thermal 
effect and allow its penetration to the quiescent 

Figure 18. Temperature profile for different values of A.

Figure 19. Temperature profile for different values of B. Figure 20. Temperature profile for different values of Bi.
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fluid. The strength of the Biot number contributes 
to the drying of the materials component in the 
Engineering field. 
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NOMENCLATURE 

Mn Magnetic field
β local Weissenberg Number 
λT Thermal buoyancy parameter 
λM Mass buoyancy parameter
Bi Biot number
Pr Prandtl number,  
Ra Radiation parameter 
Sc Schmidtl number
A space-dependent heat generation/absorption
B Temperature-dependent heat generation/Absorption
Q0 non-uniform heat generation/absorption Coefficient
Dm mass diffusivity

Greek symbols
α thermal diffusivity
βc concentration expansion coefficient
η Similarity variable
θ dimensionless temperature 
ѵ kinematic viscosity
ψ Stream Function
ρ density
qr Radiation heat flux
Cp specific heat at constant pressure
βT temperature expansion coefficient
g acceleration due to gravity
σ fluid electrical conductivity
hf heat transfer coefficients
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