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INTRODUCTION

In this paper, we aim to study the following inhomo-
geneous flexible structure system with micro-temperature
effects:

m(x)un —(p(x)ux +25(x)uxt )x +dw_+n6, =0
c6,—kO_ +nu, +kw, =0 (1)
w,—kw,_ +kw+k6 +du, =0,

where u(x, t) is the displacement of a particle at position
x € (0, L) and time ¢ > 0, 8 and w are the temperature of the
body and the micro-temperature vector respectively. # > 0
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In this paper, we consider a non-uniform flexible structure with micro-temperature effect.
We prove the well-posed of the problem using semi-group theory, as well as an exponential
stability using the multiplier method without any restriction or relation on the coefficients of
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is the coupling constant, that accounts for the heating effect,
and k, k, k,, k,, ¢, d, T> 0. m(x), 8(x) and p(x) are responsi-
ble for the non-uniform structure of the body, and, respec-
tively, denote mass per unit length of structure, coeflicient
of internal material damping and a positive function related
to the stress acting on the body at a point x. We consider the

following initial and boundary conditions:

u(.,0) = u,(x),u,(,,0) =u,(x), 6(.,0)
=0(x), w(,,0)=w,(x),

u(0,t) =u(L,t)=60(0,t)=0(L,t) =w _(0,t)
=w_ (L,)=0,Vt>0

()
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The issue of existence and stability of flexible struc-
ture system has attracted a great deal of attention in the
last years. Misra et al. [20] considered the vibrations of a
cantilever structure modeled by the standard linear flexible
model of visco-elasticity coupled to an expectedly dissipa-
tive effect through heat conduction

m(x)un —(p(x)ux +2§(x)uxt )x -kO =f
et _gxx _kuxt :0’

By using semigroups theory and multiplier technique,
they established the well-posedness and an exponential
stability of the system when the disturbing force is insig-
nificant. In the presence of second sound, Alves et al. [2]
concerned with the system;

m(x)utt —(p(x)ux +25(x)uxt )X +1n0.=0
6,+kq +nu, =0
79, + fq+k6, =0,

They established the well-posedness of the system and
proved its stability exponential and polynomial under suit-
able boundary conditions. Li et al. [18] considered this
last with a delay term of the form uu, (x, t - 7)) in its first
equation, they proved that the system is exponential decay
under a “small” condition on time delay. For more details
discussion on the subject see [1, 10] and the references
therein.

Historically, the linear theory of thermo-elasticity with
micro-temperatures for materials with inner structure
whose particles, in addition to the classical displacement
and temperature fields, possess micro-temperatures was
constructed by Iesan and Quintanilla [15, 17]. The work
is motivated by increasing use of materials which pos-
sess thermal variation at a microstructure level. The same
authors proved an existence theorem and established the
continuous dependence of solutions of the initial data
and body loads. We note that the concept of micro-tem-
perature was just used in the theory of thermodynamics
for elastic materials with microstructure. In addition to
micro-deformations of the string, the micro-elements
of the continuum possess micro-temperatures which
represent the variation of the temperature within a
micro-volume. Originally, Grot [11] was the first to take
into consideration the inner structure of a body in order
to develop a thermodynamic theory for thermo-elastic
materials where micro-elements, in addition to classic
micro-deformations, possess micro-temperatures. While,
the fundamental solution of the equations of the theory
of thermo-elasticity with micro-temperatures was con-
structed by Svanadze [27]. Riha [23, 24] developed a fur-
ther study concerning heat conduction in thermo-elastic

materials with inner structure. It is shown that the exper-
imental data for the silicone rubber containing spherical
aluminum particles and for human blood are conform
closely to the predicted theoretical model of thermo-elas-
ticity with micro-temperatures. We refer the interested
readers to [3, 5, 6, 7, 8, 9, 12, 13, 14, 16, 19, 25, 26] for
details discussion on the theory.

Motivated by works mentioned above, we investi-
gate (1)-(2) under suitable condition and establish the
well-posedness of the problem using semi-group theory,
as well as the stability result of the solution using the mul-
tiplier method. We should mention here that, to the best
of our knowledge, there is no result concerning flexible
structure system with micro-temperature effect. Our pur-
pose in the present manuscript is to obtain an exponential
decay rate estimates of the energy function of (1) with-
out any restriction or relation on the coeflicients of the
system.

This paper is organized as follows; In the second sec-
tion, we introduce some assumptions needed in our work
then prove the well-posedness of the system (1) — (2). In the
last section we state and prove our stability result.

WELL-POSEDNESS OF THE PROBLEM

In this section, we present some assumptions and give
the existence and uniqueness result of system (1) - (2)
using the semigroup theory. Throughout this paper, ¢’ rep-
resents ageneric positive constant and is different in various
occurrences.

The aim of this section is to prove that system (1) - (2)
is well-posed. From Equation (1), and the boundary condi-
tions (2), we have

df k, %
- 2 =
5 ‘([w(x,t)dx+ . ‘([w(x,t)dx 0,Vt>0,

Thus

L

L
Iw(x,t)dx = Uwodeexp(_—tsz, Vt>0.
o T

0

So, if we set
1(¢ —t
W(x,t) = w(x,t) —Z[J.wodxjexp(—kzj, Vt>0,x€[0,L].
T
0
Then, (u, u, 0, W) satisfies Equations (1), and

L
_[~ (x,t)dx =0,
0
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for all t > 0. In the sequel, we shall work with # but we write
w for simplicity. The energy functional associated to (1) -
(2), namely,

E(t,u,ut,é?,w):

N | =

j{p(x)ui +m(x)uf +c6 + rwz}dx, (3)

we denote E(f) = E(t, u, u, 6, w) and E(0) = E(0, u,
u,, 6, w,) for simplicity of notations. Then the energy E is
decreasing function and satisfies, for all £ > 0.

L L L L
E'(t) = 2[5 (x)ul,dx —k, [w'dx — k, [wldx —k [62dx
0 0 0 0

(4)
< —c'j.ufdx —k, ‘L[wzdx -k, j-widx - kj.ﬁjdx <0.
0 0

0 0

To obtain precise decay rates of E(t) as t - +eo, we
assume that

m, §, p € W (0,L), m(x), p(x) and &(x) > 0, Vx €[0,L]. (5)

Let us introducing the vector function U = (u, v, 6, w)",
where v = u, using the standard Lebesgue space L* (0,L) and
the Sobolev space H)(0,L) with their usual scalar products
and norms for define the spaces;

H=H!(0,L) x [L? (0,L)]* x L2 (0,L),
And
H2(0,L) ={w € H*(0,L): w (L) = w (0) = 0},
Where

L
5 (O,L) = {a)e 5 (O,L) : J-a)(s)ds = 0}.
0
We equip H with the inner product:
L L L
(U,U) = Jp(x)uxﬁxdx + jm(x)vf/dx + cjﬁédx + rjwﬁ/dx.
0 0 0

Next, the system (1) - (2) can be reduced to the follow-
ing abstract Cauchy problem;

U't)+AU@#)=0 t>0 ©)
U0)=U, = (uy,u,,0,,w,)",

where the operator A:D(A) - His defined by
—v

(p(x)ux +25(x)vx —dw —n@)x

m(x)
;(—k@m +nu, + klwx)

%(—kswﬂ +kw+k6 +du, )

The domain of A is then

UeH:ueH(0,L)nH,(0,L),
veH,(0,L),0eH*(0,L) ¢,
welL:(0,L)NH(0,L)

AU =

which is dense in H.

Proposition 2.1. Let U, € H be given. Problem (6)
possesses then a unique solution satisfying U € C(R*, H). If
U, € D(A) then U € C' (R, H) N C(R*,D(A)).

Proof. For any U € D(A), we have

L L
(AU,U)H = 2J.5(x)vidx + kj@jdx
0 0

L L
+k, Iwzdx +k, J.wfcdx >0.
0 0

Hence, A is monotone. Next, we prove that the operator
I+ A is surjective.

Given G = (g, ¢, g, &)" € H, we prove that there exists
U € D(A) satisfying

(I+A)U=G, (7)
which gives

—vtu=g, eHé(O,L),
_(p(x)ux +28(x)v, —dw—r]H)x +m(x)v
=m(x)g, eL*(0,L), (8)
kO +nv, +kw, +cf=cg,el’ (O,L),
—kw_ +kw+k6 +dv +tw=r1g, eL:(0,L).

Inserting v =u - g, in (8),, (8), and (8), we obtain

—(p(x)ux +26(x)u, —dw—r]ﬁ)x +m(x)u
=m(x)(g, +g,)—25(x)g,. = f,eL(0,L),
k@ _ +mu_+kw_+cO=cg, +ng,, (9)
=f,er’(0,L),
—kw_ +kw+k6 +du +rw=rg, +dg,
=f,eL(0,L).

The variational formulation corresponding to Equation
(9) takes the form

B((u0,w),(i1,0,#)) = F((1,0,#)), (10)
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where B:[H; (0,L)x L’ (0,L) x L: (0,L )] — R is the bilinear
form defined by

B((M,H,w),(ﬁ,é,ﬁ/)):

[(pe)+25e)u, —dw —n0li, dx

+J.m(x)uﬁdx + kJL.HXHNxdx
0

0

L L L
- |u éxdx —k, Iw éxdx +k, J'wjvxdx
0 0 0

L L
+(k, +7) [wivdx + k, [0, ivdx
0 0
L

—d \uw dx,
0

and F: H; (O,L) x I’ (O,L) x 2 (O,L) — R is the linear form
defined by

F((@60,w)) = j fofidx + j f,6dx + f fvdx.

For V =H,(0,L)xL*(0,L)x L:(0,L) equipped with the
norm

11, 0w [ =1 | + e, 1+ 1w 1 + 6, 1

where |||, is the usual norm.
One can easily see that B and F are bounded. Also, we
get

B((u, H,w),(u,ﬁ,w)) = (p(x) +25(x))uidx

O ey

L L
+J-m(x) udx + kj.efdx
0 0

L L
+k, J.widx +k, J‘wzdx
0 0

2
Ve

Zc(u,H,w)

Then, B is coercive. Consequently, by the Lax-Milgram
lemma (see [4] Corollary 5.8), system (9) has a unique
solution

ueH;(0,L),0eL’*(0,L),weL(0,L).

From (8) , we infer that

v e H! (0,L),

Moreover, if (é,ﬂ/) = (0,0) el (O,L) x I (O,L) then
Equation (10) reduces to

L

~[[(p(x) +28(x)u, —dw o], dx

+_[m(x)uﬁdx = jfjtdx,

0

That is
-[(p(x) + 28(x))u ] = dw_+n8 - m(x)u+f, € L* (0,L).

Consequently, by the regularity theory for the linear
elliptic equations, it follows that

ue H(0,L) ~ H! (0,L).
Similary, if (ﬂ,é) =(0,0)eHy(0,L)xL*(0,L) then

Equation (10) reduces to

L L L L
ke, [w,iv dx + (I, +7) [wivdx + k, [, ivd:x - d [ui,dx
0 0 0 0 (11)
L
= Iﬂﬁdx,vw eL:(0,L).
0
That is
kw, =k, +)w+k 0 +du -f eL*(0,L). (12)
then, it follows that fOL w dx =0, and we get
w e L?(0,L) N H?(0,L).

Moreover, (11) is also true for any ¢ € C([0,L]) <
L? (0,L). Hence, we have
L L L L
k, Jw . dx + (k, +7) [wpdx + k, [0, pdx — d [up,
0 0 0 0

= j f,0dx,
0

for all ¢ € CY([0,L]). Thus, using integration by parts and
bearing in mind (12), we obtain

w (L)g(L) - w (0)9(0) = 0, Vo € C' ([0,L]).
Therefore, w (L) = w (0) = 0, consequently, we have

w e L2(0,L) n H? (0,L).
Now, if (#,w) = (0,0) € H;(0,L) x LX(0,L), then Equation

(10) reduces to

kjaxéxdx - njuéxdx —k, jwéxdx = f f,0dx.
0 0 0 0
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That is Satisfies
exx =-f2 - rlux - klwx € LZ(O’L)’ L
I(t)<—(p(&)-(n+d)g) (uldx+m(&
then, we get 1( ) (p( 1) ( )01),[ ( z)

0 € H*(0,L).

Hence, there exists aunique U € D(A) such that Equation
(7) is satisfied. Consequently, A is a maximal monotone
operator. Then, D(A) is dense in H (see Proposition 7.1 in
[4]) and the result of Proposition 2.1 follows from Lumer-
Phillips theorem (see [22]).

EXPONENTIAL STABILITY

In this section, we introduce some lemmas allow us to
achieve our goal, which is the proof of the stability result.

Lemma 3.1. [21] (Poincaré type Scheeffer’s inequality)
Let h € H)(0,L). Then it holds

e fon r
[|Hf dx<If|n,[ ax, I=— (13)
0 0

Lemma 3.2. (2, 20] Let (u, u, 6, w) be the solution to
system (1) = (2), with an initial datum in D(A). Then, for any
t > 0, there exists a sequence of real numbers (depending on
t), denoted by &, € [0,L], (i = 1,..., 6), such that:

L L

Im(x)ufdx = m(fz)‘[utzdx,

0

J'p Juldx=p fl).[u dx,

J.m(x widx = m(fa)J.uzdx,

0

JL.5(x)u2dx = 5(.;"4)_L[u2dx,

)I dx, Jg(x)”fndx=5(§6)juidx.

0 0 0

ja‘ Juldx =

Lemma 3.3. Let (u, u, 0, w) be the solution to system
(1) - (2), then the energy E is non-increasing function and
satisfies, for all t > 0,

L L L L
E'(t) = J-é'(x)uitdx —k, J.wzdx —k, J.wfcdx - kj@jdx
0 0 0 0
L L L L (14)
< —c’jufdx -k, J widx —k, J‘widx - kj@jdx <o,
0 0 0 0

where ¢' = 288 )/1.

Proof. Multiplying the equations in (1),, (1),, and (1),
by u, 6 and w, respectively, integrate over (0, L) and using
(13), we obtain (14).

Lemma 3.4. The functional

= J.(S(x)ui +m(x)u,u)dx, (15)

’ (16)
.[ 2dx+ n j@zdx+ jwzdx,
0
forany € >0
Proof. Differentiating Equation (15) with respect to t
and using Equations (1) , we get

L L L L
= —Jp(x)uidx + m(x)'[ufdx - nj@xudx —d|uw dx,
0

0 0 0

Using Young’s inequality (see [4] p. 92), we have for
€,>0

—nj.qudx = nj&uxdx < 77/1_[ dx + —J.e dx
0 0

—dLuwxdx = djwuxdx < d/lj- 2dx + —Iwzdx,
0 0

application of Lemma 3.2 and the last two inequality com-
pletes the proof.

Lemma 3.5. The functional

t)=rc':[0[j£w( y)dy]dx,

(17)

satisfies

L

L
L(t)<(—kc+3ce, )J.szx + LJ.uzdx +—
0 282 0

t

je dx

20

¢ \§ 1 ¢ (18)
+ k426, +— Iwzdx +—Iwidx,
de, )3 de,

forany € >0.
Proof. Taking the derivative of (17) and using (1), and
(1), we find

L( (kja (! ddex nj u )dyjde
—k;!w u dyjdx
+{k{9@ dy]dx kjau dyjde
+{—k1§eﬁ dy]dx d!&@uty(y)dyjdx].
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Integration by parts and the fact that [{ wdx = 0, giveus  where A=inf__  {p(x)},and ¢’ > 0. Consequently,

L(t)= r(kj.ﬁxwdx + r]j‘utwdx +k, jwzdx] |£(t) - NE(t)| <c'E(t),
(19)

+c (k IHW dx—k J‘G(J‘w dy]dx k Iﬁzdx d_[Hu dx,] which yields

(N —=cE(t) < L(t) < (N +c"E(1).
using Young’s inequality, we get also

L L L Choosing N large enough, we obtain estimate (22).
—k J' 0 wdx < L I Gldx+c'e, Iwzdx Now, we are ready to state and prove the main result of
this section.

Theorem 3.7. Let (u, u, 6, w) be the solution to system
(1) = (2), then the energy E satisfies, for all t > 0,

L

n uwdx<4—j wdx+c'e jwzdx

0 2 0
k, J.wadx < —‘J.wzdx +ce, IGde (20) E(t)<ce ™,
0 402 0 0
L x L C’ L
—k, J‘Q[J‘w(y)dyjdx <cs, J.ezdx + —‘J.Wzdx where ¢ and c, are positive constants.
o \o 0 40,5 Proof. We differentiate (21), and recall (14), (16) and

L

L L .
- d.lb“zdx = L‘J.ufdx +c'e, Iﬁzdx (18), we obtain
g 401 J

L L L L
From (19) and the inequalities (20) we infer (18). L'(t)<N (—c'.[ufdx —k, .fwzdx —k, ijdx - kjﬁfdxj
Next, we define a Lyapunov functional Z and show that 0 0 0 0
it is equivalent to the energy functional. (o [
—(p(&)-(n+d)e ) [uldx+m(&,) |ujdx
( 1 I)JO- 2 !
Lemma 3.6. For N sufficiently large, the functional 7k dk
defined by +4_61'[[9 dx+4—€l.!).w dx
L L L
L(t)=NE(t)+1,(t)+N,L(t), 1) +N, (—klc+3c'£2)'f€2dx+Ljufdx+L.[9x2dx
0 262 0 462 0
where N and N, are positive real numbers to be chosen appro- Y ]k
priately later, satisfies +N, [[klf +26,0'+ Ej Iwzdx + E_[Widxj
2/0 20
! < <! ) L L
GE(t)<L(t)<cE(t), (22) g{—Nc +%+m(gz)} [i2dx+{~p(&)+ (n+d)e ) fudx
where ¢ and c, are positive constants. ’ ’ . ’
Proof. Let +{—Nk2 +N [k T+2¢6,c +4—]+4—}Iwzdx
£ £

o(t)=1(t)+NL(t), { (~kc+3¢s,) +E}I0dx+{ Nk+4 }I@dx

1

then, exploiting Young’s inequality, (13) and (3) we obtain {
+

L HUW(J')d)’J

|go(t)|SNlrc‘([

—Nk, + 4—‘} jwidx.

2J)0

L
dix + [(SCone + m(x)|uul)ddx
0 At this point, we choose €, and €, small enough such
L L L L that
) 1 5 1 2
< I5(x)uxdx + —J.m(x)u dx + Nlrcj|9w|dx +—J.m(x)ut dx
0 2o 0 20 —p(£1)+(;7+d) €1<O, —k1c+3c’€2<0,
L L L
SN L(CO ISP 1CO M
< EJ‘m(x)ut dx + —jp(x)uxdx + —Ip(x)uxdx
0

then we choose N, large enough so that

Nl N,7le ¢
”f6’d i fwzdx<C'E(t) N, (=K +3¢'s, )+~ <.

4g
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Once N, is fixed, we then choose N large enough so that

, N
~Nc +§+m(§2)<0,

2

—Nk, + N, k1r+252c'+c—‘ +i< 0,
40, ) 4¢,
N
—Nk+—-<0,

4e,

N
—Nk, +—-<0.

4e,

Thus, using (13), we arrive at

L(t)<cE(t),Vt>0, (23)
A combination of (22) and (23) gives
L(t)<—c,L(t),Vt>0, (24)

where ¢, = c/c}, a simple integration of (24) over (0, ¢) yields
cE(t)<L(t)<L(0)e™, Vi>0.
Taking ¢, = £(0)/ ¢] which completes the proof.
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