
Journal of Thermal Engineering, Vol. 7, No. 4, pp. 791-805, May, 2021  
Yildiz Technical University Press, Istanbul, Turkey                                                                                                                   
 

This paper was recommended for publication in revised form by Regional Editor Tolga Taner 
1Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.  
2Metamaterials for Mechanical, Biomechanical and Multiphysical Applications Research Group, Ton Duc Thang University, Ho Chi 
Minh City, Vietnam 
3Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam. 
*E-mail address: mohammad.ghalambaz@tdtu.edu.vn 
Orcਟd ID: 0000-0002-0252-8963, 0000-0003-0965-2358, 0000-0001-8491-2397 

Manuscript Received 27 June 2019, Accepted 24 September 2019 

 
 

STUDY OF THE FLOW AND HEAT TRANSFER OF A VISCOELASTIC FLUID 
USING HYBRID NEURAL NETWORK-PARTICLE SWARM OPTIMIZATION (HNNPSO) 

 
Reza Mirzaei1 Mohammad Ghalambaz2,3,* Aminreza Noghrehabadi1 

 
 
 

ABSTRACT  
Fluid flow and heat transfer of a second-order viscoelastic fluid in an axisymmetric channel with a porous 

wall for turbine cooling applications are studied. The nonlinear differential equations of the fluid flow and heat 
transfer arising from similarity solutions are computed employing a Hybrid Neural Network-Particle Swarm 
Optimization algorithm (HNNPSO). A trial function, satisfying the boundary conditions, as a possible solution for 
the governing equations is introduced. The trial functions incorporate a multi-layer perceptron neural network with 
adjustable parameters (the weights and biases). The Particle Swarm Optimization algorithm (PSO) is applied to find 
the adjustable parameters of the trial solution to satisfy the governing equations. Finally, comparisons are made 
between the results of the present method (HNNPSO) and the results of the fourth order Runge–Kutta method, finite 
difference method, and Variational Iteration Method. The results indicate that HNNPSO method conveniently 
produces a polynomial analytic solution with remarkable accuracy, and the accuracy of the solution improves as the 
number of neurons of the neural network increases. 

 
Keywords: Ordinary differential equations (ODEs), Neural network (NN), Boundary layer, Viscoelastic 
fluid, Particle swarm optimization (PSO) 

 
INTRODUCTION  

Viscoelastic fluids are a kind of non-Newtonian fluids which have both viscous and elastic characteristics. 
In these materials, the viscosity decreases as the shear/strain rate remains constant. Polymer solutions and melts like 
nylon, gelatin solution, and most of the industrial fluids are viscoelastic in nature [1]. 

Analysis of the behavior of the non-Newtonian fluid flows, especially the viscoelastic flows, have attracted 
much attention in the recent years due to the various industrial applications in different fields such as extrusion of 
plastics, lubrication and hot rolling. Generally, the interest in flow and heat transfer problem of non-Newtonian fluids 
has grown considerably [1, 2]. The boundary layer flow and heat transfer over surfaces is an important issue with 
many practical engineering applications. Various aspect of flow and heat transfer over surfaces of channels have been 
addressed in recent literature works. For instance, the boundary layer heat transfer of viscoelastic nanofluids [3], 
non-Newtonian nano-fluids [4], micropolar fluids [5], and radiation effects [6] have been addressed recently.  

In most cases, the governing equations of the fluid motion in the boundary layer are inherently nonlinear in 
nature that cannot be solved analytically, therefore, special techniques such as numerical techniques or advanced 
analytical methods to tackle such nonlinear equations are needed. In this way, different methods such as Homotopy 
Perturbation Method (HPM) [7], Parameterized Perturbation Method (PPM) [8], Homotopy Analysis Method (HAM) 
[9], Adomian Decomposition Method (ADM) [10] and Variational Iteration Method (VIM) [11] have been developed 
to solve differential equation. Although these methods are very powerful and can deal with various types of nonlinear 
differential equations; they have also encountered some limitations and disadvantages. For example, the Homotopy 
Perturbation Method (HPM) and Parameter Perturbation Method (PPM) depend on perturbation, linearization, or 
small parameters. The Homotopy Analysis Method (HAM) requires many harmonic terms to produce an accurate 
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solution, which such a solution with too many analytic terms practically seems unworthy. VIM shows some 
disadvantages, namely, repeated computations and computations of unneeded terms, which consumes time and 
effort. Hence, a simple and powerful method to solve the nonlinear equations, which reduces these limitations and 
difficulties, is still a challenge.     

Many researchers have studied the flow and heat transfer phenomena over open surfaces and channels. For 
instance, the MHD flows [12, 13, 14], flow over flat surfaces [15], natural and mixed convection flow and heat 
transfer [16-18], flow over a cylinder [19], and entropy generation [20] have been studied in past years. The non-
Newtonian fluids are important in industrial applications as the behavior of many practical fluids cannot be described 
using the Newtonian model of fluids. In this regard, many researchers have studied the flow and heat transfer of non-
Newtonian fluids. Among them, White and Metzner [21] have evaluated the constitutive equations for viscoelastic 
fluids. Debruge and Han [22] studied the heat transfer in a channel with a porous wall for turbine cooling application. 
Following the study of Debruge and Han [22], Kurtcebe and Erim [23] used the Perturbation Method (PM), and 
Shakeri et al. [24] applied Variational Iteration Method (VIM) to solve the heat transfer of non-Newtonian 
viscoelastic fluid flow in an axisymmetric channel with a porous wall. They [23, 24] analyzed the effects of different 
parameters namely Reynolds number, injection Reynolds number, Prandtl number, and power-law index. The same 
problem was also solved by Esmaeilpour et al. [25] using the Homotopy Analysis Method (HAM) to obtain an 
expression for velocity and temperature fields.  

 The intelligence exhibited by machines or software is known as artificial intelligence. An Artificial Neural 
Network (ANN) is a new form of artificial intelligence used in machine learning that tries to mimic the learning 
process of the human brain. Artificial neural networks are powerful tools for functions approximation. This method 
has been successfully applied to a wide variety of applications [26]. Particle swarm optimization (PSO) is a swarm-
based artificial intelligence technique that tries to simulate the social behavior of biological populations [27]. This 
heuristic method can be used to find approximate solutions to numeric maximization and minimization problems.  

In recent years, some new artificial methods have been introduced to solve differential equations arising 
from engineering problems [28-34]. Noghrehabadi et al. [30] studied the buckling shape of a multi-wall carbon 
nanotube cantilever. The buckling of the nanotube follows a fourth-order non-linear boundary value differential 
equation. They utilized the power series with adjustable variables as a trial function for the governing equation, 
satisfying the boundary conditions. Afterward, Artificial Bee Colony (ABC) algorithm was employed to adjust the 
power series variables to satisfy the governing differential equation in the domain of the solution. Using the power 
series as a trial function and ABC as the training method, Noghrehabadi et al. [30] have successfully reported a semi-
analytic solution in the form of a power series for the buckling shape of the nanotube. 

In another study, Noghrehabadi et al. [31] successfully utilized the Cuckoo search optimization algorithm as 
the training method to adjust the coefficients of a trial function for the buckling of a microactuator. Lagaris et al. [32] 
and Tawfiq and Hussein [33] have utilized the feedforward neural networks to obtain a solution for differential 
equations. Malek and Beidokhti [34] examined the Feed Forward Neural Networks (FFNN) to obtain a solution for 
high order differential equations. They utilized the Nelder-Mead optimization method to adjust the parameters of a 
trial solution, which was constructed using the feedforward neural networks.  

The approaches utilized in [28-34] can be considered as hybrid methods. An advantage of the hybrid method 
is that it can provide an analytical approximation to a wide class of nonlinear equations without the computational 
difficulties of HAM. Also, there is no need for any perturbation, linearization, or small parameter as required in 
perturbation methods. The hybrid method is simple and powerful to solve different differential equations, while the 
results have excellent agreement with numerical methods. In the previous studies [28-34], the hybrid method was 
applied for a single high order differential equation. Although there are various practical systems of differential 
equations, there has been no attempt to develop the hybrid method to the case of the system of high order differential 
equations. Recently, Noghrehabadi et al. [28] utilized the hybrid ANN and PSO optimization method to solve the 
differential equation of nanofluids over a flat plate. 

As mentioned, the literature review shows that the problem of heat transfer of a non-Newtonian fluid in a 
channel has been studied by previous researchers [22-25] using Perturbation Method (PM) [22], Variational Iteration 
Method (VIM) [24] and Homotopy Analysis Method (HAM) [25] due to its important practical applications and 
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inherent non-linearity. The governing equations of heat transfer of a non-Newtonian fluid in a channel result in a 
system of high order non-linear differential equations, one high order boundary value equation for heat and one for 
flow.  

The utilized method in the literature requires as mall value [22], or too many terms [23- 25] to provide an 
accurate analytical solution. The present study tends to obtain an accurate analytical solution with only a few terms 
for the model of heat transfer introduced in [22-25]. Here, the hybrid method is employed to deal with a system of 
high-order boundary value differential equations (a fourth-order differential equation and a second-order differential 
equation). For this purpose, two feed-forward neural networks are introduced as the trial functions, and the Particle 
Swarm Optimization (PSO) method as the training method is employed to obtain a semi-analytical solution for the 
heat transfer and fluid flow of a non-Newtonian fluid in a channel. 

 
MATHEMATICAL FORMULATION 

Consider the flow of a non- Newtonian viscoelastic fluid on a turbine disc to cool the surfaces of the disc. 
Fig. 1 shows the physical model of the problem and the selected coordinate system. The r-axis is adopted parallel to 
the surface of the disk, and the z-axis is normal to the surface of the disk. The porous disc of the channel is placed at 
z=+L. The wall that coincides with the r-axis is heated externally; a non-Newtonian fluid is injected uniformly from 
the other perforated wall. 

 

Figure 1. Physical model, along with the coordinate system 

The flow and heat transfer equations and the similarity solution are proposed by Kurtcebe and Erim [23] and 
followed by Shakeri et al. [24] and Esmaeilpour et al. [25] for the above problem description. For a steady, 
axisymmetric and two-dimensional non-Newtonian fluid flow and neglecting dissipation effect, the governing 
equations for flow and heat can be represented as [23]: 

 

𝑓௜௩(𝜂) + 2𝑅𝑒𝑓(𝜂)𝑓ᇱᇱᇱ(𝜂) + 𝐾ଵ𝑅𝑒 ቀ4𝑓ᇱᇱ(𝜂)𝑓ᇱᇱᇱ(𝜂) + 2𝑓ᇱ𝑓௜௩(𝜂)ቁ = 0 

 
(1) 

𝑞௡
ᇱ(𝜂) − 𝑅𝑒 𝑃𝑟൫𝑛𝑓ᇱ(𝜂)𝑞௡(𝜂) − 2𝑓ᇱ𝑞௡

ᇱ(𝜂)൯ = 0 

 
(2) 

Where f and qn are the fluid and heat variables, respectively and η is the domain variable. Here, K1 is the 
viscoelastic parameter, Re is the injection Reynolds number, Pr is the Prandtl number, which are defined based on 
the first viscosity characteristic (φ0). n is the order of heat equation which can be considered as a constant integer 
positive number.  The corresponding boundary conditions for flow and heat are: 
 

𝑓(0) = 0, 𝑓ᇱ(0) = 0, 𝑓(1) = 0, 𝑓ᇱ(1) = 0 
 

(3) 

𝑞௡(0) = 0, 𝑞௡(1) = 0 (4) 

As seen, the momentum equation is a fourth order and highly non-linear equation, and the heat equation is a 
second order coupled to the momentum equation. To find an analytical solution, the hybrid neural network and 
swarm optimization method are introduced and utilized to solve these equations. 
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Artificial Neural Networks (ANNS) 
An Artificial Neural Network (ANN) is a new mathematical model used in machine learning that tries to 

simulate the structure of biological neural networks and the learning process of the human brain. The basic element 
of every artificial neural network is an artificial neuron, which is a simple mathematical function [35].  
Using the science of computer programming, one can design a data structure that acts as a neuron. Then, the desired 
network can be introduced and trained by establishing a network of interconnected artificial neurons and utilizing a 
learning algorithm. ANNs are known as universal approximations. These networks can efficiently estimate and 
approximate functions [36]. 

In cases that include too many input data, one neuron alone is not enough to solve the problem. 
Accordingly, there should be a layer of neurons. In a multi-layer neural network, there is an input layer, which 
receives the input data, some hidden layers, which receive the information from the previous layer. Ultimately, there 
is an output layer to deliver the outcomes. A wide variety of learning algorithms have been developed. A supervised 
network needs a teacher to tell the network what the desired output should be. In contrast, an unsupervised network 
adapts purely in response to its inputs. Such networks can learn to pick out a structure in their input.   

In a feed-forward neural network, the neurons are in successive layers and send their output to the 
forwarded layers. Thus, there is no feedback, and the output layer does not affect the other layer. The topology of the 
neural network is an important factor. Multi-layer perceptron which first was introduced by Rosenblatt [37], is a 
simple feed-forward neural network that involves one input layer, one or more hidden layers, and one output layer. 
Fig.2 shows a typical three-layered perceptron. 

 

Figure 2. An artificial neural network (perceptron) 

 

Figure 3. An artificial a multi-layered perceptron 

The ability to function approximation is the most important application of a multi-layered perceptron. Based 
on the Kolmogorov theorem, a three-layered perceptron with n(2n+1) nodes can approximate a continuous function 
of n variables [38, 39]. Hence, it can be concluded that the accuracy of the function approximation is under the 
significant influence of the number of neurons in the hidden layer. 

Considering an input of x, the network output can be evaluated by 
 

𝑁(𝜂, 𝑝) =  ෍ 𝑣𝑖𝑆(𝑤𝑖𝜂 + 𝑏𝑖)

𝐻

𝑖=1

 

 

(5) 
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Where wi denotes a weight parameter from the input layer to ith neuron in the hidden layer, bi denotes a bias 
parameter for ith neuron in the hidden layer, and vi denotes a weight parameter from ith neuron in the hidden layer to 
output layer [35]. Here, p is a vector containing wi, vi and bi. 

The multi-layered feed-forward neural networks are trainable. In this paper, a feed-forward neural network 
is used to form a non-linear function from the input data. Here, the ANN learns the function behavior from the theory 
of differential equations. During the learning process the parameters of ANN as adjusted in a way to satisfy the 
differential equations in some collocation point samples. An ANN with minimum deviation from the behavior of the 
ODE is the final solution and has learned the ODE adequately. Therefore, it can be concluded that an ANN that has 
learned the ODE is an analytic function that approximates the solution to the corresponding ODE. 

 
Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) is a population-based optimization technique proposed by Eberhart 
and Kennedy [27], inspired by the social behavior of biological populations. Like other swarm-based techniques, 
PSO starts with a population of random solutions and searches for the optimum solution by updating generations. In 
PSO, each particle has a velocity and a position that can move. Each particle adjusts its movement in the search 
space according to two pieces of information, which are the best position the particle has reached so far, which is 
called the personal best (pbest), and the best position obtained by any particle in the neighbors of the particle, which 
is called the local best (lbest). When a particle takes the whole swarm as its neighbor, the value is called the global 
best (gbest). In the PSO, each particle i has a position Zi and a velocity vi that is updated at each iteration: 

 

𝑣పሬሬሬ⃗ = 𝜔𝑣పሬሬሬ⃗ + 𝑐ଵ𝑟ଵ௜൫𝜌పሬሬሬ⃗ − 𝑍ప
ሬሬሬ⃗ ൯ + 𝑐ଶ𝑟ଶ௜൫𝜌௚ሬሬሬሬ⃗ − 𝑍ప

ሬሬሬ⃗ ൯ 
 

(6) 

Where ω is the inertia weight, 𝜌పሬሬሬ⃗  is the personal best found by particle, 𝜌௚ሬሬሬሬ⃗  is the global best, r1 and r2 are 

random values between [0,1], and c1 and c2 are positive constant parameters called acceleration coefficients which 
determine the effect of the cognitive and social behavior of the particles in the velocity vector. The position of each 
particle is the sum of the present position and the distance that the particles have traveled. Hence, the new positions 
of the particles can be evaluated as: 

 

𝑍ప
ሬሬሬ⃗ = 𝑍ప

ሬሬሬ⃗ + 𝑣పሬሬሬ⃗  
 

(7) 

Some important factors in PSO are inertia weight (ω), particle size and maximum iteration number (t). 
Generally, the PSO algorithm can be arranged in five key steps: 

 Initialize random velocity and position vectors for all particles. Then, maximum velocity and maximum 
particle movement amplitude are specified. 

 Evaluate the fitness of each particle. 

 If the obtained solution is better than the previous local best solution, replace it. If the existing solution 
is better than the previous global best solution, then the existing solution is selected as the new gbest. 

 Change positions and velocities by computing the new position employing Eqs. (6) and (7). 

 Repeat steps 2 to 4 until the gbest reaches a satisfactory optimized solution.  
 

Hybrid Method For A System Of Differential Equations 
In the hybrid method, mentioned in [30-34], a trial function with adjustable coefficients is introduced. The 

trial function consists of the sum of two parts. The first part is meant to satisfy the boundary conditions and the 
second part, which is an FFNN here, is meant to satisfy the differential equation in the domain of the solution. This 
technique has been referred to as the collocation neural network in the study of Tawfiq and Hussein [33]. In this 
section, we will propose the formulation of the hybrid method for a system of boundary value differential equations 
consisting of two non-linear differential equations. Now, assume the general form of a system of differential 
equations as 
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𝑧(𝑦ఌ, 𝑦ఌିଵ, … , 𝑦ଵ, 𝑦, 𝜂) = 0 
 

(8) 

Subject to 
 

𝑏(𝑦ఌ, 𝑦ఌିଵ, … , 𝑦ଵ, 𝑦, 𝜂) = 0 
 

(9) 

Where z=z1, z2…zj are the governing differential equation, and y=y1, y2, … yj are the differential equation 
variables which are a function of the independent variable of η (the solution in domain D that should be computed). 
Here, b=b1, b2 … bL are the boundary equations. The indexes of j and L denote the number of differential equations 
and boundary conditions respectively. Consider a trial function, YT (η, a, p), with adjustable parameters of a and p, 
that exactly satisfies the boundary conditions introduced by b in Eq. (9). It should be noted that YT = YT1, YT2 … YTj 
and a and p are vectors of adjustable coefficients for each trial function of YT1, YT2 … YTj. Considering YT (η, a, p) as a 
trial solution with adjustable parameters of a and p, the problem is transformed into a discretized form as: 
 

𝑀𝑖𝑛 ෍ ቀ𝑧൫𝑌 ఌ(𝜂௜, 𝑎, 𝑝), 𝑌 ఌିଵ(𝜂௜, 𝑎, 𝑝), … , 𝑌 ଵ(𝜂௜, 𝑎, 𝑝), 𝑌 (𝜂௜, 𝑎, 𝑝), 𝜂௜൯ቁ

ఎ೔ఢ஽

 

 

(10) 

In our proposed method the trial solution of YT employs a polynomial (A(η, a)), containing the adjustable 
coefficients of a to satisfy the boundary conditions and a function containing a feed-forward neural network 
(G(η,N(η, p)) as: 
 

𝑌 (𝜂, 𝑎, 𝑝) = 𝐴(𝜂, 𝑎) + 𝐺൫𝜂, 𝑁(𝜂, 𝑎)൯ 
 

(11) 

A(η, a)= A1(η, a1), A2(η, a2)… Aj(η, aj) and G(η, N(η, p))= G1(η, N1(η, p1)), G2(η, N2(η, p2))… Gj(η, Nj(η, pj)) 
where each of a1, a2 … aj and p1, p2 … pj are vectors containing adjustable parameters. Each Ni(η, p), such as N1(η, 
p1) is a single layer feed-forward neural network the same as the one that was introduced in Eq. (5), and pi contains 
the weights (w and v) and biases of the neural network of Ni. The function of G is constructed so as not to contribute 
to the boundary conditions of b since A(η, a) would satisfy them. After introducing proper trial functions for YT1, YT2 
… YTj the minimization equation of Eq. (10) can be formed as the sum of the square of the residuals of each trial 
function as: 

𝑀𝑖𝑛 ෍ ቊ൬ቀ𝑧ଵ൫𝑌 ఌ(𝜂௜, 𝑎, 𝑝), 𝑌 ఌିଵ(𝜂௜, 𝑎, 𝑝), … , 𝑌 ଵ(𝜂௜, 𝑎, 𝑝), 𝑌 (𝜂௜, 𝑎, 𝑝), 𝜂௜൯ቁ൰
2

ఎ೔ఢ஽

+ ൬ቀ𝑧ଶ൫𝑌 ఌ(𝜂௜, 𝑎, 𝑝), 𝑌 ఌିଵ(𝜂௜, 𝑎, 𝑝), … , 𝑌 ଵ(𝜂௜, 𝑎, 𝑝), 𝑌 (𝜂௜, 𝑎, 𝑝), 𝜂௜൯ቁ൰ 
2

+ ⋯

+ ൬ቀ𝑧௝൫𝑌 ఌ(𝜂௜, 𝑎, 𝑝), 𝑌 ఌିଵ(𝜂௜, 𝑎, 𝑝), … , 𝑌 ଵ(𝜂௜, 𝑎, 𝑝), 𝑌 (𝜂௜, 𝑎, 𝑝), 𝜂௜൯ቁ൰
2

ቋ 

(12) 

Now, a minimization technique such as PSO, which was introduced in the previous section, is required to 
adjust the coefficients of a and p.  

At this end, it is worth mentioning that the present formulation extends the ideas proposed in the previous 
studies of [28-34] to the case of a system of differential equations. In addition, in the studies of [28-34] the function 
of A(η) which satisfies the boundary conditions is solely a function of the independent variable of η. However, in the 
present study, the function A is considered as a function free of the independent variable of η and the adjustable 
coefficient of a. In this way, the trial function would have a higher degree of freedom next to the boundary conditions 
to satisfy the governing equation. Hence, using few degrees of freedom in the form of adjustable coefficients of a 
would significantly increase the accuracy of the trial solution with only a few adjustable coefficients. 
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In the next section, the present method will be employed to obtain a solution for the governing equations of 
Eq. (1) and (2) subject to the boundary conditions of Eqs. (3) and (4). 

 
Problem Formulation 

Consider the governing equations of fluid flow and heat transfer of a second-order viscoelastic fluid in an 
axisymmetric channel with a porous wall which is expressed by Eqs. (1) and (2) and is subject to the boundary 
conditions (3) and (4). Let’s assume   as an approximation solution (trial function) to Eq. (1) and   as an 
approximation solution (trial function) to Eq. (2) as 
 

𝑌 ଵ(𝜂, 𝑎, 𝑝) = 𝑎ଵ,ଵ𝜂4 − 2൫𝑎ଵ,ଵ + 1൯𝜂3 + ൫𝑎ଵ,ଵ + 3൯𝜂2 + 𝜂2(𝜂 − 1)2𝑁ଵ(𝜂, 𝑝ଵ) 
 

(13) 

𝑌 ଵ(𝜂, 𝑎, 𝑝) = −𝜂 + 1 + 𝜂(𝜂 − 1)𝑁ଶ(𝜂, 𝑝ଶ) 
 

(14) 

In Eqs. (13) and (14), the terms 𝑎ଵ,ଵ𝜂4 − 2൫𝑎ଵ,ଵ + 1൯𝜂3 + ൫𝑎ଵ,ଵ + 3൯𝜂2 and = −𝜂 + 1 denote A1(η, a1) and 

A2(η, a2), respectively. It should be noted that for YT1 only one adjustable coefficient of a11 is utilized, and for YT2 no 

adjustable parameter of a is utilized, i.e., a21=0. The terms of  𝜂ଶ(𝜂 − 1)ଶ𝑁1൫𝜂, 𝑝
1൯ and 𝜂(𝜂 − 1)𝑁ଶ(𝜂, 𝑝ଶ) shows G1(η, 

N1(η, p1)) and G2(η, N2(η, p2)) parts of the trial solution of YT respectively. N1(η, p1) and N2(η, p2) are perceptron 
neural networks (simple FFNN) that involves adjustable parameters (p) and could involve one or more neurons. In 
the present study, perceptron neural networks with three, four, and five neurons will be utilized.  Attention to Eqs. 
(13) and (14) shows that Eq. (13) satisfies all given boundary conditions in (3) and Eq. (14) satisfies all given 
boundary conditions in Eq. (4). Now, substituting the trial functions of YT1 and YT2 in the discretized governing 
equations of Eqs. (1) and (2) and forming the sum of the square of the residuals similar to Eq. (12) results in: 
 

𝑖𝑛 ෍ ቊ൬𝑌 ଵ
௜௩(𝜂௜, 𝑎, 𝑝) + 2𝑅𝑒𝑌 ଵ(𝜂௜ , 𝑎, 𝑝)𝑌 ଵ

ᇱᇱᇱ(𝜂௜, 𝑎, 𝑝)

ఎ೔ఢ஽

− 𝐾ଵ𝑅𝑒 ቀ4𝑌 ଵ
ᇱᇱ(𝜂௜, 𝑎, 𝑝)𝑌 ଵ

ᇱᇱᇱ(𝜂௜, 𝑎, 𝑝) + 2𝑌 ଵ
ᇱ(𝜂௜ , 𝑎, 𝑝)𝑌 ଵ

௜௩(𝜂௜, 𝑎, 𝑝)ቁ൰
2

+ ቀ𝑌 ଶ
ᇱᇱ(𝜂௜ , 𝑎, 𝑝)

− 𝑅𝑒 𝑃𝑟൫𝑌 ଵ
ᇱ(𝜂௜, 𝑎, 𝑝)𝑌 ଶ(𝜂௜, 𝑎, 𝑝)

− 2𝑌 ଵ(𝜂௜ , 𝑎, 𝑝)𝑌 ଶ
ᇱ(𝜂௜, 𝑎, 𝑝)(𝜂௜, 𝑎, 𝑝)൯ቁ

2
ቋ 

(15) 

 
Where ∀𝜂௜𝜖𝐷, 𝑖 = 1,2,3, … , 𝑚 are collocation points in domain D. As mentioned YT1 and YT2 are the trial 

functions with adjustable parameters (ANNs). YT1 and YT2 will approximate the solution of differential equations after 
their parameters were adjusted. Here, Eq. (15) builds a framework to adjust the parameters of the trial functions. Eq. 
(15) contains the trial function and its gradients respect to η. In the present study, we utilized a sigmoid transfer 
function as (1/(1+exp(-η)) for the transfer function of the neurons for convenience. PSO is utilized to determine the 
optimal adjustable parameters of a11, p1, and p2 in the trial functions of YT1 and YT2 to minimize Eq. (15). Thus, Eq. 
(15) can be rewritten as 
 

𝑀𝑖𝑛 ෍ ൫𝐸ଵ(𝑎, 𝑝) + 𝐸ଶ(𝑎, 𝑝)൯

ఎ೔ఢ஽

 (16) 

Where 
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𝐸ଵ(𝑎, 𝑝) = ෍ ൬𝑌 ଵ
௜௩(𝜂௜ , 𝑎, 𝑝) + 2𝑅𝑒𝑌 ଵ(𝜂௜, 𝑎, 𝑝)𝑌 ଵ

ᇱᇱᇱ(𝜂௜ , 𝑎, 𝑝)

ఎ೔ఢ஽

− 𝐾ଵ𝑅𝑒 ቀ4𝑌 ଵ
ᇱᇱ(𝜂௜, 𝑎, 𝑝)𝑌 ଵ

ᇱᇱᇱ(𝜂௜, 𝑎, 𝑝) + 2𝑌 ଵ
ᇱ(𝜂௜ , 𝑎, 𝑝)𝑌 ଵ

௜௩(𝜂௜, 𝑎, 𝑝)ቁ൰
ଶ

 

 

(17) 

And 
 

𝐸ଶ(𝑎, 𝑝) = ෍ ቀ𝑌 ଶ
ᇱᇱ(𝜂௜ , 𝑎, 𝑝)

ఎ೔ఢ஽

− 𝑅𝑒 𝑃𝑟൫𝑌 ଵ
ᇱ(𝜂௜, 𝑎, 𝑝)𝑌 ଶ(𝜂௜, 𝑎, 𝑝)

− 2𝑌 ଵ(𝜂௜ , 𝑎, 𝑝)𝑌 ଶ
ᇱ(𝜂௜, 𝑎, 𝑝)(𝜂௜, 𝑎, 𝑝)൯ቁ

ଶ

 

 

(18) 

RESULTS AND DISCUSSION 
The hybrid method and PSO algorithm were coded in MATLAB 2009 [40]. Then, the consequent results of 

the presented method are compared with the results of the fourth order Runge–Kutta method [24] and the VIM 
method [24] in literature. Besides, the governing equations (Eqs. (1) and (2) subject to the boundary conditions in 
Eqs. (3) and (4)) were solved using a finite difference method [41].  
In order to solve the equations using the present method, the coefficients of the trial functions for H=5 (five neurons) 
with sigmoid units in the hidden layer and m=6 equally spaced points inside the interval [0, 1] was determined by 
minimizing Eq. (15) using PSO. In all of this section, the results are reported for a neural network with five neurons; 
otherwise, the number of the utilized neurons will be stated. The following parameters of PSO were used for this 
problem: Inertia weight = 0.9; Acceleration factors = 2.5; Maximum Iteration=150 and Population = 100. Table 1 
displays the results of the optimization of Eqs. (15) using PSO. The optimal adjustable parameters in trial function 
YT1(η, a, p) and YT2(η, a, p) are summarized in Table 1 for a case with K1=0.01, Re=0.5 and Pr=1 and n=0. The 
optimal adjustable parameter in the first part of the trial function YT1(η, a, p), i.e., a11, was found to be a11=-0.2308 
while the obtained errors are   and. According to the results of Table 1, YT1(η, a, p) and YT2(η, a, p) can be written as: 
 

𝑌 ଵ(𝜂, 𝑎, 𝑝) = −0.2308𝜂ସ − 1.5384𝜂ଷ + 2.7692𝜂ଶ

+ 𝜂ଶ(𝜂 − 1)ଶ ൬
1.0375

1 + 𝑒ି଴.଼଴଴଺ఎ .଴ଽ଻ହ
+

−0.6621

1 + 𝑒ିଵ.ଶଷହହఎିଵ.ସ଻଼଻

+
−0.4258

1 + 𝑒ଵ.଻଺ଽଵఎି଴.ଷ଺ଽଶ
+

0.5842

1 + 𝑒଴.଻ଵ଴଺ఎିଵ.ଵଶ଴଼
+

−0.3809

1 + 𝑒଴.ଵଽ଴ଷఎାଶ.ଽ଼଺଻
൰ 

(19) 

 

𝑌 ଵ(𝜂, 𝑎, 𝑝) = −𝜂 + 1

+ 𝜂(𝜂 − 1) ൬
0.9601

1 + 𝑒ି଴.଺଺ସ଴ఎ .ଵ଻ସଵ
+

0.2593

1 + 𝑒ି଴.଺ହହଶఎା଴.ଶ଻଻ସ

+
0.5473

1 + 𝑒ି଴.ଷ଼଻଼ఎ .ଶଵ଼଴
+

−1.5850

1 + 𝑒ିଵ.ଽ଺ଶଷఎା଴.ଵ଻ହ଺
+

−0.7294

1 + 𝑒ଶ.ଵଵଵଶఎ .ସହଶଶ
൰ 

 

(20) 

It should be noted that YT1 represents the solution for variable f and YT2 represents the solution for variable 
qn in the domain of D. The results of the present are summarized in Table 2. This table shows the results computed 
using YT1 and YT2 consisting of three, four and five neurons. It is obvious that the accuracy of the solution improves 
as the number of neurons of the neural network increases. Next, the results for f(η) and qn(η) as a function of η have 
been shown in Table 3. A comparison between the hybrid method with five neurons and the numerical solutions 
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(fourth order Runge-Kutta and the finite difference method) is reported in this table. In Table 3, %Error is introduced 

as %Error= ቚ௙(ఎ)ಿಾି௙(ఎ)ಹಿಿುೄೀ

௙(ఎ)ಿಾ
ቚwhere NM refers to the fourth order Runge-Kutta method. 

 
Table 1. The evaluated optimal values of the adjustable parameters in trial function of YT1(η, a, p) and YT2(η, a, p) 

when K1=0.01, Re=0.5 and Pr=1 and n=0 

Index(i) 

YT1(η, a, p) YT2(η, a, p) 

wi bi  vi  wi  bi  vi 

1 0.8006 1.0975 1.0375 0.6640 -0.1741 0.9601 

2 1.2355 1.4787 -0.6621 0.6552 -0.2744 0.2593 

3 -1.7691 0.3692 -0.4258 0.3878 0.2180 0.5473 

4 -0.7106 1.1208 0.5842 1.9623 -0.1756 -1.5850 

5 -0.1903 -2.9867 -0.3809 -2.1112 -0.4522 -0.7294 

 
Table 2. A comparison between the results obtained by the hybrid method using three, four and five neurons when 

K1=0.01, Re=0.1, Pr=1 and n=0 

YT1 or f(η) YT2 or qn(η) 

3 neurons 4 neurons 5 neurons 3 neurons 4 neurons 5 neurons 

0 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 

0.1 0.029559 0.029561 0.029561 0.884689 0.884733 0.884718 

0.2 0.109302 0.109307 0.109309 0.769865 0.769859 0.769828 

0.3 0.225720 0.225775 0.225794 0.656363 0.656256 0.656218 

0.4 0.365639 0.365624 0.365621 0.545325 0.545191 0.545161 

0.5 0.515643 0.515639 0.515400 0.438203 0.438162 0.438097 

0.6 0.663187 0.663164 0.663156 0.336491 0.336404 0.336407 

0.7 0.796160 0.796132 0.796123 0.241363 0.241283 0.241223 

0.8 0.903397 0.903316 0.903307 0.153483 0.153330 0.153295 

0.9 0.974389 0.974385 0.974385 0.073053 0.072952 0.072931 

1 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 

 
Results show that the hybrid method gives an analytical solution with high accuracy by utilizing only a few 

neurons. A comparison between the results of the present HNNPSO and the results reported in [24] is performed in 
Figs. 3 and 4 and Table 3. The finite difference method used in Table 3 was implemented using bvp4c functions of 
MATLAB. 
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Table 3. Comparison between results of the fourth-order Runge–Kutta method (NM) [24], VIM [24], finite 
difference method and the hybrid method, when: Re=0.5, K1=0.01, Pr=1 and n=0 

  

 f(η)  qn(η) 

NM [24] 
VIM 

[24] 

Finite 

difference 

HNNPSO 

(5 

neurons) 

%Error NM [24] 
VIM 

[24] 

Finite 

difference 

HNNPSO 

(5 

neurons) 

%Error 

0 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.000000 

0.1 0.029627 0.029627 0.029561 0.029561 0.002228 0.884720 0.884133 0.884719 0.884718 0.000002 

0.2 0.109442 0.109442 0.109311 0.109309 0.001215 0.769829 0.769044 0.769826 0.769828 0.000001 

0.3 0.225897 0.225896 0.225795 0.225794 0.000455 0.656223 0.655468 0.656216 0.656218 0.000008 

0.4 0.365597 0.365594 0.365624 0.365621 0.000065 0.545172 0.544558 0.545162 0.545161 0.000020 

0.5 0.515454 0.515447 0.515644 0.515400 0.000104 0.438113 0.437672 0.438099 0.438097 0.000034 

0.6 0.662849 0.662836 0.663077 0.663156 0.000463 0.336423 0.336142 0.336409 0.336407 0.000047 

0.7 0.795795 0.795778 0.796081 0.796123 0.000412 0.241237 0.241082 0.241225 0.241223 0.000058 

0.8 0.903067 0.903056 0.903297 0.903307 0.000265 0.153305 0.153239 0.153298 0.153295 0.000065 

0.9 0.974297 0.974290 0.974382 0.974385 0.000090 0.072938 0.072921 0.072933 0.072931 0.000096 

1 1.000000 0.999962 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Comparing the present method with other solutions, the results for f(η) and f '(η) are shown in Figs. (4) and 

(5), respectively. The results for qn(η) are also plotted in Fig. (6). Figures show that the results of the present 
HNNPSO are in good agreement with the numerical solution (fourth order Runge-Kutta method [24]) and the VIM 
method [24]. 

 
Figure 4. Comparison between the solutions via numerical results, VIM and HNNPSO for f (η) when: Re =0.5, 

K1=0.01 
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Figure 5. Comparison between the solutions via numerical results, VIM and HNNPSO for f ' (η) when: Re=0.5, 

K1=0.01 

 
Figure 6. Comparison between the solutions via numerical results, VIM and HNNPSO for qn(η) when:  Re=0.5, 

K1=0.01, Pr=1 and n=0 
 

Figs. (7) and (8) show the effect of various parameters namely Reynolds number (Re), dimension parameter 
(n), Prandtl number (Pr) and K1 parameter on the flow and heat transfer. The effect of different Re values on the 
velocity profile is shown in Fig. (7), while Fig. (8) shows the effect of various parameters on the temperature profile. 
Again, excellent agreement is seen between the results of the proposed method and the results of the numerical 
solution. Figs. (7) and (8) show that increasing Reynolds number leads to an increase in the curvature of the 
temperature profile and decrease of qn(η) values. Also, from Fig. (8) can be concluded that for a constant value of η, 
temperature increases if the power-law index decreases. 
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Figure 7. Comparison effect of various Reynolds number (Re) on f (η), when K1=0.01 

 
Figure 8. Comparison effect of various parameters on qn(η) 

 
 
CONCLUSION 

The main purpose of this study was to apply Hybrid Neural Network-Particle Swarm Optimization 
(HNNPSO) to nonlinear differential equation arising from the similarity solution of the flow and heat transfer of a 
second-order viscoelastic fluid in an axisymmetric channel with a porous wall. PSO was applied to minimize the 
error function and find the optimized values of the adjustable parameters of the trial function. The obtained solution 
is a closed-form solution and represents a remarkable accuracy in comparison with the numerical methods and the 
VIM method, and the accuracy improves as the number of neurons of the neural network increases. Using three 
neurons can provide acceptable results for most of graphical and engineering purpose while using five neurons (five 
non-linear sigmoid terms) can provide a relative error lower than 0.01%. Therefore, the present method can be 
utilized to obtain highly compact and accurate close-form analytical relations for boundary layer problems, arising in 
various engineering problems.  
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Moreover, in the present study a uniform collocation point is utilized. However, a non-uniform sample 
points can be utilized to increase the local accuracy of the close form solution, which can be subject of future studies.  
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NOMENCLATURE  
𝑏   Boundary equations 
𝑏௜  Bias parameter for ith neuron in the hidden layer 
𝑐ଵ, 𝑐ଶ  Positive constant parameters called acceleration coefficients. 
𝐾ଵ  Viscoelastic parameter 
𝑝  A vector containing wi, vi and bi 
𝑃𝑟  Prandtl number 
𝑟ଵ, 𝑟ଶ  Random values between [0,1] 
𝑅𝑒  Reynolds number 
T  Temperature, oC 
𝑣௜  Weight parameter from ith neuron in the hidden layer to output layer 
𝑤௜   Weight parameter from the input layer to ith neuron in the hidden layer 
y  Differential equation variables 
YT  Trial function 
𝑧  Governing differential equation 
 
Greek symbols 
ω   Inertia weight 
𝜌పሬሬሬ⃗  Personal best found by particle 
𝜌௚ሬሬሬሬ⃗   Global best 
η  Independent variable 

 
Subscripts  
𝑛   Refers to order of heat equation 
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