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ABSTRACT

In this study, the mathematical model (DC) of diabetes disease is discussed. This model di-
vides people into (D) uncomplicated and (C) complex diabetics two. In addition, diabetes is a 
disease known to be caused by genetic and environmental factors, and this factor is one of the 
main causes of genetic disorder at birth. Considering these two factors, the diabetes compli-
cation (SDC) model, which is sensitive from the diabetes complication (DC) model, is being 
developed. In this model, the responsive diabetes complication (SDC) model of a nonlinear 
system of differential equations is transformed into a discrete-time system of equations. The 
positivity and limitation of Model solutions were examined R0 the basic increment number is 
calculated. If R0 < 1, it has a global asymptotically stable balance for the situation where there 
is no genetic disorder at birth, and for R0 < 1, the system has an unstable balance. In addition, 
random behavior of the discrete model was examined for different probability distributions.
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INTRODUCTION

Epidemiology has been gaining more and more atten-
tion over the past few years for diseases that have spread to 
a living organism. Mathematical modeling is used to study 
the epidemology of a disease. With the development of 
science, mathematical modeling is used to study not only 
the spread of infectious diseases, but also non-communi-
cable diseases. Analysis of these disease models with dis-
crete-time equation systems is also obtained. Diabetes is a 
disease commonly referred to as diabetes, which is usually 

caused by a combination of hereditary and environmen-
tal factors, and the blood glucose level rises excessively. 
The most important of the hormones that play a role in 
the regulation of sugar metabolism is the insulin hormone 
secreted from the beta cell of the pancreas. Insulin enables 
the sugar to enter the cell and to be stored as glycogen in 
the cell. People with diabetes cannot use glucose, which 
passes from the food they eat to the blood, and blood sugar 
levels rise, causing damage to many tissues and organs. 
There are two types of diabetes: type 1 diabetes, body cells 

*Corresponding author.
*E-mail address: mehmetmerdan@gmail.com

This paper was recommended for publication in revised form by 
Regional Editor Aydın Seçer

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://orcid.org/0000-0003-0756-4872
https://orcid.org/0000-0002-8509-3044
mailto:mehmetmerdan%40gmail.com?subject=


Sigma J Eng Nat Sci, Vol. 39, No. 3, pp. 290–312, September, 2021 291

cannot absorb and process glucose without insulin so blood 
sugar levels increase, in type 2 diabetes, it occurs because 
the body cannot produce enough insulin. With the intro-
duction of insulin in 1921, all types of diabetes are treated 
but there is no definitive cure. The most basic treatments of 
type 1 diabetes are injecting insulin syringes or pens, while 
in type 2 diabetes, diet and sugar-lowering drugs are used. 
Treatment methods used in diabetes lead to many compli-
cations. In 2004, Boutoyeb and colleagues introduced the 
(DC) diabetes complication model to find diabetes with-
out complications (D) and diabetes with complications (C), 
and the following is the continuous time model to be stud-
ied in this study.

	
( )

( )

dD I D C
dt
dC D C
dt

λ µ γ

λ γ δ ν µ

= − + +

= − + + +
	 (1)

Here I, λ, γ, δ, ν, μ > 0. Then, unlike model (1), it deter-
mines that the number of incidences is not constant and 
the number of events taking into account the genetic and 
environmental factors. With this difference in mind, the (1) 
model is transformed into a responsive diabetes complica-
tion (SDC) model and the SDC is expressed below as a con-
tinuous time model [4].
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Here, (2) model with advanced difference method
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It is being transformed into a discrete-time system of 
equations. Where S(0) > 0, D(0) > 0, C (0) > 0, and h = 
0.01. The parameters α, β, γ, δ, λ, μ, ρ > 0 and 0 ≤ ρ ≤ 1, 
respectively, are birth rate, interaction rate, recovery rate of 
complications, complication-related mortality rate, occur-
rence rate of complications, and rate of genetic disorder at 
birth [4–6].

Model (3) is obtained by a sensitive diabetes complica-
tion analysis. Let’s add N(n) carrier complications by add-
ing up all equations of this model:

	 ( 1) ( ) ( ) ( ) ( )
(1 ) ( )

N n N n N n N n C n
N n

+ = + α −µ − δ
≤ + α−µ

	 (5)

In this equation, N (n+1) ≤ N0 (1+α–μ)n global asymp-
totic stable limn→∞ N (n) = 0 has a single balance. The disease 
equilibrium point of the model (3) is indicated by E0, and 
as a single equilibrium is found as  E0(0,0,0) [1–3]. Recently, 
various studies have been done on random differential 
equation and difference equation [13–16].

DISCRETE TIME PROBABILITY DISTRIBUTIONS

In this section, definitions related to some probability 
concepts used are given.

Discrete Uniform Distribution
Definition. Let k be a positive bit integer. A random 

variable X with probability function

	
( )

1 , 1,2,3, ,
,

0,

x kkP x k
other

 = …= 


is called a discrete uniform chance variable [12]

Table 1. Parameter values of the (2) model

Parameters Descriptions Values
γ Recovery rate of complications 0.37141
α Birthrate 0.01623
δ Complication-related mortality 0.0068
λ Rate of occurrence of complications 0.67758
μ Death rate 0.00764
ρ Genetic disorder in childbirth 0.077
β Interaction rate 0.16263
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Theorem. If X has a discrete uniform distribution, 
then
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Binomial Distribution
Definition. Let the total number of those who suc-

ceeded in  independent Bernoulli trials be the random vari-
able X. For a single experiment, the probability of success is 
denoted by p, and the probability of failure is (1 – p). The 
binomial random variable X has the following probability 
function
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Calculation of consecutive binomial probabilities,
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Theorem. If X has a binomial distribution,

a.	 E(X) = np,

b.	 V(X) = np(1–p),

c.	 Mx(t) = [etp + (1 – p)]n.

Geometric Distribution
Definition. The number of experiments done to 

obtain the first desired result (success or unsuccessful) in 
a Bernoulli experiment repeated n times in succession is 
called a geometric random variable X. The distribution of 
this variable is called the geometric distribution and the 
probability function of the geometric random variable X, 
with probability of unsuccessfulness q = 1 – p and probabil-
ity of success p in a single experiment [12]
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Theorem. If X has a Poisson distribution,

a.	 E(X) = λ,
b.	 V(X) = λ,

c.	 Mx = eλ(et–1).

BASIC R0 INCREMENT NUMBER

Using the Matrix method, we get the basic increment 
number of the model. Consider the equilibrium point E0 
(0,0,0). If x = (S,D)T, the model can be rewritten as follows:

	 x' = F(x) – V(x)

and
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Jacobian matrices of F(x) and V(x) in E0
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G = FV–1 is found as 0 1
R αρ

µ λ
=

+ −
, which is the basic 

increase number given by the radius of the new generation 
matrix. [1]

EXTINCTION AND PERSISTENCE  
OF THE DISEASE

This section focuses on disease-free equilibrium stabil-
ity and the absence and persistence of disease determined 
by the presence of endemic equilibrium of the model. 
E0 (0,0,0) indicates an equilibrium. S, D, C components 
are zero, so disease-free balance is called. The stability of 
the disease-free equilibrium E0 is given in the following 
theorem.

Theorem 1 (Jury Theorem). For this criterion for | θ | 
< 1 values

	 θ3 + a3θ
2 + a2θ + a1 = 0

the roots of the cubic equation can be shown by the follow-
ing conditions [9].
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Theorem 2. For the equilibrium point E0 of the model

i. R0 < 1 is global asymptotic stable
ii. R0 > 1 for unstable.
Proof. (i) Characteristic equation by giving the H 

matrix in E0 by the Jacobian matrix in (5)
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If the Jury Theorem is applied to this cubic equation,
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Therefore, if the model R0 < 1, it is global asymptotic 
stable around E0. [7–9]

Theorem 3. If the disease-free equilibrium point of 
Model (3) at E0 is R0 < 1, it is global asymptotically stable 
and if R0 > 1 is unstable at E0.

Proof. Model (3) Linearized matrix in E0 equilibrium,
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Here, let us make it simple by writing instead A = α – 
μ, B = α(1 – ρ), C = αρ – λ – μ, D = αρ + γ, E = γ + δ + μ 
in the  H matrix. Eigenvalues of this matrix obtained are 
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= − = − − + = − + +  accessible. Therefore, 

the eigenvalues of |θi| = 1, 2, 3 for R0 < 1 are globally asymp-
toticly stable at E0 disease-free equilibrium, R0 > 1, E0 and at  
is unstable for the disease-free equilibrium point.

When S(N) ≤ N(n) from this (1) model
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If the conditions of λ + μ <1 and R0 < 1 become 0 < 1 + 
β–λ–μ + R0 (μ + λ–1) <1. From here (7) repeated inequality 
use of the equation
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Since n ≥ N1 for any ε > 0 from limn→∞D(n) = 0, D(n) < ε 
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As a result,
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0, C(n)) let's imply. If x0 = (S(0), 0, C(0))M∂, limn→∞S(n) = 0, 
limn→∞C(n) = (1 – γ – δ – μ)n C(0) = 0 ve Ω(M∂) = Φ0.

0 ≤ C(n) ≤ D(n)≤N(n) and N(n + 1) = N(n) + αN(n) – 
μN(n) – δC(n) due to N(n + 1)≥N(n) + (α – μ – δ)N(n) and 
N(n + 1) ≤ N(n) + αN(n) – μN(n). This difference equation 
N1 (n + 1) = (1 + α – μ – δ) N1(n) single balance N1* = (α 
– μ – δ)n N(0) and N(n + 1) = N(n) + αN(n) – μN(n) is the 
only equation of the equation of N2* = (1 + α – μ)n N0 and is 
global asymptotic stable. Therefore, for any ε>0, All n ≥ N1, 
(α – μ – δ)n N(0) – ε ≤ N(n) ≤ (1 + α – μ)n N(0) + ε.

If R0 > 1 then we can prove that σ is a small positive 
number such that
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If the result in (11) is not valid, then any (S∂
0, D∂
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0)X0 is 

a positive number and there is a dot  a large N2 > N1,

	 d(Φn (S0, D0, C0), Φ0) < σ için n > N2 	 (12)

Inequality in (12),

	 D(n) ≤ σ and S(n) > –σ if n > N2	 (13)

Since n > N2, the equations in (3)
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From the first inequality in(14), we know that N(n) ≤ (1 
+ α – μ)n N(0) is a n > N3 number that will hold for all N3 > 
N2. Since n > N3, we change N(n) ≤ (1 + α – μ)n N(0) to the 
second inequality of (14) to obtain the inequality of. 

	
0

0

( )( )( 1) ( )
1

( 1)( (
)

)) (
(

) ( )

n

D nD n D n
N

R D n D n

β σ
α µ

λ µ λ µ

−
+ > +

+ −
+ + − − +

� (15)

by selecting  small enough, the state  is expressed as
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From inequalities in (15) and (16), this limit limn→∞D(n) 
= ∞. Limit limit limn→∞D(n) = ∞ (10 ) in D(n) contradicts 
with the inequality of D(n) < σ. The contradiction comes 
from the conjecture given in (12), so the result in (11) is 
true. Then, Ws(Φ0) ∩ X0 = ∅ and Φ0, is isolated by X. It is 
equally permanent with respect to (X0, ∂X0) in theorem 3. 

globally asymptotically stable. In comparison principle 
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On the left side of the inequality of the (10) equation, 
and from the principle of comparison, we know that for any 
given ε1 > 0 for all n > N3,  integer. (10) for any ε2 > 0 accord-
ing to the comparison principle given on the right side of 
the inequality of equation, all n > N4. We know that there 
is an integer N4 > N1 such that N(n) ≤ N0 (1 + α – μ)n + ε2.

N5 = N3 + N4, inequalities,
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Meaning that the disease-free equilibrium of (3) is 
global asymptotically stable since R0 < 1 it is found. R0 > 
1 means that the average number of new infections by an 
infected person is more than one. Its epidemiological inter-
pretation suggests that the disease may be permanent in the 
population. The theorem below confirms the continuity of 
the disease in case of R0 > 1.

Theorem 4.  If R0 > 1, the disease will remain persistent 
in the population, that is, the solution of the model with 
the initial value D(0) > 0(2) has a positive ε value such that 
limn→∞inf D(n) > ε.

Proof. X = Ω1 = {(S,D,C) R+
3|S + D + C ≤ N0 (1 + α – μ)}, 

X0 = {(S,D,C) X|D > 0, C > 0} and  ∂X0 = X
X0

. The solution 
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= x0 and  x0 =(S(0), D(0), C(0)). Where, M={Φ0 } = (0,0,0)
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	 ( ) ( )0 0{ , , |Ö , , , 0}.nS D C X S D C X n∂ = ∈∂ ∈∂ ∀ ≥M

This {(S,0,0)∂X0 |S ≥ 0}M∂ is open and M∂ = {(S,D,C) ∂X0 
|D = 0}. Also, for Φ0, Φ is a fixed point in M∂. Equation,

	 S1(n + 1) = (1 + α – μ) S1(n)

It is the global attractor for the balance S* = 0. Using 
Lemma 5.9 [10], we know that no subset of M forms a 
cycle in ∂X0. Φn (M∂)M∂ state Φn ((S(0), 0, C(0))) = (S(n), 
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Also in theorem 4, it implies that the solutions of the (3) 
model are permanent in the same way as (X0, ∂X0) when R0 
> 1, so that there is a ε>0 similar to this boundary entry, and 
limn→∞in fD(n) > ε > 0.[8–10]

NUMERICAL EXAMPLES

In this section, after giving information about SDC 
model, random models will be established and examined 
[11–12].

DISCRETE TIME PROBABILITY DISTRIBUTION

Uniform Distribution

( 1) ( )
( ) ( )( ) (1 )( ( ) ( )) ( )

( 1) ( )
( ) ( ) ( ( ) ( )) ( ) ( ) ( )

( 1) ( ) ( ( ) ( ) ( ))

S n S n h
S n D nS n D n C n S n

N
D n D n h

S n D n D n C n D n C n
N

C n C n h D n C n

βα α ρ µ

β αρ λ µ γ

λ γ δ µ

+ = +

 + − + − − 
 

+ = +

 + + − + + 
 

+ = + − + +

In the random SDC difference equation defined as if α, 
β, γ, δ, λ, μ, ρ is a random variable with a parameterized 
uniform distribution and K = 10, then the probability char-
acteristics obtained from 105 simulations are given below.

Within the SDC model process (n∈ [0,10]), variability 
is observed to increase. The end values are shown in the 
Table (Table 1.1 and figure 1.1).

It appears that the expected diabetes reached its highest 
level at the time of n = 10. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments.In addition, E(S(10)) = 290 was obtained 
for the expected value at the end of the process n = 10.

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 1.2 and Figure 1.1).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of  n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(S(10)) = 0.006742 
was obtained for variance,  (n = 10). 

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 1.1). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 

Figure 1.1. random behavior of S(n) number of susceptible individuals.

Table 1.1. Expected value of random S(n) number of  sus-
ceptible individuals, end values and times

Variable Minimum Time Maximum Time
E(S(n)) 289.8 0 290 10
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expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 1.3).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(S(10)) = 0.08211 was obtained for variance (n 
= 10) at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables S(n) in the random model (3) were also calculated as 
follows (Figure 1.1).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(S(n))/E(S(n)) and random α, β, γ, δ, λ, μ, 
ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result 
of examining the model, it is seen that the coefficient of 

variation of S(n) variables increased to higher rates. The 
extreme values of the variation coefficients are given in the 
table below (Table 1.4).

Despite the %5 coefficient of variation in the parameters, 
it is observed that the variation rate of S(n) is constantly 
increasing and reaches %0.0002832 at n=10 Therefore, it 
can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the model 
(3) are given below (Figure 1.1). The confidence intervals 
given in the figure are calculated as Cl = (E(S(n)) –3. std(S(n)), 
E(S(n)) + 3. std(S(n))), and three gives the range of variation 
within the standard deviation. For uniform distribution, this 
range includes about 99% of the values of the random varia-
ble. Therefore, the extreme values obtained for the expected 
values in these ranges are given below (Table 1.5).

Figure 1.2. D(n) uncomplicated random behaviors.

Table 1.2. Extreme values and times of variance of random  
S(n) number of susceptible individuals

Variable Minimum Time Maximum Time
Var(S(n)) 0 0 0.006742 10

Table 1.3. Extreme values and times of standard deviation 
of random S(n) susceptible individuals

Variable Minimum Time Maximum Time
Std(S(n)) 0 0 0.08211 10

Table 1.4. Extreme values and times of the coefficient of 
variation of random susceptible individuals

Variable Minimum Time Maximum Time
CV(S(n)) 0 0 0.02832 10

Table 1.5. End values and times in confidence interval of 
random S(n) number of susceptible individuals

Variable Minimum Time Maximum Time
CI(S(n)) 0 0 0.02832 10
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It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. 
In addition, Std(D(10)) = 0.0108 was obtained for variance 
(n = 10) at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables D(n) in the random model (3) were also calculated as 
follows (Figure 1.2).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(D(n))/E(D(n)) and random α, β, γ, δ, λ, 
μ, ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result 
of examining the model, it is seen that the coefficient of 
variation of D(n) variables increased to higher rates. The 
extreme values of the variation coefficients are given in the 
table below (Table 1.9).

Despite the %5 coefficient of variation in the parame-
ters, it is observed that the variation rate of D(n) is con-
stantly increasing and reaches %0.01133 at n = 10 Therefore, 
it can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the 
model (3) are given below (Figure 1.2). The confidence 
intervals given in the figure are calculated as CI = (E(D(n)) 
– 3. std(D(n)), E(D(n)) + 3. std(D(n))), and three gives the 
range of variation within the standard deviation. For uni-
form distribution, this range includes about %99 of the val-
ues of the random variable. Therefore, the extreme values 
obtained for the expected values in these ranges are given 
below (Table 1.10).

At the end of the process, three standard deviation inter-
vals for D(n) variables are obtained as follows: CI(D(0)) ∈ 
(9.209,9.65)

Model (3) states that the expectation for this value is 
CI(D(0)) = 9.65, that is, approximately %0.0965, and the 
expected approximate diabetes ratio is in the range of %99 
probability (9.209,9.65) at time n = 0.

At the end of the process, three standard devia-
tion intervals for S(n) variables are obtained as follows: 
CI(S(10))∈(289.8, 290.2)

Model (3) states that the expectation for this value is 
CI(S(10)) = 290.2, that is, approximately %2.902, and the 
expected approximate diabetes ratio is in the range of %99 
probability (289.8, 290.2) at time n = 10.

It is seen that the variability decreases in the SDC model 
process (n ∈ [0,10]). Extreme values are seen in the table 
(Table 1.6 and Figure 1.2).

It appears that the expected diabetes reached its highest 
level at the time of  n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments.In addition, E(D(0)) = 9.65 was obtained 
for the expected value at the end of the process (n = 0).

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 1.7 and Figure 1.2).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of  n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(D(10)) = 0.01166 
was obtained for variance,  (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 1.2). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 1.8).

Table 1.6. Random D(n) uncomplicated expected value 
end values and times

Variable Minimum Time Maximum Time
E(D(n)) 9.54 10 9.65 0

Table 1.7. Extreme values and times of random D(n) un-
complicated variance

Variable Minimum Time Maximum Time
Var(D(n)) 0 0 0.01166 10

Table 1.8. End values and times of random D(n) uncompli-
cated standard deviation

Variable Minimum Time Maximum Time
Std(D(n)) 0 0 0.0108 10

Table 1.10. End values and times in random D(n) uncom-
plicated confidence interval

Variable Minimum Time Maximum Time
CI(D(n)) 9.209 10 9.65 10

Table 1.9.Extreme values and times of the coefficient of vari-
ation of random D(n) uncomplicated variation coefficient

Variable Minimum Time Maximum Time
CV(D(n)) 0 0 1.133 10
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It is observed that the variability increases in the SDC 
model process (n ∈ [0.10]). Extreme values are seen in the 
table (Table 1.11 and Figure 1.3).

It appears that the expected diabetes reached its 
highest level at the time of  n=10. Therefore, the results 
obtained from the deterministic model are more likely to 
be observed differently in an experiment that takes place 
randomly at these moments.In addition, E(C(10)) = 11.32 
was obtained for the expected value at the end of the pro-
cess n = 10.

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 1.12 and Figure 1.3).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the deterministic 

model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(C(10)) = 0.1049 was obtained for variance (n 
= 10)at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables C(n) in the random model (3) were also calculated as 
follows (Figure 1.3).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(C(n))/E(C(n)) and random α, β, γ, δ, λ, 
μ, ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result of 
examining the model, it is seen that the coefficient of varia-
tion of C(n) variables increased to higher rates. The extreme 
values of the variation coefficients are given in the table 
below (Table 1.14).

Table 1.11. Expected value of random C(n) complication 
rate, extreme values and times

Variable Minimum Time Maximum Time
E(C(n)) 11.05 0 11.32 10

Table 1.14. Extreme values and times of variation coeffi-
cient of random C(n) complication rate

Variable Minimum Time Maximum Time
CV(C(n)) 0 0 0.940661 10

Table 1.13. Extreme values and times of standard deviation 
of random C(n) complication rate

Variable Minimum Time Maximum Time
Std(C(n)) 0 0 0.1049 10

Table 1.12. Extreme values and times of variance of ran-
dom C(n) complication rate

Variable Minimum Time Maximum Time
Var(C(n)) 0 0 0.01101 10

Figure 1.3. C(n) random behavior of complication rate.
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Despite the %5 coefficient of variation in the parameters, 
it is observed that the variation rate of C(n) is constantly 
increasing and reaches %0.009406 at n = 10 Therefore, it 
can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the 
model (3) are given below (Figure 1). The confidence inter-
vals given in the figure are calculated as GA = (E(C(n))–3.
std(C(n)), E(C(n)) + 3.std(C(n) ) ), and three gives the range 
of variation within the standard deviation. For uniform dis-
tribution, this range includes about %99 of the values of the 
random variable. Therefore, the extreme values obtained 
for the expected values in these ranges are given below 
(Table 1.15).

At the end of the process, three standard deviation inter-
vals for C(n) variables are obtained as follows: CI(C(10)) ∈ 
(11.05,11.64)

Model (3) states that the expectation for this value is 
(C(10)) = 11.64, that is, approximately %0.1164, and the 
expected approximate diabetes ratio is in the range of %99 
probability ((11.05,11.64) ) at time n =10.

Binomial Distribution
In the random SDC difference equation defined as (3) if 

α, β, γ, δ, λ, μ, ρ is a random variable with a parameterized 
Binomial distribution and K = 10, then the probability char-
acteristics obtained from 105 simulations are given below.

It is seen that the variability decreases in the SDC model 
process (n ∈ [0.10]). Extreme values are seen in the table 
(Table 2.1 and Figure 2.1).

It appears that the expected diabetes reached its highest 
level at the time of n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments. In addition, E(S(0)) = 289.8 was obtained 
for the expected value at the end of the process n = 0.

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 2.2 and Figure 2.1).

It is observed that the diabetes has reached its high-
est level of deviation from the average at t he time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 

Table 1.15. End values and times of random C(n) compli-
cation rate in confidence interval

Variable Minimum Time Maximum Time
Std(D(n)) 11.05 10 11.64 10

Table 2.1. Expected value of random number of S(n) sus-
ceptible individuals, end values and times

Variable Minimum Time Maximum Time
E(S(n)) 280.1 10 289.8 0

Figure 2.1. Random behavior of S(n) number of susceptible individuals.
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addition, at the end of the process, Var(S(10)) = 57.96 was 
obtained for variance,  (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 2.1). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 2.3).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(S(10)) = 7.613 was obtained for variance (n = 
10) at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables S(n) in the random model (3) were also calculated as 
follows (Figure 2.1).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(S(n))/E(S(n)) and random α, β, γ, δ, λ, μ, 
ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result of 
examining the model, it is seen that the coefficient of varia-
tion of S(n) variables increased to higher rates. The extreme 
values of the variation coefficients are given in the table 
below (Table 2.4).

Despite the %5 coefficient of variation in the parameters, 
it is observed that the variation rate of S(n) is constantly 
increasing and reaches %0.0270403 at n = 10 Therefore, 
it can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the 
model (3) are given below (Figure 2.1). The confidence 
intervals given in the figure are calculated as CI = (E(S(n)) 
– 3.std(S(n)), E(S(n)) + 3.std(S(n))), and three gives the 
range of variation within the standard deviation. For bino-
mial distribution, this range includes about 99% of the val-
ues of the random variable. Therefore, the extreme values 

obtained for the expected values in these ranges are given 
below (Table 2.5).

At the end of the process, three standard deviation inter-
vals for S(n) variables are obtained as follows: CI(S(10)) ∈ 
(258.5,304.1)

Model (3) states that the expectation for this value is 
CI(S(10)) = 304.189, that is, approximately %3.04189, and 
the expected approximate diabetes ratio is in the range of 
%99 probability (258.5, 304.1) at time n = 10.

It is seen that the variability decreases in the SDC model 
process (n ∈ [0,10]). Extreme values are seen in the table 
(Table 2.6 and Figure 2.2).

It appears that the expected diabetes reached its highest 
level at the time of n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments.In addition, E(D(0)) = 9.65 was obtained 
for the expected value at the end of the process (n = 0).

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 2.7 and Figure 2.2).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of  n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(D(10)) = 0.0638595 
was obtained for variance, (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 2.2). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 2.8).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 

Table 2.2. Extreme values and times of variance of random  
S(n) number of susceptible individuals

Variable Minimum Time Maximum Time
Var(S(n)) 0 0 57.96 10

Table 2.4. Extreme values and times of the coefficient of 
variation of random S(n) susceptible individuals

Variable Minimum Time Maximum Time
CV(S(n)) 0 0 2.70403 10

Table 2.5. End values and times in confidence interval of 
random S(n) number of susceptible individuals

Variable Minimum Time Maximum Time
CI(S(n)) 258.5 10 304.189 10

Table 2.3. Extreme values and times of standard deviation 
of random S(n) susceptible individuals

Variable Minimum Time Maximum Time
Std(S(n)) 0 0 7.613 10
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addition, Std(D(10)) = 0.0252704 was obtained for variance 
(n = 10) at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables D(n) in the random model (3) were also calculated as 
follows (Figure 2.2).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(D(n))/E(D(n)) and random α, β, γ, δ, λ, 
μ, ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result 
of examining the model, it is seen that the coefficient of 
variation of D(n) variables increased to higher rates. The 
extreme values of the variation coefficients are given in the 
table below (Table 2.9).

Despite the %5 coefficient of variation in the parameters, 
it is observed that the variation rate of D(n) is constantly 
increasing and reaches %0.027691 at n = 10 Therefore, it 
can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the 
model (3) are given below (Figure 2.2). The confidence 
intervals given in the figure are calculated as CI = (E(D(n)) 
– 3.std(D(n)), E(D(n)) + 3.std(D(n))), and three gives the 
range of variation within the standard deviation. For bino-
mial distribution, this range includes about %99 of the val-
ues of the random variable. Therefore, the extreme values 
obtained for the expected values in these ranges are given 
below (Table 2.10).

Figure 2.2. D(n) uncomplicated random behaviors.

Table 2.6. Random D(n) uncomplicated expected value 
end values and times

Variable Minimum Time Maximum Time
E(D(n)) 9.3 0 9.65 0

Table 2.8. End values and times of random D(n) uncompli-
cated standard deviation

Variable Minimum Time Maximum Time
Std(D(n)) 0 0 0.0252704 10

Table 2.9. Extreme values and times of the coefficient of 
variation of random  uncomplicated variation coefficient

Variable Minimum Time Maximum Time
CV(D(n)) 0 0 2.72691 10

Table 2.7. Extreme values and times of random D(n) un-
complicated variance

Variable Minimum Time Maximum Time
Var(D(n)) 0 0 0.0638595 10
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At the end of the process, three standard deviation inter-
vals for D(n) variables are obtained as follows: CI(D(10)) ∈ 
(8.51,10.03)

Model (3) states that the expectation for this value is 
CI(D(10)) = 10.03, that is, approximately %0.1003, and the 
expected approximate diabetes ratio is in the range of %99 
probability (8.51, 10.03) at time n = 10.

It is seen that the variability decreases in the SDC model 
process (n ∈ [0,10]). Extreme values are seen in the table 
(Table 2.11 and Figure 2.3).

It appears that the expected diabetes reached its highest 
level at the time of  n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments.In addition, E(C(0)) = 11.05 was obtained 
for the expected value at the end of the process n = 0.

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 2.12 and Figure 2.3).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of  n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(C(10)) = 0.088476 
was obtained for variance, (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 2.3). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 2.13).

Figure 2.3. C(n) random behavior of complication rate.

Table 2.10. End values and times in random D(n) uncom-
plicated confidence interval

Variable Minimum Time Maximum Time
CI(D(n)) 8.51 10 10.03 10

Table 2.11. Expected value of random C(n) complication 
rate, extreme values and times

Variable Minimum Time Maximum Time
E(C(n)) 10.95 10 11.05 0

Table 2.12. Extreme values and times of variance of ran-
dom  complication rate

Variable Minimum Time Maximum Time
E(C(n)) 10.95 10 11.05 0

Table 2.13. Extreme values and times of standard deviation 
of random C(n) complication rate

Variable Minimum Time Maximum Time
Std(C(n)) 0 0 0.297449 10
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It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(C(10)) = 0.297449 was obtained for variance 
(n = 10)at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables C(n) in the random model (3) were also calculated as 
follows (Figure 2.3).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(C(n))/E(C(n)) and random α, β, γ, δ, λ, 
μ, ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result of 
examining the model, it is seen that the coefficient of varia-
tion of C(n) variables increased to higher rates. The extreme 
values of the variation coefficients are given in the table 
below (Table 2.14).

Despite the %5 coefficient of variation in the parameters, 
it is observed that the variation rate of C(n) is constantly 
increasing and reaches %0.02716 at n = 10. Therefore, it 
can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the 
model (3) are given below (Figure 2.3). The confidence 
intervals given in the figure are calculated as Cl = (E(C(n)) 
– 3.std(C(n)), E(C(n)) + 3.std(C(n))), and three gives the 
range of variation within the standard deviation. For bino-
mial distribution, this range includes about %99 of the val-
ues of the random variable. Therefore, the extreme values 
obtained for the expected values in these ranges are given 
below (Table 2.15).

At the end of the process, three standard deviation inter-
vals for C(n) variables are obtained as follows: CI(C(10)) ∈ 
(10.06,11.84)

Model (3) states that the expectation for this value is 
CI(C(10)) = 11.8407, that is, approximately %0.118407, and 
the expected approximate diabetes ratio is in the range of 
%99 probability ((10.06,11.84) ) at time n = 10.

GEOMETRIC DISTRIBUTION

In the random SDC difference equation defined as (3) 
if α, β, γ, δ, λ, μ, ρ is a random variable with a parameter-
ized geometric distribution and K = 10, then the probabil-
ity characteristics obtained from 105 simulations are given 
below.

Table 2.14. Extreme values and times of variation coeffi-
cient of random C(n) complication rate

Variable Minimum Time Maximum Time
CV(C(n)) 0 0 2.71684 10

Table 2.15. End values and times of random C(n) compli-
cation rate in confidence interval

Variable Minimum Time Maximum Time
CI(C(n)) 10.06 10 11.8407 10

Figure 3.1. random behavior of  number of S(n) susceptible individuals.
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It is seen that the variability decreases in the SDC model 
process (n ∈ [0,10]). Extreme values are seen in the table 
(Table 3.1 and Figure 3.1).

It appears that the expected diabetes reached its highest 
level at the time of n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments.In addition, E(S(0)) = 289.8 was obtained 
for the expected value at the end of the process n = 0.

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 3.2 and Figure 3.1).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(S(10)) = 2900.9 was 
obtained for variance,  (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 3.1). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 3.3).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(S(10)) = 53.86 was obtained for variance (n = 
10) at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables S(n) in the random model (3) were also calculated as 
follows (Figure 3.1).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(S(n))/E(S(n)) and random α, β, γ, δ, λ 
,μ,ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result of 
examining the model, it is seen that the coefficient of varia-
tion of S(n) variables increased to higher rates. The extreme 
values of the variation coefficients are given in the table 
below (Table 3.4).

Despite the %5 coefficient of variation in the param-
eters, it is observed that the variation rate of S(n) is con-
stantly increasing and reaches %0.23694 at n = 10 Therefore, 
it can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the 
model (3) are given below (Figure 3.1). The confidence 
intervals given in the figure are calculated as Cl = (E(S(n)) – 
3.std(S(n)), E(S(n)) + 3.std(S(n))), and three gives the range 
of variation within the standard deviation. For geomet-
ric distribution, this range includes about 99% of the val-
ues of the random variable. Therefore, the extreme values 
obtained for the expected values in these ranges are given 
below (Table 3.5).

At the end of the process, three standard deviation inter-
vals for S(n) variables are obtained as follows: CI(S(10)) ∈ 
(65.74,388.9)

Model (3) states that the expectation for this value is 
CI(S(10)) = 388.9, that is, approximately %3.889, and the 
expected approximate diabetes ratio is in the range of %99 
probability (65.74,388.9) at time n = 10.

It is seen that the variability decreases in the SDC model 
process (n ∈ [0,10]). Extreme values are seen in the table 
(Table 3.6 and Figure 3.2)

It appears that the expected diabetes reached its highest 
level at the time of n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 

Table 3.1. Expected value of random number of S(n) sus-
ceptible individuals, end values and times

Variable Minimum Time Maximum Time
E(S(n)) 227.3 10 289.8 0

Table 3.3. Extreme values and times of standard deviation 
of random S(n) susceptible individuals

Variable Minimum Time Maximum Time
E(S(n)) 227.3 10 289.8 0

Table 3.2. Extreme values and times of variance of random  
S(n) number of susceptible individuals

Variable Minimum Time Maximum Time
Var(S(n)) 0 0 2900.9 10

Table 3.5. End values and times in confidence interval of 
random S(n) number of susceptible individuals

Variable Minimum Time Maximum Time
CI(S(n)) 65.74 10 388.9 10

Table 3.4. Extreme values and times of the coefficient of 
variation of random S(n) susceptible individuals

Variable Minimum Time Maximum Time
CV(S(n)) 0 0 23.694 10
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these moments.In addition, E(D(0)) = 9.65 was obtained 
for the expected value at the end of the process (n = 0).

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 3.7 and Figure 3.2).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of  n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(D(10)) = 3.208 was 
obtained for variance,  (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 3.2). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 3.8).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(D(10)) = 1.79109 was obtained for variance (n 
= 10) at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables D(n) in the random model (3) were also calculated as 
follows (Figure 3.2).

Coefficient of Variation (CV) is calculated by definition as 
100 × std(D(n))/E(D(n)) and random α, β, γ, δ, λ, μ, ρ param-
eters for the installation of model (3) are defined to have %5 
coefficient of variation. However, as a result of examining the 
model, it is seen that the coefficient of variation of D(n) var-
iables increased to higher rates. The extreme values of the 
variation coefficients are given in the table below (Table 3.9).

Figure 3.2. D(n) uncomplicated random behaviors.

Table 3.6. Random D(n) uncomplicated expected value 
end values and times

Variable Minimum Time Maximum Time
E(D(n)) 7.45 10 9.65 0

Table 3.8. End values and times of random D(n) uncompli-
cated standard deviation

Variable Minimum Time Maximum Time
Std(D(n)) 7.45 10 9.65 0

Table 3.7. Extreme values and times of random D(n) un-
complicated variance

Variable Minimum Time Maximum Time
Var(D(n)) 0 0 3.208 10

Table 3.9. Extreme values and times of the coefficient of vari-
ation of random D(n) uncomplicated variation coefficient

Variable Minimum Time Maximum Time
CV(D(n)) 0 0 24.0124 10
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Despite the %5 coefficient of variation in the parameters, 
it is observed that the variation rate of D(n) is constantly 
increasing and reaches %0.240124 at n = 10 Therefore, it 
can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the model 
(3) are given below (Figure 3.2). The confidence inter-
vals given in the figure are calculated as CI = (E(D(n))–3.
std(D(n)), E(D(n)) + 3.std(D(n))), and three gives the range 
of variation within the standard deviation. For geomet-
ric distribution, this range includes about %99 of the val-
ues of the random variable. Therefore, the extreme values 
obtained for the expected values in these ranges are given 
below (Table 2.10).

At the end of the process, three standard deviation inter-
vals for D(n) variables are obtained as follows: CI(D(10)) ∈ 
(2.086,12.83)

Model (3) states that the expectation for this value is 
CI(D(10)) = 12.83, that is, approximately %0.1283, and the 
expected approximate diabetes ratio is in the range of %99 
probability (2.086,12.83) at time n = 10.

It is seen that the variability decreases in the SDC model 
process (n ∈ [0,10]). Extreme values are seen in the table 
(Table 3.11 and Figure 3.3).

It appears that the expected diabetes reached its highest 
level at the time of  n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments.In addition, E(C(0)) = 11.05 was obtained 
for the expected value at the end of the process n = 0.

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 3.12 and Figure 3.3).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of  n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(C(10)) = 4.516 was 
obtained for variance,  (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 3.3). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 3.13).

It is observed that the diabetes has reached its highest 
level of deviation from the average at the time of n = 10.  

Table 3.10. End values and times in random D(n) uncom-
plicated confidence interval

Variable Minimum Time Maximum Time
CI(D(n)) 2.086 10 12.83 10

Table 3.11. Expected value of random C(n) complication 
rate, extreme values and times

Variable Minimum Time Maximum Time
CI(D(n)) 2.086 10 12.83 10

Figure 3.3. C(n) random behavior of complication rate.
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Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(C(10)) = 2.1251 was obtained for variance (n 
= 10)at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables C(n) in the random model (3) were also calculated as 
follows (Figure 3.3).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(C(n))/E(C(n)) and random α, β, γ, δ, λ, 
μ, ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result of 
examining the model, it is seen that the coefficient of varia-
tion of C(n) variables increased to higher rates. The extreme 
values of the variation coefficients are given in the table 
below (Table 3.14)

Despite the %5 coefficient of variation in the parameters, 
it is observed that the variation rate of C(n) is constantly 
increasing and reaches %0.238437 at n = 10 Therefore, it 
can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the model 
(3) are given below (Figure 3.3). The confidence inter-
vals given in the figure are calculated as Cl = (E(C(n))–3.
std(C(n)), E(C(n)) + 3.std(C(n))), and three gives the range 
of variation within the standard deviation. For geomet-
ric distribution, this range includes about %99 of the val-
ues of the random variable. Therefore, the extreme values 
obtained for the expected values in these ranges are given 
below (Table 3.15).

At the end of the process, three standard deviation inter-
vals for C(n) variables are obtained as follows: CI(C(10)) ∈ 
(2.537,15.2886)

Table 3.12. Extreme values and times of variance of ran-
dom C(n) complication rate

Variable Minimum Time Maximum Time
Var(C(n)) 0 0 4.516 10

Table 3.13. Extreme values and times of standard deviation 
of random C(n) complication rate

Variable Minimum Time Maximum Time
Std(C(n)) 0 0 2.1251 10

Table 3.14. Extreme values and times of variation coeffi-
cient of random C(n) complication rate

Variable Minimum Time Maximum Time
CV(C(n)) 0 0 23.8437 10

Table 3.15. End values and times of random C(n) compli-
cation rate in confidence interval

Variable Minimum Time Maximum Time
CI(C(n)) 2.537 10 15.2886 10

Figure 4.1. random behavior of S(n) number of susceptible individuals.
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Model (3) states that the expectation for this value is 
(C(10)) = 15.2886, that is, approximately %0.152886, and 
the expected approximate diabetes ratio is in the range of 
%99 probability (2.537,15.2886) at time n = 10.

Poisson distribution
In the random SDC difference equation defined as (3) if 

α, β, γ, δ, λ, μ, ρ is a random variable with a parameterized 
poisson distribution and K = 10, then the probability char-
acteristics obtained from 105 simulations are given below.

It is seen that the variability decreases in the SDC model 
process (n ∈ [0,10]). Extreme values are seen in the table 
(Table 4.1 and Figure 4.1).

It appears that the expected diabetes reached its highest 
level at the time of n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments. In addition, E(S(0)) = 289.8 was obtained 
for the expected value at the end of the process n = 0.

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 4.2 and Figure 4.1).

It is observed that the diabetes has reached its highest 
level of deviation from the average at the time of  n=10. 
Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(S(10)) = 54.2702 
was obtained for variance, (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 4.1). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 

expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 4.3).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(S(10)) = 7.367 was obtained for variance (n = 
10) at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables S(n) in the random model (3) were also calculated as 
follows (Figure 4.1).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(S(n))/E(S(n)) and random α, β, γ, δ, λ, μ, 
ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result of 
examining the model, it is seen that the coefficient of varia-
tion of S(n) variables increased to higher rates. The extreme 
values of the variation coefficients are given in the table 
below (Table 4.4).

Despite the %5 coefficient of variation in the param-
eters, it is observed that the variation rate of S(n) is con-
stantly increasing and reaches %0.2598 at n = 10 Therefore, 
it can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the model 
(3) are given below (Figure 4.1). The confidence inter-
vals given in the figure are calculated as Cl = (E(S(n))–3.
std(S(n)), E(S(n)) + 3.std(S(n))), and three gives the range 
of variation within the standard deviation. For poisson dis-
tribution, this range includes about 99% of the values of the 
random variable. Therefore, the extreme values obtained 
for the expected values in these ranges are given below 
(Table 4.5).

At the end of the process, three standard deviation inter-
vals for S(n) variables are obtained as follows: CI(S(10)) ∈ 
(261.4,305.6)

Model (3) states that the expectation for this value is 
Cl(S(10)) = 305.6, that is, approximately %3.056, and the 

Table 4.1. Expected value of random number of S(n) sus-
ceptible individuals, end values and times

Variable Minimum Time Maximum Time
E(S(n)) 283.6 10 289.8 0

Table 4.2. Extreme values and times of variance of random  
S(n) number of susceptible individuals

Variable Minimum Time Maximum Time
Var(S(n)) 0 0 54.2702 10

Table 4.3. Extreme values and times of standard deviation 
of random S(n) susceptible individuals

Variable Minimum Time Maximum Time
Std(S(n)) 0 0 7.367 10

Table 4.4. Extreme values and times of the coefficient of 
variation of random S(n) susceptible individuals

Variable Minimum Time Maximum Time
CV(S(n)) 0 0 2.598 10

Table 4.5. End values and times in confidence interval of 
random S(n) number of susceptible individuals

Variable Minimum Time Maximum Time
CI(S(n)) 261.4 10 305.6 10
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expected approximate diabetes ratio is in the range of %99 
probability (261.4,305.7) at time n =10.

It is seen that the variability decreases in the SDC model 
process (n ∈ [0,10]). Extreme values are seen in the table 
(Table 4.6 and Figure 4.2).

It appears that the expected diabetes reached its highest 
level at the time of n = 0. Therefore, the results obtained 
from the deterministic model are more likely to be observed 
differently in an experiment that takes place randomly at 
these moments.In addition, E(D(0)) = 9.65 was obtained 
for the expected value at the end of the process (n = 0).

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 4.7 and Figure 4.2).

It is observed that the diabetes has reached its highest 
level of deviation from the average at the time of  n=10. 
Therefore, the results obtained from the deterministic 

model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(D(10)) = 0.0626 was 
obtained for variance, (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 4.2). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 4.8).

It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. In 
addition, Std(D(10)) = 0.2502 was obtained for variance (n 
= 10)at the end of the process.

Figure 4.2. D(n) uncomplicated random behaviors.

Table 4.6. Random D(n) uncomplicated expected value 
end values and times

Variable Minimum Time Maximum Time
E(D(n)) 9.326 10 9.65 0

Table 4.7. Extreme values and times of random D(n) un-
complicated variance

Variable Minimum Time Maximum Time
Var(D(n)) 0 0 0.0626 10

Table 4.8. End values and times of random D(n) uncompli-
cated standard deviation

Variable Minimum Time Maximum Time
Std(D(n)) 0 0 0.2502 10

Table 4.9. Extreme values and times of the coefficient of var-
iation of random D(n) uncomplicated variation coefficient

Variable Minimum Time Maximum Time
CV(D(n)) 0 0 2.683 10
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Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables D(n) in the random model (3) were also calculated as 
follows (Figure 4.2).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(D(n))/E(D(n)) and random α, β, γ, δ, λ, 
μ, ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result 
of examining the model, it is seen that the coefficient of 
variation of D(n) variables increased to higher rates. The 
extreme values of the variation coefficients are given in the 
table below (Table 4.9)

Despite the %5 coefficient of variation in the parameters, 
it is observed that the variation rate of D(n) is constantly 
increasing and reaches %0.02683 at n = 10. Therefore, it 
can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the model 
(3) are given below (Figure 4.2). The confidence inter-
vals given in the figure are calculated as CI = (E(D(n))–3.
std(D(n)), E(D(n)) + 3.std(D(n))), and three gives the range 
of variation within the standard deviation. For poisson dis-
tribution, this range includes about %99 of the values of the 

random variable. Therefore, the extreme values obtained 
for the expected values in these ranges are given below 
(Table 4.10).

At the end of the process, three standard deviation inter-
vals for D(n) variables are obtained as follows: CI(D(10)) ∈ 
(8.574,10.0783)

Model (3) states that the expectation for this value is 
CI(D(10)) = 10.078, that is, approximately %0.10078, and 
the expected approximate diabetes ratio is in the range of 
%99 probability (8.574,10.0783) at time n = 10.

It is seen that the variability in the SDC model process 
(n ∈ [0.10]) is stable and then increases. Extreme values are 
seen in the table (Table 4.11 and Figure 4.3).

IIt appears that the expected diabetes reached its 
highest level at the time of  n = 0. Therefore, the results 
obtained from the deterministic model are more likely to 
be observed differently in an experiment that takes place 
randomly at these moments.In addition, E(C(0)) = 11.05 
was obtained for the expected value at the end of the pro-
cess n = 0.

Similarly, variance change (n ∈ [0,10]) appears to 
increase for the SDC model. Extreme values are seen in the 
table (Table 4.12 and Figure 4.3).

Figure 4.3. C(n) random behavior of complication rate.

Table 4.10. End values and times in random D(n) uncom-
plicated confidence interval

Variable Minimum Time Maximum Time
CI(D(n)) 8.574 10 10.0783 10

Table 4.11. Expected value of random C(n) complication 
rate, extreme values and times

Variable Minimum Time Maximum Time
E(C(n)) 11.04 10 11.05 0
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It is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments.In 
addition, at the end of the process, Var(C(10)) = 0.08313 
was obtained for variance, (n = 10).

Similar to the variance, the changes in the standard 
deviation for the SDC model are shown below (Figure 4.3). 
By definition, the standard deviation is the square root of 
the variance, so these two numerical characteristics are 
expected to behave similarly. Extreme values for standard 
deviations are shown below (Table 4.13).

IIt is observed that the diabetes has reached its high-
est level of deviation from the average at the time of n = 
10. Therefore, the results obtained from the determinis-
tic model are more likely to be observed differently in an 
experiment that takes place randomly at these moments. 
In addition, Std(C(10)) = 0.2883 was obtained for variance 
(n = 10) at the end of the process.

Using the results obtained for the standard deviations 
and expected values, the variation coefficients for the vari-
ables C(n) in the random model (3) were also calculated as 
follows (Figure 4.3).

Coefficient of Variation (CV) is calculated by defini-
tion as 100 × std(C(n))/E(C(n)) and random α, β, γ, δ, λ, 
μ, ρ parameters for the installation of model (3) are defined 
to have %5 coefficient of variation. However, as a result of 
examining the model, it is seen that the coefficient of varia-
tion of C(n) variables increased to higher rates. The extreme 
values of the variation coefficients are given in the table 
below (Table 4.14).

Despite the %5 coefficient of variation in the parame-
ters, it is observed that the variation rate of C(n) is con-
stantly increasing and reaches %0.02611 at n=10 Therefore, 
it can be interpreted that the variability in random results 
increases as it progresses.

The results obtained for the expected values of the model 
(3) are given below (Figure 4.3). The confidence inter-
vals given in the figure are calculated as CI = (E(C(n))–3.
std(C(n)), E(C(n)) + 3.std(C(n))), and three gives the range 

of variation within the standard deviation. For poisson dis-
tribution, this range includes about %99 of the values of the 
random variable. Therefore, the extreme values obtained 
for the expected values in these ranges are given below 
(Table 4.15).

At the end of the process, three standard deviation inter-
vals for C(n) variables are obtained as follows: CI(C(10)) ∈ 
(10.18,11.91)

Model (3) states that the expectation for this value is 
CI(C(10)) = 11.91, that is, approximately %0.1191, and the 
expected approximate diabetes ratio is in the range of %99 
probability ((10.18,11.91) ) at time n = 10.

CONCLUSION

In this study, the mathematical model is analyzed by 
converting this system consisting of three differential 
equations modeling the responsive diabetes complication 
(SDC) model into discrete time with the advanced differ-
ence method. A stability analysis has been performed for 
this system of equations. The fundamental increase num-
ber and global stability for stable states of equilibrium point 
were studied. The discrete time probability distributions 
for the random behaviors of the SDC model were studied 
under random effects with Uniform, Binomial, Geometric 
and Poisson distributions.The expected value, variance, 
standard deviation, coefficient of variation and confidence 
intervals of the obtained solutions were found.The coeffi-
cients of variation for the five distributions are compared 
and for each distribution the parameter is defined to have a 
coefficient of variation of 5%.Although a 5% deviation rate 
was used for random parameters, the simulation results 
showed variability in the sugar ratio. Analysis of the ran-
dom SDC difference model is provided with the help of 
graphs and tables.
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Table 4.12. Extreme values and times of variance of ran-
dom C(n) complication rate

Variable Minimum Time Maximum Time
Var(C(n)) 0 0 0.08313 10

Table 4.13. Extreme values and times of standard deviation 
of random C(n) complication rate

Variable Minimum Time Maximum Time
Std(C(n)) 0 0 0.2883 10

Table 4.14. Extreme values and times of variation coeffi-
cient of random C(n) complication rate

Variable Minimum Time Maximum Time
Std(C(n)) 0 0 0.2883 10

Table 4.15. End values and times of random C(n) compli-
cation rate in confidence interval

Variable Minimum Time Maximum Time
CI(C(n)) 10.18 10 11.91 10
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